Patch Detail
get:
Show a patch.
patch:
Update a patch.
put:
Update a patch.
GET /api/patches/1475764/?format=api
{ "id": 1475764, "url": "http://patchwork.ozlabs.org/api/patches/1475764/?format=api", "web_url": "http://patchwork.ozlabs.org/project/qemu-devel/patch/20210508014802.892561-67-richard.henderson@linaro.org/", "project": { "id": 14, "url": "http://patchwork.ozlabs.org/api/projects/14/?format=api", "name": "QEMU Development", "link_name": "qemu-devel", "list_id": "qemu-devel.nongnu.org", "list_email": "qemu-devel@nongnu.org", "web_url": "", "scm_url": "", "webscm_url": "", "list_archive_url": "", "list_archive_url_format": "", "commit_url_format": "" }, "msgid": "<20210508014802.892561-67-richard.henderson@linaro.org>", "list_archive_url": null, "date": "2021-05-08T01:47:56", "name": "[66/72] softfloat: Convert floatx80 float conversions to FloatParts", "commit_ref": null, "pull_url": null, "state": "new", "archived": false, "hash": "9d6042a1f68735445a92fa978f032ebee44abd4a", "submitter": { "id": 72104, "url": "http://patchwork.ozlabs.org/api/people/72104/?format=api", "name": "Richard Henderson", "email": "richard.henderson@linaro.org" }, "delegate": null, "mbox": "http://patchwork.ozlabs.org/project/qemu-devel/patch/20210508014802.892561-67-richard.henderson@linaro.org/mbox/", "series": [ { "id": 242770, "url": "http://patchwork.ozlabs.org/api/series/242770/?format=api", "web_url": "http://patchwork.ozlabs.org/project/qemu-devel/list/?series=242770", "date": "2021-05-08T01:46:53", "name": "Convert floatx80 and float128 to FloatParts", "version": 1, "mbox": "http://patchwork.ozlabs.org/series/242770/mbox/" } ], "comments": "http://patchwork.ozlabs.org/api/patches/1475764/comments/", "check": "pending", "checks": "http://patchwork.ozlabs.org/api/patches/1475764/checks/", "tags": {}, "related": [], "headers": { "Return-Path": "<qemu-devel-bounces+incoming=patchwork.ozlabs.org@nongnu.org>", "X-Original-To": "incoming@patchwork.ozlabs.org", "Delivered-To": "patchwork-incoming@bilbo.ozlabs.org", "Authentication-Results": [ "ozlabs.org;\n spf=pass (sender SPF authorized) smtp.mailfrom=nongnu.org\n (client-ip=209.51.188.17; helo=lists.gnu.org;\n envelope-from=qemu-devel-bounces+incoming=patchwork.ozlabs.org@nongnu.org;\n receiver=<UNKNOWN>)", "ozlabs.org;\n\tdkim=fail reason=\"signature verification failed\" (2048-bit key;\n unprotected) header.d=linaro.org header.i=@linaro.org header.a=rsa-sha256\n header.s=google header.b=gYq0cjMv;\n\tdkim-atps=neutral" ], "Received": [ "from lists.gnu.org (lists.gnu.org [209.51.188.17])\n\t(using TLSv1.2 with cipher ECDHE-RSA-AES256-GCM-SHA384 (256/256 bits))\n\t(No client certificate requested)\n\tby ozlabs.org (Postfix) with ESMTPS id 4FcWcB70wNz9sTD\n\tfor <incoming@patchwork.ozlabs.org>; Sat, 8 May 2021 12:34:34 +1000 (AEST)", "from localhost ([::1]:56512 helo=lists1p.gnu.org)\n\tby lists.gnu.org with esmtp (Exim 4.90_1)\n\t(envelope-from <qemu-devel-bounces+incoming=patchwork.ozlabs.org@nongnu.org>)\n\tid 1lfCnY-0004uR-T9\n\tfor incoming@patchwork.ozlabs.org; Fri, 07 May 2021 22:34:32 -0400", "from eggs.gnu.org ([2001:470:142:3::10]:41828)\n by lists.gnu.org with esmtps (TLS1.2:ECDHE_RSA_AES_256_GCM_SHA384:256)\n (Exim 