diff mbox series

[4/4] math: Improve fmodf

Message ID 20230310175900.2388957-5-adhemerval.zanella@linaro.org
State New
Headers show
Series Improve fmod and fmodf | expand

Commit Message

Adhemerval Zanella Netto March 10, 2023, 5:59 p.m. UTC
This uses a new algorithm similar to already proposed earlier [1].
With x = mx * 2^ex and y = my * 2^ey (mx, my, ex, ey being integers),
the simplest implementation is:

   mx * 2^ex == 2 * mx * 2^(ex - 1)

   while (ex > ey)
     {
       mx *= 2;
       --ex;
       mx %= my;
     }

With mx/my being mantissa of double floating pointer, on each step the
argument reduction can be improved 8 (which is sizeof of uint32_t minus
MANTISSA_WIDTH plus the signal bit):

   while (ex > ey)
     {
       mx << 8;
       ex -= 8;
       mx %= my;
     }  */

The implementation uses builtin clz and ctz, along with shifts to
convert hx/hy back to doubles.  Different than the original patch,
this path assume modulo/divide operation is slow, so use multiplication
with invert values.

I see the following performance improvements using fmod benchtests
(result only show the 'mean' result):

  Architecture     | Input           | master   | patch
  -----------------|-----------------|----------|--------
  x86_64 (Ryzen 9) | subnormals      | 17.2549  | 12.3214
  x86_64 (Ryzen 9) | normal          | 85.4096  | 52.6625
  x86_64 (Ryzen 9) | close-exponents | 19.1072  | 17.4622
  aarch64 (N1)     | subnormal       | 10.2182  | 6.81778
  aarch64 (N1)     | normal          | 60.0616  | 158.339
  aarch64 (N1)     | close-exponents | 11.5256  | 8.67894

I also see similar improvements on arm-linux-gnueabihf when running on
the N1 aarch64 chips, where it a lot of soft-fp implementation (for
modulo, and multiplication):

  Architecture     | Input           | master   | patch
  -----------------|-----------------|----------|--------
  armhf (N1)       | subnormal       | 11.6662  | 10.8955
  armhf (N1)       | normal          | 69.2759  | 35.4184
  armhf (N1)       | close-exponents | 13.6472  | 17.8539

Instead of using the math_private.h definitions, I used the
math_config.h instead which is used on newer math implementations.

Co-authored-by: kirill <kirill.okhotnikov@gmail.com>

[1] https://sourceware.org/pipermail/libc-alpha/2020-November/119794.html
---
 sysdeps/ieee754/flt-32/e_fmodf.c     | 230 ++++++++++++++++-----------
 sysdeps/ieee754/flt-32/math_config.h |  89 +++++++++++
 2 files changed, 226 insertions(+), 93 deletions(-)

Comments

H.J. Lu March 10, 2023, 11:17 p.m. UTC | #1
On Fri, Mar 10, 2023 at 9:59 AM Adhemerval Zanella
<adhemerval.zanella@linaro.org> wrote:
>
> This uses a new algorithm similar to already proposed earlier [1].
> With x = mx * 2^ex and y = my * 2^ey (mx, my, ex, ey being integers),
> the simplest implementation is:
>
>    mx * 2^ex == 2 * mx * 2^(ex - 1)
>
>    while (ex > ey)
>      {
>        mx *= 2;
>        --ex;
>        mx %= my;
>      }
>
> With mx/my being mantissa of double floating pointer, on each step the
> argument reduction can be improved 8 (which is sizeof of uint32_t minus
> MANTISSA_WIDTH plus the signal bit):
>
>    while (ex > ey)
>      {
>        mx << 8;
>        ex -= 8;
>        mx %= my;
>      }  */
>
> The implementation uses builtin clz and ctz, along with shifts to
> convert hx/hy back to doubles.  Different than the original patch,

Should all references to double be float?

> this path assume modulo/divide operation is slow, so use multiplication
> with invert values.
>
> I see the following performance improvements using fmod benchtests

fmodf?

Thanks for your work.

