diff mbox series

[v5,4/6] lib: rsa: generate additional parameters for public key

Message ID 20191217085422.9089-5-takahiro.akashi@linaro.org
State Changes Requested
Delegated to: Heinrich Schuchardt
Headers show
Series rsa: extend rsa_verify() for UEFI secure boot | expand

Commit Message

AKASHI Takahiro Dec. 17, 2019, 8:54 a.m. UTC
In the current implementation of FIT_SIGNATURE, five parameters for
a RSA public key are required while only two of them are essential.
(See rsa-mod-exp.h and uImage.FIT/signature.txt)
This is a result of considering relatively limited computer power
and resources on embedded systems, while such a assumption may not
be quite practical for other use cases.

In this patch, added is a function, rsa_gen_key_prop(), which will
generate additional parameters for other uses, in particular
UEFI secure boot, on the fly.

Note: the current code uses some "big number" routines from BearSSL
for the calculation.

Signed-off-by: AKASHI Takahiro <takahiro.akashi@linaro.org>
---
 include/u-boot/rsa-mod-exp.h |  23 ++
 lib/rsa/Kconfig              |   3 +
 lib/rsa/Makefile             |   1 +
 lib/rsa/rsa-keyprop.c        | 725 +++++++++++++++++++++++++++++++++++
 4 files changed, 752 insertions(+)
 create mode 100644 lib/rsa/rsa-keyprop.c

Comments

Simon Glass Dec. 28, 2019, 2:26 a.m. UTC | #1
On Tue, 17 Dec 2019 at 01:53, AKASHI Takahiro
<takahiro.akashi@linaro.org> wrote:
>
> In the current implementation of FIT_SIGNATURE, five parameters for
> a RSA public key are required while only two of them are essential.
> (See rsa-mod-exp.h and uImage.FIT/signature.txt)
> This is a result of considering relatively limited computer power
> and resources on embedded systems, while such a assumption may not
> be quite practical for other use cases.
>
> In this patch, added is a function, rsa_gen_key_prop(), which will
> generate additional parameters for other uses, in particular
> UEFI secure boot, on the fly.
>
> Note: the current code uses some "big number" routines from BearSSL
> for the calculation.
>
> Signed-off-by: AKASHI Takahiro <takahiro.akashi@linaro.org>
> ---
>  include/u-boot/rsa-mod-exp.h |  23 ++
>  lib/rsa/Kconfig              |   3 +
>  lib/rsa/Makefile             |   1 +
>  lib/rsa/rsa-keyprop.c        | 725 +++++++++++++++++++++++++++++++++++
>  4 files changed, 752 insertions(+)
>  create mode 100644 lib/rsa/rsa-keyprop.c

Reviewed-by: Simon Glass <sjg@chromium.org>

I think it would help to have the change log in each patch as well as
the cover letter. If you use patman it will do this for you.
AKASHI Takahiro Jan. 6, 2020, 1:32 a.m. UTC | #2
Simon,

On Fri, Dec 27, 2019 at 07:26:40PM -0700, Simon Glass wrote:
> On Tue, 17 Dec 2019 at 01:53, AKASHI Takahiro
> <takahiro.akashi@linaro.org> wrote:
> >
> > In the current implementation of FIT_SIGNATURE, five parameters for
> > a RSA public key are required while only two of them are essential.
> > (See rsa-mod-exp.h and uImage.FIT/signature.txt)
> > This is a result of considering relatively limited computer power
> > and resources on embedded systems, while such a assumption may not
> > be quite practical for other use cases.
> >
> > In this patch, added is a function, rsa_gen_key_prop(), which will
> > generate additional parameters for other uses, in particular
> > UEFI secure boot, on the fly.
> >
> > Note: the current code uses some "big number" routines from BearSSL
> > for the calculation.
> >
> > Signed-off-by: AKASHI Takahiro <takahiro.akashi@linaro.org>
> > ---
> >  include/u-boot/rsa-mod-exp.h |  23 ++
> >  lib/rsa/Kconfig              |   3 +
> >  lib/rsa/Makefile             |   1 +
> >  lib/rsa/rsa-keyprop.c        | 725 +++++++++++++++++++++++++++++++++++
> >  4 files changed, 752 insertions(+)
> >  create mode 100644 lib/rsa/rsa-keyprop.c
> 
> Reviewed-by: Simon Glass <sjg@chromium.org>
> 
> I think it would help to have the change log in each patch as well as
> the cover letter. If you use patman it will do this for you.