4.90_1) (envelope-from <richard.henderson@linaro.org>)\n id 1lfC8M-0003Wk-LM\n for qemu-devel@nongnu.org; Fri, 07 May 2021 21:52:00 -0400", "from mail-pj1-x102a.google.com ([2607:f8b0:4864:20::102a]:33294)\n by eggs.gnu.org with esmtps (TLS1.2:ECDHE_RSA_AES_128_GCM_SHA256:128)\n (Exim 4.90_1) (envelope-from <richard.henderson@linaro.org>)\n id 1lfC8B-0005Zs-UM\n for qemu-devel@nongnu.org; Fri, 07 May 2021 21:51:57 -0400", "by mail-pj1-x102a.google.com with SMTP id\n b14-20020a17090a6e0eb0290155c7f6a356so5542382pjk.0\n for <qemu-devel@nongnu.org>; Fri, 07 May 2021 18:51:47 -0700 (PDT)", "from localhost.localdomain ([71.212.144.24])\n by smtp.gmail.com with ESMTPSA id 204sm5861396pfw.158.2021.05.07.18.51.46\n (version=TLS1_3 cipher=TLS_AES_256_GCM_SHA384 bits=256/256);\n Fri, 07 May 2021 18:51:46 -0700 (PDT)" ], "DKIM-Signature": "v=1; a=rsa-sha256; c=relaxed/relaxed; d=linaro.org; s=google;\n h=from:to:cc:subject:date:message-id:in-reply-to:references\n :mime-version:content-transfer-encoding;\n bh=krbccElr6YBGv/dTDG8O6hv4U6UMSoNxQsDJQmD9EcE=;\n b=gYq0cjMvPMbh0vFKsUhAveW1xnYBWLRtdjRjiud7ZdJZdL44RKnXpE/+SSMCP7E+pL\n +g4t1a5avnqdtBfgrUtAli9YOl5KxF7CR5phwb/q/V6LhPBtJKM4fM6Nux78XQSLFq6p\n NKbFSnId+/zMPNMvjEMZML+aBsE6q0A9YTEzMERolaWYhaj5zYggovW1ydyKJtFogC20\n SWDFP5aPEB6VB8+rGKu8284EmUQlkj2j6faTWbo1v7b+TAEKpVbzZgPqY7wgnewougB1\n bFRgamlytLAUQ024d9dMQAo/n/VPqZ2w1w2PMmB8N9o4SVhec1t6dbZLnWwSya1K0BYc\n TOug==", "X-Google-DKIM-Signature": "v=1; a=rsa-sha256; c=relaxed/relaxed;\n d=1e100.net; s=20161025;\n h=x-gm-message-state:from:to:cc:subject:date:message-id:in-reply-to\n :references:mime-version:content-transfer-encoding;\n bh=krbccElr6YBGv/dTDG8O6hv4U6UMSoNxQsDJQmD9EcE=;\n b=N49FvzB0HL8/ZAbSMcMOrH6LlOFq+5DeOZ1zoCEroTl05aygGS8DnTi1XDFEX6KVYq\n gG8DE+vmGhhPzNVFQG/tn/oBQsWs9vuG/RRPt/VFx+ePjGBz9RnBpx2om6x1yXx1Tqjd\n Atu4KDFUGyDU9Fp3mD2DqdGe5ATBQa0nQEnqR4zCZ9D9fgzSNJ84iot8k4v6Yg9gNXZO\n m6vtMrgyEwYcEEGtGAIiKj9yiSVaFjs+zmVfbMFp42Pecx01sasOVSUyGasojoZvLC/f\n 2ph+zLIJXBaYqWhAqxq+XRBicJTQ6XvED46W2G1rpmsCHbybRWfmAmaCB/qBL9InWesI\n JAEw==", "X-Gm-Message-State": "AOAM533eyRH1WFMjrtKBOifxF1rgzgMYLNF6CZdJY+e6g2ETsP5MQ2GZ\n Af5xAtjMJemnTPOpnfMfIRoGXHFokkDfaA==", "X-Google-Smtp-Source": "\n ABdhPJxa8q+UyDvp8AdtKb5WRYjzUnstoPgZEc9A2mS9e7gc3OEObSQN0bE0sbd+bo4BnRD3acHrrw==", "X-Received": "by 2002:a17:90a:744e:: with SMTP id\n o14mr1621318pjk.96.1620438706637;\n Fri, 07 May 2021 18:51:46 -0700 (PDT)", "From": "Richard Henderson <richard.henderson@linaro.org>", "To": "qemu-devel@nongnu.org", "Subject": "[PATCH 66/72] softfloat: Convert floatx80 float conversions to\n FloatParts", "Date": "Fri, 7 May 2021 18:47:56 -0700", "Message-Id": "<20210508014802.892561-67-richard.henderson@linaro.org>", "X-Mailer": "git-send-email 2.25.1", "In-Reply-To": "<20210508014802.892561-1-richard.henderson@linaro.org>", "References": "<20210508014802.892561-1-richard.henderson@linaro.org>", "MIME-Version": "1.0", "Content-Transfer-Encoding": "8bit", "Received-SPF": "pass client-ip=2607:f8b0:4864:20::102a;\n envelope-from=richard.henderson@linaro.org; helo=mail-pj1-x102a.google.com", "X-Spam_score_int": "-20", "X-Spam_score": "-2.1", "X-Spam_bar": "--", "X-Spam_report": "(-2.1 / 5.0 requ) BAYES_00=-1.9, DKIM_SIGNED=0.1,\n