@@ -51,6 +51,7 @@ struct MPS2SCC {
uint32_t cfg4;
uint32_t cfg5;
uint32_t cfg6;
+ uint32_t cfg7;
uint32_t cfgdata_rtn;
uint32_t cfgdata_out;
uint32_t cfgctrl;
@@ -37,6 +37,7 @@ REG32(CFG3, 0xc)
REG32(CFG4, 0x10)
REG32(CFG5, 0x14)
REG32(CFG6, 0x18)
+REG32(CFG7, 0x1c)
REG32(CFGDATA_RTN, 0xa0)
REG32(CFGDATA_OUT, 0xa4)
REG32(CFGCTRL, 0xa8)
@@ -62,25 +63,46 @@ static int scc_partno(MPS2SCC *s)
/* Is CFG_REG2 present? */
static bool have_cfg2(MPS2SCC *s)
{
- return scc_partno(s) == 0x524 || scc_partno(s) == 0x547;
+ return scc_partno(s) == 0x524 || scc_partno(s) == 0x547 ||
+ scc_partno(s) == 0x536;
}
/* Is CFG_REG3 present? */
static bool have_cfg3(MPS2SCC *s)
{
- return scc_partno(s) != 0x524 && scc_partno(s) != 0x547;
+ return scc_partno(s) != 0x524 && scc_partno(s) != 0x547 &&
+ scc_partno(s) != 0x536;
}
/* Is CFG_REG5 present? */
static bool have_cfg5(MPS2SCC *s)
{
- return scc_partno(s) == 0x524 || scc_partno(s) == 0x547;
+ return scc_partno(s) == 0x524 || scc_partno(s) == 0x547 ||
+ scc_partno(s) == 0x536;
}
/* Is CFG_REG6 present? */
static bool have_cfg6(MPS2SCC *s)
{
- return scc_partno(s) == 0x524;
+ return scc_partno(s) == 0x524 || scc_partno(s) == 0x536;
+}
+
+/* Is CFG_REG7 present? */
+static bool have_cfg7(MPS2SCC *s)
+{
+ return scc_partno(s) == 0x536;
+}
+
+/* Does CFG_REG0 drive the 'remap' GPIO output? */
+static bool cfg0_is_remap(MPS2SCC *s)
+{
+ return scc_partno(s) != 0x536;
+}
+
+/* Is CFG_REG1 driving a set of LEDs? */
+static bool cfg1_is_leds(MPS2SCC *s)
+{
+ return scc_partno(s) != 0x536;
}
/* Handle a write via the SYS_CFG channel to the specified function/device.
@@ -144,8 +166,16 @@ static uint64_t mps2_scc_read(void *opaque, hwaddr offset, unsigned size)
if (!have_cfg3(s)) {
goto bad_offset;
}
- /* These are user-settable DIP switches on the board. We don't
+ /*
+ * These are user-settable DIP switches on the board. We don't
* model that, so just return zeroes.
+ *
+ * TODO: for AN536 this is MCC_MSB_ADDR "additional MCC addressing
+ * bits". These change which part of the DDR4 the motherboard
+ * configuration controller can see in its memory map (see the
+ * appnote section 2.4). QEMU doesn't model the MCC at all, so these
+ * bits are not interesting to us; read-as-zero is as good as anything
+ * else.
*/
r = 0;
break;
@@ -164,6 +194,12 @@ static uint64_t mps2_scc_read(void *opaque, hwaddr offset, unsigned size)
}
r = s->cfg6;
break;
+ case A_CFG7:
+ if (!have_cfg7(s)) {
+ goto bad_offset;
+ }
+ r = s->cfg7;
+ break;
case A_CFGDATA_RTN:
r = s->cfgdata_rtn;
break;
@@ -211,28 +247,43 @@ static void mps2_scc_write(void *opaque, hwaddr offset, uint64_t value,
* we always reflect bit 0 in the 'remap' GPIO output line,
* and let the board wire it up or not as it chooses.
* TODO on some boards bit 1 is CPU_WAIT.
+ *
+ * TODO: on the AN536 this register controls reset and halt
+ * for both CPUs. For the moment we don't implement this, so the
+ * register just reads as written.
*/
s->cfg0 = value;
- qemu_set_irq(s->remap, s->cfg0 & 1);
+ if (cfg0_is_remap(s)) {
+ qemu_set_irq(s->remap, s->cfg0 & 1);
+ }
break;
case A_CFG1:
s->cfg1 = value;
- for (size_t i = 0; i < ARRAY_SIZE(s->led); i++) {
- led_set_state(s->led[i], extract32(value, i, 1));
+ /*
+ * On most boards this register drives LEDs.
+ *
+ * TODO: for AN536 this controls whether flash and ATCM are
+ * enabled or disabled on reset. QEMU doesn't model this, and
+ * always wires up RAM in the ATCM area and ROM in the flash area.
+ */
+ if (cfg1_is_leds(s)) {
+ for (size_t i = 0; i < ARRAY_SIZE(s->led); i++) {
+ led_set_state(s->led[i], extract32(value, i, 1));
+ }
}
break;
case A_CFG2:
if (!have_cfg2(s)) {
goto bad_offset;
}
- /* AN524: QSPI Select signal */
+ /* AN524, AN536: QSPI Select signal */
s->cfg2 = value;
break;
case A_CFG5:
if (!have_cfg5(s)) {
goto bad_offset;
}
- /* AN524: ACLK frequency in Hz */
+ /* AN524, AN536: ACLK frequency in Hz */
s->cfg5 = value;
break;
case A_CFG6:
@@ -240,6 +291,14 @@ static void mps2_scc_write(void *opaque, hwaddr offset, uint64_t value,
goto bad_offset;
}
/* AN524: Clock divider for BRAM */
+ /* AN536: Core 0 vector table base address */
+ s->cfg6 = value;
+ break;
+ case A_CFG7:
+ if (!have_cfg7(s)) {
+ goto bad_offset;
+ }
+ /* AN536: Core 1 vector table base address */
s->cfg6 = value;
break;
case A_CFGDATA_OUT:
@@ -353,6 +412,24 @@ static void mps2_scc_finalize(Object *obj)
g_free(s->oscclk_reset);
}
+static bool cfg7_needed(void *opaque)
+{
+ MPS2SCC *s = opaque;
+
+ return have_cfg7(s);
+}
+
+static const VMStateDescription vmstate_cfg7 = {
+ .name = "mps2-scc/cfg7",
+ .version_id = 1,
+ .minimum_version_id = 1,
+ .needed = cfg7_needed,
+ .fields = (const VMStateField[]) {
+ VMSTATE_UINT32(cfg7, MPS2SCC),
+ VMSTATE_END_OF_LIST()
+ }
+};
+
static const VMStateDescription mps2_scc_vmstate = {
.name = "mps2-scc",
.version_id = 3,
@@ -372,6 +449,10 @@ static const VMStateDescription mps2_scc_vmstate = {
VMSTATE_VARRAY_UINT32(oscclk, MPS2SCC, num_oscclk,
0, vmstate_info_uint32, uint32_t),
VMSTATE_END_OF_LIST()
+ },
+ .subsections = (const VMStateDescription * const []) {
+ &vmstate_cfg7,
+ NULL
}
};