Ah, I didn't know that.
It will take some time to learn more about patman.

Thanks,
-Takahiro Akashi
diff mbox series

Patch

diff --git a/include/u-boot/rsa-mod-exp.h b/include/u-boot/rsa-mod-exp.h
index 8a428c4b6a1a..1da8af1bb83d 100644
--- a/include/u-boot/rsa-mod-exp.h
+++ b/include/u-boot/rsa-mod-exp.h
@@ -26,6 +26,29 @@  struct key_prop {
 	uint32_t exp_len;	/* Exponent length in number of uint8_t */
 };
 
+/**
+ * rsa_gen_key_prop() - Generate key properties of RSA public key
+ * @key:	Specifies key data in DER format
+ * @keylen:	Length of @key
+ * @prop:	Generated key property
+ *
+ * This function takes a blob of encoded RSA public key data in DER
+ * format, parse it and generate all the relevant properties
+ * in key_prop structure.
+ * Return a pointer to struct key_prop in @prop on success.
+ *
+ * Return:	0 on success, negative on error
+ */
+int rsa_gen_key_prop(const void *key, uint32_t keylen, struct key_prop **proc);
+
+/**
+ * rsa_free_key_prop() - Free key properties
+ * @prop:	Pointer to struct key_prop
+ *
+ * This function frees all the memories allocated by rsa_gen_key_prop().
+ */
+void rsa_free_key_prop(struct key_prop *prop);
+
 /**
  * rsa_mod_exp_sw() - Perform RSA Modular Exponentiation in sw
  *
diff --git a/lib/rsa/Kconfig b/lib/rsa/Kconfig
index 89697219db2d..a90d67e5a87b 100644
--- a/lib/rsa/Kconfig
+++ b/lib/rsa/Kconfig
@@ -31,6 +31,9 @@  config RSA_VERIFY
 config RSA_VERIFY_WITH_PKEY
 	bool "Execute RSA verification without key parameters from FDT"
 	select RSA_VERIFY
+	select ASYMMETRIC_KEY_TYPE
+	select ASYMMETRIC_PUBLIC_KEY_SUBTYPE
+	select RSA_PUBLIC_KEY_PARSER
 	help
 	  The standard RSA-signature verification code (FIT_SIGNATURE) uses
 	  pre-calculated key properties, that are stored in fdt blob, in
diff --git a/lib/rsa/Makefile b/lib/rsa/Makefile
index c07305188e0c..14ed3cb4012b 100644
--- a/lib/rsa/Makefile
+++ b/lib/rsa/Makefile
@@ -6,4 +6,5 @@ 
 # Wolfgang Denk, DENX Software Engineering, wd@denx.de.
 