DKIM_VALID=-0.1, DKIM_VALID_AU=-0.1, DKIM_VALID_EF=-0.1,\n RCVD_IN_DNSWL_NONE=-0.0001, SPF_HELO_NONE=0.001,\n SPF_PASS=-0.001 autolearn=ham autolearn_force=no", "X-Spam_action": "no action", "X-BeenThere": "qemu-devel@nongnu.org", "X-Mailman-Version": "2.1.23", "Precedence": "list", "List-Id": "<qemu-devel.nongnu.org>", "List-Unsubscribe": "<https://lists.nongnu.org/mailman/options/qemu-devel>,\n <mailto:qemu-devel-request@nongnu.org?subject=unsubscribe>", "List-Archive": "<https://lists.nongnu.org/archive/html/qemu-devel>", "List-Post": "<mailto:qemu-devel@nongnu.org>", "List-Help": "<mailto:qemu-devel-request@nongnu.org?subject=help>", "List-Subscribe": "<https://lists.nongnu.org/mailman/listinfo/qemu-devel>,\n <mailto:qemu-devel-request@nongnu.org?subject=subscribe>", "Cc": "alex.bennee@linaro.org, david@redhat.com", "Errors-To": "qemu-devel-bounces+incoming=patchwork.ozlabs.org@nongnu.org", "Sender": "\"Qemu-devel\"\n <qemu-devel-bounces+incoming=patchwork.ozlabs.org@nongnu.org>" }, "content": "This is the last use of commonNaNT and all of the routines\nthat use it, so remove all of them for Werror.\n\nSigned-off-by: Richard Henderson <richard.henderson@linaro.org>\n---\n fpu/softfloat.c | 276 ++++++++-------------------------\n fpu/softfloat-specialize.c.inc | 175 ---------------------\n 2 files changed, 67 insertions(+), 384 deletions(-)", "diff": "diff --git a/fpu/softfloat.c b/fpu/softfloat.c\nindex 82f71896ac..d7c6c37d99 100644\n--- a/fpu/softfloat.c\n+++ b/fpu/softfloat.c\n@@ -2560,6 +2560,73 @@ float128 float64_to_float128(float64 a, float_status *s)\n return float128_round_pack_canonical(&p128, s);\n }\n \n+float32 floatx80_to_float32(floatx80 a, float_status *s)\n+{\n+ FloatParts64 p64;\n+ FloatParts128 p128;\n+\n+ if (floatx80_unpack_canonical(&p128, a, s)) {\n+ parts_float_to_float_narrow(&p64, &p128, s);\n+ } else {\n+ parts_default_nan(&p64, s);\n+ }\n+ return float32_round_pack_canonical(&p64, s);\n+}\n+\n+float64 floatx80_to_float64(floatx80 a, float_status *s)\n+{\n+ FloatParts64 p64;\n+ FloatParts128 p128;\n+\n+ if (floatx80_unpack_canonical(&p128, a, s)) {\n+ parts_float_to_float_narrow(&p64, &p128, s);\n+ } else {\n+ parts_default_nan(&p64, s);\n+ }\n+ return float64_round_pack_canonical(&p64, s);\n+}\n+\n+float128 floatx80_to_float128(floatx80 a, float_status *s)\n+{\n+ FloatParts128 p;\n+\n+ if (floatx80_unpack_canonical(&p, a, s)) {\n+ parts_float_to_float(&p, s);\n+ } else {\n+ parts_default_nan(&p, s);\n+ }\n+ return float128_round_pack_canonical(&p, s);\n+}\n+\n+floatx80 float32_to_floatx80(float32 a, float_status *s)\n+{\n+ FloatParts64 p64;\n+ FloatParts128 p128;\n+\n+ float32_unpack_canonical(&p64, a, s);\n+ parts_float_to_float_widen(&p128, &p64, s);\n+ return floatx80_round_pack_canonical(&p128, s);\n+}\n+\n+floatx80 float64_to_floatx80(float64 a, float_status *s)\n+{\n+ FloatParts64 p64;\n+ FloatParts128 p128;\n+\n+ float64_unpack_canonical(&p64, a, s);\n+ parts_float_to_float_widen(&p128, &p64, s);\n+ return floatx80_round_pack_canonical(&p128, s);\n+}\n+\n+floatx80 float128_to_floatx80(float128 a, float_status *s)\n+{\n+ FloatParts128 p;\n+\n+ float128_unpack_canonical(&p, a, s);\n+ parts_float_to_float(&p, s);\n+ return