 obj-$(CONFIG_$(SPL_)RSA_VERIFY) += rsa-verify.o rsa-checksum.o
+obj-$(CONFIG_RSA_VERIFY_WITH_PKEY) += rsa-keyprop.o
 obj-$(CONFIG_RSA_SOFTWARE_EXP) += rsa-mod-exp.o
diff --git a/lib/rsa/rsa-keyprop.c b/lib/rsa/rsa-keyprop.c
new file mode 100644
index 000000000000..9464df009343
--- /dev/null
+++ b/lib/rsa/rsa-keyprop.c
@@ -0,0 +1,725 @@ 
+// SPDX-License-Identifier: GPL-2.0+ and MIT
+/*
+ * RSA library - generate parameters for a public key
+ *
+ * Copyright (c) 2019 Linaro Limited
+ * Author: AKASHI Takahiro
+ *
+ * Big number routines in this file come from BearSSL:
+ * Copyright (c) 2016 Thomas Pornin <pornin@bolet.org>
+ */
+
+#include <common.h>
+#include <image.h>
+#include <malloc.h>
+#include <asm/byteorder.h>
+#include <crypto/internal/rsa.h>
+#include <u-boot/rsa-mod-exp.h>
+
+/**
+ * br_dec16be() - Convert 16-bit big-endian integer to native
+ * @src:	Pointer to data
+ * Return:	Native-endian integer
+ */
+static unsigned br_dec16be(const void *src)
+{
+	return be16_to_cpup(src);
+}
+
+/**
+ * br_dec32be() - Convert 32-bit big-endian integer to native
+ * @src:	Pointer to data
+ * Return:	Native-endian integer
+ */
+static uint32_t br_dec32be(const void *src)
+{
+	return be32_to_cpup(src);
+}
+
+/**
+ * br_enc32be() - Convert native 32-bit integer to big-endian
+ * @dst:	Pointer to buffer to store big-endian integer in
+ * @x:		Native 32-bit integer
+ */
+static void br_enc32be(void *dst, uint32_t x)
+{
+	__be32 tmp;
+
+	tmp = cpu_to_be32(x);
+	memcpy(dst, &tmp, sizeof(tmp));
+}
+
+/* from BearSSL's src/inner.h */
+
+/*
+ * Negate a boolean.
+ */
+static uint32_t NOT(uint32_t ctl)
+{
+	return ctl ^ 1;
+}
+
+/*
+ * Multiplexer: returns x if ctl == 1, y if ctl == 0.
+ */
+static uint32_t MUX(uint32_t ctl, uint32_t x, uint32_t y)
+{
+	return y ^ (-ctl & (x ^ y));
+}
+
+/*
+ * Equality check: returns 1 if x == y, 0 otherwise.
+ */
+static uint32_t EQ(uint32_t x, uint32_t y)
+{
+	uint32_t q;
+
+	q = x ^ y;
+	return NOT((q | -q) >> 31);
+}
+
+/*
+ * Inequality check: returns 1 if x != y, 0 otherwise.
+ */
+static uint32_t NEQ(uint32_t x, uint32_t y)
+{
+	uint32_t q;
+
+	q = x ^ y;
+	return (q | -q) >> 31;
+}
+
+/*
+ * Comparison: returns 1 if x > y, 0 otherwise.
+ */
+static uint32_t GT(uint32_t x, uint32_t y)
+{
+	/*
+	 * If both x < 2^31 and y < 2^31, then y-x will have its high
+	 * bit set if x > y, cleared otherwise.
+	 *
+	 * If either x >= 2^31 or y >= 2^31 (but not both), then the
+	 * result is the high bit of x.
+	 *
+	 * If both x >= 2^31 and y >= 2^31, then we can virtually
+	 * subtract 2^31 from both, and we are back to the first case.
+	 * Since (y-2^31)-(x-2^31) = y-x, the subtraction is already
+	 * fine.
+	 */
+	uint32_t z;
+
+	z = y - x;
+	return (z ^ ((x ^ y) & (x ^ z))) >> 31;
+}
+
+/*
+ * Compute the bit length of a 32-bit integer. Returned value is between 0
+ * and 32 (inclusive).
+ */
+static uint32_t BIT_LENGTH(uint32_t x)
+{
+	uint32_t k, c;
+
+	k = NEQ(x, 0);
+	c = GT(x, 0xFFFF); x = MUX(c, x >> 16, x); k += c << 4;