floatx80_round_pack_canonical(&p, s);\n+}\n+\n /*\n * Round to integral value\n */\n@@ -5048,42 +5115,6 @@ static float128 normalizeRoundAndPackFloat128(bool zSign, int32_t zExp,\n \n }\n \n-/*----------------------------------------------------------------------------\n-| Returns the result of converting the single-precision floating-point value\n-| `a' to the extended double-precision floating-point format. The conversion\n-| is performed according to the IEC/IEEE Standard for Binary Floating-Point\n-| Arithmetic.\n-*----------------------------------------------------------------------------*/\n-\n-floatx80 float32_to_floatx80(float32 a, float_status *status)\n-{\n- bool aSign;\n- int aExp;\n- uint32_t aSig;\n-\n- a = float32_squash_input_denormal(a, status);\n- aSig = extractFloat32Frac( a );\n- aExp = extractFloat32Exp( a );\n- aSign = extractFloat32Sign( a );\n- if ( aExp == 0xFF ) {\n- if (aSig) {\n- floatx80 res = commonNaNToFloatx80(float32ToCommonNaN(a, status),\n- status);\n- return floatx80_silence_nan(res, status);\n- }\n- return packFloatx80(aSign,\n- floatx80_infinity_high,\n- floatx80_infinity_low);\n- }\n- if ( aExp == 0 ) {\n- if ( aSig == 0 ) return packFloatx80( aSign, 0, 0 );\n- normalizeFloat32Subnormal( aSig, &aExp, &aSig );\n- }\n- aSig |= 0x00800000;\n- return packFloatx80( aSign, aExp + 0x3F80, ( (uint64_t) aSig )<<40 );\n-\n-}\n-\n /*----------------------------------------------------------------------------\n | Returns the remainder of the single-precision floating-point value `a'\n | with respect to the corresponding value `b'. The operation is performed\n@@ -5320,43 +5351,6 @@ float32 float32_log2(float32 a, float_status *status)\n return normalizeRoundAndPackFloat32(zSign, 0x85, zSig, status);\n }\n \n-/*----------------------------------------------------------------------------\n-| Returns the result of converting the double-precision floating-point value\n-| `a' to the extended double-precision floating-point format. The conversion\n-| is performed according to the IEC/IEEE Standard for Binary Floating-Point\n-| Arithmetic.\n-*----------------------------------------------------------------------------*/\n-\n-floatx80 float64_to_floatx80(float64 a, float_status *status)\n-{\n- bool aSign;\n- int aExp;\n- uint64_t aSig;\n-\n- a = float64_squash_input_denormal(a, status);\n- aSig = extractFloat64Frac( a );\n- aExp = extractFloat64Exp( a );\n- aSign = extractFloat64Sign( a );\n- if ( aExp == 0x7FF ) {\n- if (aSig) {\n- floatx80 res = commonNaNToFloatx80(float64ToCommonNaN(a, status),\n- status);\n- return floatx80_silence_nan(res, status);\n- }\n- return packFloatx80(aSign,\n- floatx80_infinity_high,\n- floatx80_infinity_low);\n- }\n- if ( aExp == 0 ) {\n- if ( aSig == 0 ) return packFloatx80( aSign, 0, 0 );\n- normalizeFloat64Subnormal( aSig, &aExp, &aSig );\n- }\n- return\n- packFloatx80(\n- aSign, aExp + 0x3C00, (aSig | UINT64_C(0x0010000000000000)) << 11);\n-\n-}\n-\n /*----------------------------------------------------------------------------\n | Returns the remainder of the double-precision floating-point value `a'\n | with respect to the corresponding value `b'. The operation is performed\n@@ -5667,104 +5661,6 @@ int64_t floatx80_to_int64_round_to_zero(floatx80 a, float_status *status)\n \n }\n \n-/*----------------------------------------------------------------------------\n-| Returns the result of converting the extended double-precision floating-\n-| point value `a' to the single-precision floating-point format. The\n-| conversion is performed according to the IEC/IEEE Standard for Binary\n-| Floating-Point Arithmetic.