+	c = GT(x, 0x00FF); x = MUX(c, x >>  8, x); k += c << 3;
+	c = GT(x, 0x000F); x = MUX(c, x >>  4, x); k += c << 2;
+	c = GT(x, 0x0003); x = MUX(c, x >>  2, x); k += c << 1;
+	k += GT(x, 0x0001);
+	return k;
+}
+
+#define GE(x, y)   NOT(GT(y, x))
+#define LT(x, y)   GT(y, x)
+#define MUL(x, y)   ((uint64_t)(x) * (uint64_t)(y))
+
+/*
+ * Integers 'i32'
+ * --------------
+ *
+ * The 'i32' functions implement computations on big integers using
+ * an internal representation as an array of 32-bit integers. For
+ * an array x[]:
+ *  -- x[0] contains the "announced bit length" of the integer
+ *  -- x[1], x[2]... contain the value in little-endian order (x[1]
+ *     contains the least significant 32 bits)
+ *
+ * Multiplications rely on the elementary 32x32->64 multiplication.
+ *
+ * The announced bit length specifies the number of bits that are
+ * significant in the subsequent 32-bit words. Unused bits in the
+ * last (most significant) word are set to 0; subsequent words are
+ * uninitialized and need not exist at all.
+ *
+ * The execution time and memory access patterns of all computations
+ * depend on the announced bit length, but not on the actual word
+ * values. For modular integers, the announced bit length of any integer
+ * modulo n is equal to the actual bit length of n; thus, computations
+ * on modular integers are "constant-time" (only the modulus length may
+ * leak).
+ */
+
+/*
+ * Extract one word from an integer. The offset is counted in bits.
+ * The word MUST entirely fit within the word elements corresponding
+ * to the announced bit length of a[].
+ */
+static uint32_t br_i32_word(const uint32_t *a, uint32_t off)
+{
+	size_t u;
+	unsigned j;
+
+	u = (size_t)(off >> 5) + 1;
+	j = (unsigned)off & 31;
+	if (j == 0) {
+		return a[u];
+	} else {
+		return (a[u] >> j) | (a[u + 1] << (32 - j));
+	}
+}
+
+/* from BearSSL's src/int/i32_bitlen.c */
+
+/*
+ * Compute the actual bit length of an integer. The argument x should
+ * point to the first (least significant) value word of the integer.
+ * The len 'xlen' contains the number of 32-bit words to access.
+ *
+ * CT: value or length of x does not leak.
+ */
+static uint32_t br_i32_bit_length(uint32_t *x, size_t xlen)
+{
+	uint32_t tw, twk;
+
+	tw = 0;
+	twk = 0;
+	while (xlen -- > 0) {
+		uint32_t w, c;
+
+		c = EQ(tw, 0);
+		w = x[xlen];
+		tw = MUX(c, w, tw);
+		twk = MUX(c, (uint32_t)xlen, twk);
+	}
+	return (twk << 5) + BIT_LENGTH(tw);
+}
+
+/* from BearSSL's src/int/i32_decode.c */
+
+/*
+ * Decode an integer from its big-endian unsigned representation. The
+ * "true" bit length of the integer is computed, but all words of x[]
+ * corresponding to the full 'len' bytes of the source are set.
+ *
+ * CT: value or length of x does not leak.
+ */
+static void br_i32_decode(uint32_t *x, const void *src, size_t len)
+{
+	const unsigned char *buf;
+	size_t u, v;
+
+	buf = src;
+	u = len;
+	v = 1;
+	for (;;) {
+		if (u < 4) {
+			uint32_t w;
+
+			if (u < 2) {
+				if (u == 0) {
+					break;
+				} else {
+					w = buf[0];
+				}
+			} else {
+				if (u == 2) {
+					w = br_dec16be(buf);
+				} else {
+					w = ((uint32_t)buf[0] << 16)
+						| br_dec16be(buf + 1);
+				}
+			}
+			x[v ++] = w;
+			break;
+		} else {
+			u -= 4;
+			x[v ++] = br_dec32be(buf + u);
+		}
+	}
+	x[0] = br_i32_bit_length(x + 1, v - 1);
+}
+
+/* from BearSSL's src/int/i32_encode.c */
+
+/*
+ * Encode an integer into its big-endian unsigned representation. The
+ * output length in bytes is provided (parameter 'len'); if the length
+ * is too short then the integer is appropriately truncated; if it is
+ * too long then the extra bytes are set to 0.
+ */
+static void br_i32_encode(void *dst, size_t len, const uint32_t *x)
+{
+	unsigned char *buf;
+	size_t k;
+
+	buf = dst;
+
+	/*
+	 * Compute the announced size of x in bytes; extra bytes are
+	 * filled with zeros.
+	 */
+	k = (x[0] + 7) >> 3;
+	while (len > k) {
+		*buf ++ = 0;
+		len --;
+	}
+
+	/*
+	 * Now we use k as index within x[]. That index starts at 1;
+	 * we initialize it to the topmost complete word, and process
+	 * any remaining incomplete word.
+	 */
+	k = (len + 3) >> 2;
+	switch (len & 3) {
+	case 3:
+		*buf ++ = x[k] >> 16;
+		/* fall through */
+	case 2:
+		*buf ++ = x[k] >> 8;
+		/* fall through */
+	case 1:
+		*buf ++ = x[k];
+		k --;
+	}
+
+	/*
+	 * Encode all complete words.
+	 */
+	while (k > 0) {
+		br_enc32be(buf, x[k]);
+		k --;
+		buf += 4;
+	}
+}
+
+/* from BearSSL's src/int/i32_ninv32.c */
+
+/*
+ * Compute -(1/x) mod 2^32. If x is even, then this function returns 0.
+ */
+static uint32_t br_i32_ninv32(uint32_t x)
+{
+	uint32_t y;
+
+	y = 2 - x;
+	y *= 2 - y * x;
+	y *= 2 - y * x;
+	y *= 2 - y * x;
+	y *= 2 - y * x;
+	return MUX(x & 1, -y, 0);
+}
+
+/* from BearSSL's src/int/i32_add.c */
+
+/*
+ * Add b[] to a[] and return the carry (0 or 1). If ctl is 0, then a[]
+ * is unmodified, but the carry is still computed and returned. The
+ * arrays a[] and b[] MUST have the same announced bit length.
+ *
+ * a[] and b[] MAY be the same array, but partial overlap is not allowed.
+ */
+static uint32_t br_i32_add(uint32_t *a, const uint32_t *b, uint32_t ctl)
+{
+	uint32_t cc;
+	size_t u, m;
+
+	cc = 0;
+	m = (a[0] + 63) >> 5;
+	for (u = 1; u < m; u ++) {
+		uint32_t aw, bw, naw;
+
+		aw = a[u];
+		bw = b[u];
+		naw = aw + bw + cc;
+
+		/*
+		 * Carry is 1 if naw < aw. Carry is also 1 if naw == aw
+		 * AND the carry was already 1.
+		 */
+		cc = (cc & EQ(naw, aw)) | LT(naw, aw);
+		a[u] = MUX(ctl, naw, aw);
+	}
+	return cc;
+}
+
+/* from BearSSL's src/int/i32_sub.c */
+
+/*
+ * Subtract b[] from a[] and return the carry (0 or 1). If ctl is 0,
+ * then a[] is unmodified, but the carry is still computed and returned.
+ * The arrays a[] and b[] MUST have the same announced bit length.
+ *
+ * a[] and b[] MAY be the same array, but partial overlap is not allowed.
+ */
+static uint32_t br_i32_sub(uint32_t *a, const uint32_t *b, uint32_t ctl)
+{
+	uint32_t cc;
+	size_t u, m;
+
+	cc = 0;
+	m = (a[0] + 63) >> 5;
+	for (u = 1; u < m; u ++) {