\n-*----------------------------------------------------------------------------*/\n-\n-float32 floatx80_to_float32(floatx80 a, float_status *status)\n-{\n- bool aSign;\n- int32_t aExp;\n- uint64_t aSig;\n-\n- if (floatx80_invalid_encoding(a)) {\n- float_raise(float_flag_invalid, status);\n- return float32_default_nan(status);\n- }\n- aSig = extractFloatx80Frac( a );\n- aExp = extractFloatx80Exp( a );\n- aSign = extractFloatx80Sign( a );\n- if ( aExp == 0x7FFF ) {\n- if ( (uint64_t) ( aSig<<1 ) ) {\n- float32 res = commonNaNToFloat32(floatx80ToCommonNaN(a, status),\n- status);\n- return float32_silence_nan(res, status);\n- }\n- return packFloat32( aSign, 0xFF, 0 );\n- }\n- shift64RightJamming( aSig, 33, &aSig );\n- if ( aExp || aSig ) aExp -= 0x3F81;\n- return roundAndPackFloat32(aSign, aExp, aSig, status);\n-\n-}\n-\n-/*----------------------------------------------------------------------------\n-| Returns the result of converting the extended double-precision floating-\n-| point value `a' to the double-precision floating-point format. The\n-| conversion is performed according to the IEC/IEEE Standard for Binary\n-| Floating-Point Arithmetic.\n-*----------------------------------------------------------------------------*/\n-\n-float64 floatx80_to_float64(floatx80 a, float_status *status)\n-{\n- bool aSign;\n- int32_t aExp;\n- uint64_t aSig, zSig;\n-\n- if (floatx80_invalid_encoding(a)) {\n- float_raise(float_flag_invalid, status);\n- return float64_default_nan(status);\n- }\n- aSig = extractFloatx80Frac( a );\n- aExp = extractFloatx80Exp( a );\n- aSign = extractFloatx80Sign( a );\n- if ( aExp == 0x7FFF ) {\n- if ( (uint64_t) ( aSig<<1 ) ) {\n- float64 res = commonNaNToFloat64(floatx80ToCommonNaN(a, status),\n- status);\n- return float64_silence_nan(res, status);\n- }\n- return packFloat64( aSign, 0x7FF, 0 );\n- }\n- shift64RightJamming( aSig, 1, &zSig );\n- if ( aExp || aSig ) aExp -= 0x3C01;\n- return roundAndPackFloat64(aSign, aExp, zSig, status);\n-\n-}\n-\n-/*----------------------------------------------------------------------------\n-| Returns the result of converting the extended double-precision floating-\n-| point value `a' to the quadruple-precision floating-point format. The\n-| conversion is performed according to the IEC/IEEE Standard for Binary\n-| Floating-Point Arithmetic.\n-*----------------------------------------------------------------------------*/\n-\n-float128 floatx80_to_float128(floatx80 a, float_status *status)\n-{\n- bool aSign;\n- int aExp;\n- uint64_t aSig, zSig0, zSig1;\n-\n- if (floatx80_invalid_encoding(a)) {\n- float_raise(float_flag_invalid, status);\n- return float128_default_nan(status);\n- }\n- aSig = extractFloatx80Frac( a );\n- aExp = extractFloatx80Exp( a );\n- aSign = extractFloatx80Sign( a );\n- if ( ( aExp == 0x7FFF ) && (uint64_t) ( aSig<<1 ) ) {\n- float128 res = commonNaNToFloat128(floatx80ToCommonNaN(a, status),\n- status);\n- return float128_silence_nan(res, status);\n- }\n- shift128Right( aSig<<1, 0, 16, &zSig0, &zSig1 );\n- return packFloat128( aSign, aExp, zSig0, zSig1 );\n-\n-}\n-\n /*----------------------------------------------------------------------------\n | Rounds the extended double-precision floating-point value `a'\n | to the precision provided by floatx80_rounding_precision and returns the\n@@ -5937,44 +5833,6 @@ floatx80 floatx80_mod(floatx80 a, floatx80 b, float_status *status)\n return floatx80_modrem(a, b, true, "ient, status);\n }\n \n-/*----------------------------------------------------------------------------\n-| Returns the result of converting the quadruple-precision floating-point\n-| value `a' to the extended double-precision floating-point format. The\n-| conversion is performed according to the IEC/IEEE Standard for Binary\n-| Floating-Point Arithmetic.\n-*----------------------------------------------------------------------------*/\n-\n-floatx80 float128_to_floatx80(float128 a, float_status *status)\n-{\n- bool aSign;\n- int32_t aExp;\n- uint64_t aSig0, aSig1;\n-\n- aSig1 = extractFloat128Frac1( a );\n- aSig0 = extractFloat128Frac0( a );\n- aExp = extractFloat128Exp( a );\n- aSign = extractFloat128Sign( a );\n- if ( aExp == 0x7FFF ) {\n- if ( aSig0 | aSig1 ) {\n- floatx80 res = commonNaNToFloatx80(float128ToCommonNaN(a, status),\n- status);\n- return floatx80_silence_nan(res, status);\n- }\n- return packFloatx80(aSign, floatx80_infinity_high,\n- floatx80_infinity_low);\n- }\n- if ( aExp == 0 ) {\n- if ( ( aSig0 | aSig1 ) == 0 ) return packFloatx80( aSign, 0, 0 );\n- normalizeFloat128Subnormal( aSig0, aSig1, &aExp, &aSig0, &aSig1 );\n- }\n- else {\n- aSig0 |= UINT64_C(0x0001000000000000);\n- }\n- shortShift128Left( aSig0, aSig1, 15, &aSig0, &aSig1 );\n- return roundAndPackFloatx80(80, aSign, aExp, aSig0, aSig1, status);\n-\n-}\n-\n /*----------------------------------------------------------------------------\n | Returns the remainder of the quadruple-precision floating-point value `a'\n | with respect to the corresponding value `b'. The operation is performed\ndiff --git a/fpu/softfloat-specialize.c.inc b/fpu/softfloat-specialize.c.inc\nindex a0cf016b4f..88eab344df 100644\n--- a/fpu/softfloat-specialize.c.inc\n+++ b/fpu/softfloat-specialize.c.inc\n@@ -257,14 +257,6 @@ floatx80 floatx80_default_nan(float_status *status)\n const floatx80 floatx80_infinity\n = make_floatx80_init(floatx80_infinity_high, floatx80_infinity_low);\n \n-/*----------------------------------------------------------------------------\n-| Internal canonical NaN format.\n-*----------------------------------------------------------------------------*/\n-typedef struct {\n- bool sign;\n- uint64_t high, low;\n-} commonNaNT;\n-\n /*----------------------------------------------------------------------------\n | Returns 1 if the half-precision floating-point value `a' is a quiet\n | NaN; otherwise returns 0.\n@@ -380,46 +372,6 @@ bool float32_is_signaling_nan(float32 a_, float_status *status)\n }\n }\n \n-/*----------------------------------------------------------------------------\n-| Returns the result of converting the single-precision floating-point NaN\n-| `a' to the canonical NaN format. If `a' is a signaling NaN, the invalid\n-| exception is raised.