+		uint32_t aw, bw, naw;
+
+		aw = a[u];
+		bw = b[u];
+		naw = aw - bw - cc;
+
+		/*
+		 * Carry is 1 if naw > aw. Carry is 1 also if naw == aw
+		 * AND the carry was already 1.
+		 */
+		cc = (cc & EQ(naw, aw)) | GT(naw, aw);
+		a[u] = MUX(ctl, naw, aw);
+	}
+	return cc;
+}
+
+/* from BearSSL's src/int/i32_div32.c */
+
+/*
+ * Constant-time division. The dividend hi:lo is divided by the
+ * divisor d; the quotient is returned and the remainder is written
+ * in *r. If hi == d, then the quotient does not fit on 32 bits;
+ * returned value is thus truncated. If hi > d, returned values are
+ * indeterminate.
+ */
+static uint32_t br_divrem(uint32_t hi, uint32_t lo, uint32_t d, uint32_t *r)
+{
+	/* TODO: optimize this */
+	uint32_t q;
+	uint32_t ch, cf;
+	int k;
+
+	q = 0;
+	ch = EQ(hi, d);
+	hi = MUX(ch, 0, hi);
+	for (k = 31; k > 0; k --) {
+		int j;
+		uint32_t w, ctl, hi2, lo2;
+
+		j = 32 - k;
+		w = (hi << j) | (lo >> k);
+		ctl = GE(w, d) | (hi >> k);
+		hi2 = (w - d) >> j;
+		lo2 = lo - (d << k);
+		hi = MUX(ctl, hi2, hi);
+		lo = MUX(ctl, lo2, lo);
+		q |= ctl << k;
+	}
+	cf = GE(lo, d) | hi;
+	q |= cf;
+	*r = MUX(cf, lo - d, lo);
+	return q;
+}
+
+/*
+ * Wrapper for br_divrem(); the remainder is returned, and the quotient
+ * is discarded.
+ */
+static uint32_t br_rem(uint32_t hi, uint32_t lo, uint32_t d)
+{
+	uint32_t r;
+
+	br_divrem(hi, lo, d, &r);
+	return r;
+}
+
+/*
+ * Wrapper for br_divrem(); the quotient is returned, and the remainder
+ * is discarded.
+ */
+static uint32_t br_div(uint32_t hi, uint32_t lo, uint32_t d)
+{
+	uint32_t r;
+
+	return br_divrem(hi, lo, d, &r);
+}
+
+/* from BearSSL's src/int/i32_muladd.c */
+
+/*
+ * Multiply x[] by 2^32 and then add integer z, modulo m[]. This
+ * function assumes that x[] and m[] have the same announced bit
+ * length, and the announced bit length of m[] matches its true
+ * bit length.
+ *
+ * x[] and m[] MUST be distinct arrays.
+ *
+ * CT: only the common announced bit length of x and m leaks, not
+ * the values of x, z or m.
+ */
+static void br_i32_muladd_small(uint32_t *x, uint32_t z, const uint32_t *m)
+{
+	uint32_t m_bitlen;
+	size_t u, mlen;
+	uint32_t a0, a1, b0, hi, g, q, tb;
+	uint32_t chf, clow, under, over;
+	uint64_t cc;
+
+	/*
+	 * We can test on the modulus bit length since we accept to
+	 * leak that length.
+	 */
+	m_bitlen = m[0];
+	if (m_bitlen == 0) {
+		return;
+	}
+	if (m_bitlen <= 32) {
+		x[1] = br_rem(x[1], z, m[1]);
+		return;
+	}
+	mlen = (m_bitlen + 31) >> 5;
+
+	/*
+	 * Principle: we estimate the quotient (x*2^32+z)/m by
+	 * doing a 64/32 division with the high words.
+	 *
+	 * Let:
+	 *   w = 2^32
+	 *   a = (w*a0 + a1) * w^N + a2
+	 *   b = b0 * w^N + b2
+	 * such that:
+	 *   0 <= a0 < w
+	 *   0 <= a1 < w
+	 *   0 <= a2 < w^N
+	 *   w/2 <= b0 < w
+	 *   0 <= b2 < w^N
+	 *   a < w*b
+	 * I.e. the two top words of a are a0:a1, the top word of b is
+	 * b0, we ensured that b0 is "full" (high bit set), and a is
+	 * such that the quotient q = a/b fits on one word (0 <= q < w).
+	 *
+	 * If a = b*q + r (with 0 <= r < q), we can estimate q by
+	 * doing an Euclidean division on the top words:
+	 *   a0*w+a1 = b0*u + v  (with 0 <= v < w)
+	 * Then the following holds:
+	 *   0 <= u <= w
+	 *   u-2 <= q <= u
+	 */
+	a0 = br_i32_word(x, m_bitlen - 32);
+	hi = x[mlen];
+	memmove(x + 2, x + 1, (mlen - 1) * sizeof *x);
+	x[1] = z;
+	a1 = br_i32_word(x, m_bitlen - 32);
+	b0 = br_i32_word(m, m_bitlen - 32);
+
+	/*
+	 * We estimate a divisor q. If the quotient returned by br_div()
+	 * is g:
+	 * -- If a0 == b0 then g == 0; we want q = 0xFFFFFFFF.
+	 * -- Otherwise:
+	 *    -- if g == 0 then we set q = 0;
+	 *    -- otherwise, we set q = g - 1.
+	 * The properties described above then ensure that the true
+	 * quotient is q-1, q or q+1.
+	 */
+	g = br_div(a0, a1, b0);
+	q = MUX(EQ(a0, b0), 0xFFFFFFFF, MUX(EQ(g, 0), 0, g - 1));
+
+	/*
+	 * We subtract q*m from x (with the extra high word of value 'hi').
+	 * Since q may be off by 1 (in either direction), we may have to
+	 * add or subtract m afterwards.
+	 *
+	 * The 'tb' flag will be true (1) at the end of the loop if the
+	 * result is greater than or equal to the modulus (not counting
+	 * 'hi' or the carry).
+	 */
+	cc = 0;
+	tb = 1;
+	for (u = 1; u <= mlen; u ++) {
+		uint32_t mw, zw, xw, nxw;
+		uint64_t zl;
+
+		mw = m[u];
+		zl = MUL(mw, q) + cc;
+		cc = (uint32_t)(zl >> 32);
+		zw = (uint32_t)zl;
+		xw = x[u];
+		nxw = xw - zw;
+		cc += (uint64_t)GT(nxw, xw);
+		x[u] = nxw;
+		tb = MUX(EQ(nxw, mw), tb, GT(nxw, mw));
+	}
+
+	/*
+	 * If we underestimated q, then either cc < hi (one extra bit
+	 * beyond the top array word), or cc == hi and tb is true (no
+	 * extra bit, but the result is not lower than the modulus). In
+	 * these cases we must subtract m once.
+	 *
+	 * Otherwise, we may have overestimated, which will show as
+	 * cc > hi (thus a negative result). Correction is adding m once.
+	 */
+	chf = (uint32_t)(cc >> 32);
+	clow = (uint32_t)cc;
+	over = chf | GT(clow, hi);
+	under = ~over & (tb | (~chf & LT(clow, hi)));
+	br_i32_add(x, m, over);
+	br_i32_sub(x, m, under);
+}
+
+/* from BearSSL's src/int/i32_reduce.c */
+
+/*
+ * Reduce an integer (a[]) modulo another (m[]). The result is written
+ * in x[] and its announced bit length is set to be equal to that of m[].
+ *
+ * x[] MUST be distinct from a[] and m[].
+ *
+ * CT: only announced bit lengths leak, not values of x, a or m.
+ */
+static void br_i32_reduce(uint32_t *x, const uint32_t *a, const uint32_t *m)
+{
+	uint32_t m_bitlen, a_bitlen;
+	size_t mlen, alen, u;
+
+	m_bitlen = m[0];
+	mlen = (m_bitlen + 31) >> 5;
+
+	x[0] = m_bitlen;
+	if (m_bitlen == 0) {
+		return;
+	}
+
+	/*
+	 * If the source is shorter, then simply copy all words from a[]
+	 * and zero out the upper words.
+	 */
+	a_bitlen = a[0];
+	alen = (a_bitlen + 31) >> 5;
+	if (a_bitlen < m_bitlen) {
+		memcpy(x + 1, a + 1, alen * sizeof *a);
+		for (u = alen; u < mlen; u ++) {
+			x[u + 1] = 0;
+		}
+		return;
+	}
+
+	/*
+	 * The source length is at least equal to that of the modulus.