\n-*----------------------------------------------------------------------------*/\n-\n-static commonNaNT float32ToCommonNaN(float32 a, float_status *status)\n-{\n- commonNaNT z;\n-\n- if (float32_is_signaling_nan(a, status)) {\n- float_raise(float_flag_invalid, status);\n- }\n- z.sign = float32_val(a) >> 31;\n- z.low = 0;\n- z.high = ((uint64_t)float32_val(a)) << 41;\n- return z;\n-}\n-\n-/*----------------------------------------------------------------------------\n-| Returns the result of converting the canonical NaN `a' to the single-\n-| precision floating-point format.\n-*----------------------------------------------------------------------------*/\n-\n-static float32 commonNaNToFloat32(commonNaNT a, float_status *status)\n-{\n- uint32_t mantissa = a.high >> 41;\n-\n- if (status->default_nan_mode) {\n- return float32_default_nan(status);\n- }\n-\n- if (mantissa) {\n- return make_float32(\n- (((uint32_t)a.sign) << 31) | 0x7F800000 | (a.high >> 41));\n- } else {\n- return float32_default_nan(status);\n- }\n-}\n-\n /*----------------------------------------------------------------------------\n | Select which NaN to propagate for a two-input operation.\n | IEEE754 doesn't specify all the details of this, so the\n@@ -780,48 +732,6 @@ bool float64_is_signaling_nan(float64 a_, float_status *status)\n }\n }\n \n-/*----------------------------------------------------------------------------\n-| Returns the result of converting the double-precision floating-point NaN\n-| `a' to the canonical NaN format. If `a' is a signaling NaN, the invalid\n-| exception is raised.\n-*----------------------------------------------------------------------------*/\n-\n-static commonNaNT float64ToCommonNaN(float64 a, float_status *status)\n-{\n- commonNaNT z;\n-\n- if (float64_is_signaling_nan(a, status)) {\n- float_raise(float_flag_invalid, status);\n- }\n- z.sign = float64_val(a) >> 63;\n- z.low = 0;\n- z.high = float64_val(a) << 12;\n- return z;\n-}\n-\n-/*----------------------------------------------------------------------------\n-| Returns the result of converting the canonical NaN `a' to the double-\n-| precision floating-point format.\n-*----------------------------------------------------------------------------*/\n-\n-static float64 commonNaNToFloat64(commonNaNT a, float_status *status)\n-{\n- uint64_t mantissa = a.high >> 12;\n-\n- if (status->default_nan_mode) {\n- return float64_default_nan(status);\n- }\n-\n- if (mantissa) {\n- return make_float64(\n- (((uint64_t) a.sign) << 63)\n- | UINT64_C(0x7FF0000000000000)\n- | (a.high >> 12));\n- } else {\n- return float64_default_nan(status);\n- }\n-}\n-\n /*----------------------------------------------------------------------------\n | Takes two double-precision floating-point values `a' and `b', one of which\n | is a NaN, and returns the appropriate NaN result. If either `a' or `b' is a\n@@ -941,55 +851,6 @@ floatx80 floatx80_silence_nan(floatx80 a, float_status *status)\n return a;\n }\n \n-/*----------------------------------------------------------------------------\n-| Returns the result of converting the extended double-precision floating-\n-| point NaN `a' to the canonical NaN format. If `a' is a signaling NaN, the\n-| invalid exception is raised.