+	 * We must thus copy N-1 words, and input the remaining words
+	 * one by one.
+	 */
+	memcpy(x + 1, a + 2 + (alen - mlen), (mlen - 1) * sizeof *a);
+	x[mlen] = 0;
+	for (u = 1 + alen - mlen; u > 0; u --) {
+		br_i32_muladd_small(x, a[u], m);
+	}
+}
+
+/**
+ * rsa_free_key_prop() - Free key properties
+ * @prop:	Pointer to struct key_prop
+ *
+ * This function frees all the memories allocated by rsa_gen_key_prop().
+ */
+void rsa_free_key_prop(struct key_prop *prop)
+{
+	if (!prop)
+		return;
+
+	free((void *)prop->modulus);
+	free((void *)prop->public_exponent);
+	free((void *)prop->rr);
+
+	free(prop);
+}
+
+/**
+ * rsa_gen_key_prop() - Generate key properties of RSA public key
+ * @key:	Specifies key data in DER format
+ * @keylen:	Length of @key
+ * @prop:	Generated key property
+ *
+ * This function takes a blob of encoded RSA public key data in DER
+ * format, parse it and generate all the relevant properties
+ * in key_prop structure.
+ * Return a pointer to struct key_prop in @prop on success.
+ *
+ * Return:	0 on success, negative on error
+ */
+int rsa_gen_key_prop(const void *key, uint32_t keylen, struct key_prop **prop)
+{
+	struct rsa_key rsa_key;
+	uint32_t *n = NULL, *rr = NULL, *rrtmp = NULL;
+	const int max_rsa_size = 4096;
+	int rlen, i, ret;
+
+	*prop = calloc(sizeof(**prop), 1);
+	n = calloc(sizeof(uint32_t), 1 + (max_rsa_size >> 5));
+	rr = calloc(sizeof(uint32_t), 1 + (max_rsa_size >> 5));
+	rrtmp = calloc(sizeof(uint32_t), 1 + (max_rsa_size >> 5));
+	if (!(*prop) || !n || !rr || !rrtmp) {
+		ret = -ENOMEM;
+		goto err;
+	}
+
+	ret = rsa_parse_pub_key(&rsa_key, key, keylen);
+	if (ret)
+		goto err;
+
+	/* modulus */
+	/* removing leading 0's */
+	for (i = 0; i < rsa_key.n_sz && !rsa_key.n[i]; i++)
+		;
+	(*prop)->num_bits = (rsa_key.n_sz - i) * 8;
+	(*prop)->modulus = malloc(rsa_key.n_sz - i);
+	if (!(*prop)->modulus) {
+		ret = -ENOMEM;
+		goto err;
+	}
+	memcpy((void *)(*prop)->modulus, &rsa_key.n[i], rsa_key.n_sz - i);
+
+	/* exponent */
+	(*prop)->public_exponent = calloc(1, sizeof(uint64_t));
+	if (!(*prop)->public_exponent) {
+		ret = -ENOMEM;
+		goto err;
+	}
+	memcpy((void *)(*prop)->public_exponent + sizeof(uint64_t)
+						- rsa_key.e_sz,
+	       rsa_key.e, rsa_key.e_sz);
+	(*prop)->exp_len = rsa_key.e_sz;
+
+	/* n0 inverse */
+	br_i32_decode(n, &rsa_key.n[i], rsa_key.n_sz - i);
+	(*prop)->n0inv = br_i32_ninv32(n[1]);
+
+	/* R^2 mod n; R = 2^(num_bits) */
+	rlen = (*prop)->num_bits * 2; /* #bits of R^2 = (2^num_bits)^2 */
+	rr[0] = 0;
+	*(uint8_t *)&rr[0] = (1 << (rlen % 8));
+	for (i = 1; i < (((rlen + 31) >> 5) + 1); i++)
+		rr[i] = 0;
+	br_i32_decode(rrtmp, rr, ((rlen + 7) >> 3) + 1);
+	br_i32_reduce(rr, rrtmp, n);
+
+	rlen = ((*prop)->num_bits + 7) >> 3; /* #bytes of R^2 mod n */
+	(*prop)->rr = malloc(rlen);
+	if (!(*prop)->rr) {
+		ret = -ENOMEM;
+		goto err;
+	}
+	br_i32_encode((void *)(*prop)->rr, rlen, rr);
+
+	return 0;
+
+err:
+	free(n);
+	free(rr);
+	free(rrtmp);
+	rsa_free_key_prop(*prop);
+	return ret;
+}