\n-*----------------------------------------------------------------------------*/\n-\n-static commonNaNT floatx80ToCommonNaN(floatx80 a, float_status *status)\n-{\n- floatx80 dflt;\n- commonNaNT z;\n-\n- if (floatx80_is_signaling_nan(a, status)) {\n- float_raise(float_flag_invalid, status);\n- }\n- if (a.low >> 63) {\n- z.sign = a.high >> 15;\n- z.low = 0;\n- z.high = a.low << 1;\n- } else {\n- dflt = floatx80_default_nan(status);\n- z.sign = dflt.high >> 15;\n- z.low = 0;\n- z.high = dflt.low << 1;\n- }\n- return z;\n-}\n-\n-/*----------------------------------------------------------------------------\n-| Returns the result of converting the canonical NaN `a' to the extended\n-| double-precision floating-point format.\n-*----------------------------------------------------------------------------*/\n-\n-static floatx80 commonNaNToFloatx80(commonNaNT a, float_status *status)\n-{\n- floatx80 z;\n-\n- if (status->default_nan_mode) {\n- return floatx80_default_nan(status);\n- }\n-\n- if (a.high >> 1) {\n- z.low = UINT64_C(0x8000000000000000) | a.high >> 1;\n- z.high = (((uint16_t)a.sign) << 15) | 0x7FFF;\n- } else {\n- z = floatx80_default_nan(status);\n- }\n- return z;\n-}\n-\n /*----------------------------------------------------------------------------\n | Takes two extended double-precision floating-point values `a' and `b', one\n | of which is a NaN, and returns the appropriate NaN result. If either `a' or\n@@ -1082,42 +943,6 @@ bool float128_is_signaling_nan(float128 a, float_status *status)\n }\n }\n \n-/*----------------------------------------------------------------------------\n-| Returns the result of converting the quadruple-precision floating-point NaN\n-| `a' to the canonical NaN format. If `a' is a signaling NaN, the invalid\n-| exception is raised.\n-*----------------------------------------------------------------------------*/\n-\n-static commonNaNT float128ToCommonNaN(float128 a, float_status *status)\n-{\n- commonNaNT z;\n-\n- if (float128_is_signaling_nan(a, status)) {\n- float_raise(float_flag_invalid, status);\n- }\n- z.sign = a.high >> 63;\n- shortShift128Left(a.high, a.low, 16, &z.high, &z.low);\n- return z;\n-}\n-\n-/*----------------------------------------------------------------------------\n-| Returns the result of converting the canonical NaN `a' to the quadruple-\n-| precision floating-point format.\n-*----------------------------------------------------------------------------*/\n-\n-static float128 commonNaNToFloat128(commonNaNT a, float_status *status)\n-{\n- float128 z;\n-\n- if (status->default_nan_mode) {\n- return float128_default_nan(status);\n- }\n-\n- shift128Right(a.high, a.low, 16, &z.high, &z.low);\n- z.high |= (((uint64_t)a.sign) << 63) | UINT64_C(0x7FFF000000000000);\n- return z;\n-}\n-\n /*----------------------------------------------------------------------------\n | Takes two quadruple-precision floating-point values `a' and `b', one of\n | which is a NaN, and returns the appropriate NaN result. If either `a' or\n", "prefixes": [ "66/72" ] }