> (result only show the 'mean' result):
>
>   Architecture     | Input           | master   | patch
>   -----------------|-----------------|----------|--------
>   x86_64 (Ryzen 9) | subnormals      | 17.2549  | 12.3214
>   x86_64 (Ryzen 9) | normal          | 85.4096  | 52.6625
>   x86_64 (Ryzen 9) | close-exponents | 19.1072  | 17.4622
>   aarch64 (N1)     | subnormal       | 10.2182  | 6.81778
>   aarch64 (N1)     | normal          | 60.0616  | 158.339
>   aarch64 (N1)     | close-exponents | 11.5256  | 8.67894
>
> I also see similar improvements on arm-linux-gnueabihf when running on
> the N1 aarch64 chips, where it a lot of soft-fp implementation (for
> modulo, and multiplication):
>
>   Architecture     | Input           | master   | patch
>   -----------------|-----------------|----------|--------
>   armhf (N1)       | subnormal       | 11.6662  | 10.8955
>   armhf (N1)       | normal          | 69.2759  | 35.4184
>   armhf (N1)       | close-exponents | 13.6472  | 17.8539
>
> Instead of using the math_private.h definitions, I used the
> math_config.h instead which is used on newer math implementations.
>
> Co-authored-by: kirill <kirill.okhotnikov@gmail.com>
>
> [1] https://sourceware.org/pipermail/libc-alpha/2020-November/119794.html
> ---
>  sysdeps/ieee754/flt-32/e_fmodf.c     | 230 ++++++++++++++++-----------
>  sysdeps/ieee754/flt-32/math_config.h |  89 +++++++++++
>  2 files changed, 226 insertions(+), 93 deletions(-)
>
> diff --git a/sysdeps/ieee754/flt-32/e_fmodf.c b/sysdeps/ieee754/flt-32/e_fmodf.c
> index b71c4f754f..b516605ce7 100644
> --- a/sysdeps/ieee754/flt-32/e_fmodf.c
> +++ b/sysdeps/ieee754/flt-32/e_fmodf.c
> @@ -1,102 +1,146 @@
> -/* e_fmodf.c -- float version of e_fmod.c.
> - */
> -
> -/*
> - * ====================================================
> - * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
> - *
> - * Developed at SunPro, a Sun Microsystems, Inc. business.
> - * Permission to use, copy, modify, and distribute this
> - * software is freely granted, provided that this notice
> - * is preserved.
> - * ====================================================
> - */
> -
> -/*
> - * __ieee754_fmodf(x,y)
> - * Return x mod y in exact arithmetic
> - * Method: shift and subtract
> - */
> +/* Floating-point remainder function.
> +   Copyright (C) 2023 Free Software Foundation, Inc.
> +   This file is part of the GNU C Library.
> +
> +   The GNU C Library is free software; you can redistribute it and/or
> +   modify it under the terms of the GNU Lesser General Public
> +   License as published by the Free Software Foundation; either
> +   version 2.1 of the License, or (at your option) any later version.
> +
> +   The GNU C Library is distributed in the hope that it will be useful,
> +   but WITHOUT ANY WARRANTY; without even the implied warranty of
> +   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
> +   Lesser General Public License for more details.
> +
> +   You should have received a copy of the GNU Lesser General Public
> +   License along with the GNU C Library; if not, see
> +   <https://www.gnu.org/licenses/>.  */
>
> -#include <math.h>
> -#include <math_private.h>
>  #include <libm-alias-finite.h>
> +#include <math.h>
> +#include "math_config.h"
> +
> +/* With x = mx * 2^ex and y = my * 2^ey (mx, my, ex, ey being integers), the
> +   simplest implementation is:
> +
> +   mx * 2^ex == 2 * mx * 2^(ex - 1)
>
> -static const float one = 1.0, Zero[] = {0.0, -0.0,};
> +   while (ex > ey)
> +     {
> +       mx *= 2;
> +       --ex;
> +       mx %= my;
> +     }
> +
> +   With mx/my being mantissa of double floating pointer, on each step the
> +   argument reduction can be improved 11 (which is sizeo of uint64_t minus
> +   MANTISSA_WIDTH plus the signal bit):
> +
> +   while (ex > ey)
> +     {
> +       mx << 11;
> +       ex -= 11;
> +       mx %= my;
> +     }  */
>
>  float
>  __ieee754_fmodf (float x, float y)
>  {
> -       int32_t n,hx,hy,hz,ix,iy,sx,i;
> -
> -       GET_FLOAT_WORD(hx,x);
> -       GET_FLOAT_WORD(hy,y);
> -       sx = hx&0x80000000;             /* sign of x */
> -       hx ^=sx;                /* |x| */
> -       hy &= 0x7fffffff;       /* |y| */
> -
> -    /* purge off exception values */
> -       if(hy==0||(hx>=0x7f800000)||            /* y=0,or x not finite */
> -          (hy>0x7f800000))                     /* or y is NaN */
> -           return (x*y)/(x*y);
> -       if(hx<hy) return x;                     /* |x|<|y| return x */
> -       if(hx==hy)
> -           return Zero[(uint32_t)sx>>31];      /* |x|=|y| return x*0*/
> -
> -    /* determine ix = ilogb(x) */
> -       if(hx<0x00800000) {     /* subnormal x */
> -           for (ix = -126,i=(hx<<8); i>0; i<<=1) ix -=1;
> -       } else ix = (hx>>23)-127;
> -
> -    /* determine iy = ilogb(y) */
> -       if(hy<0x00800000) {     /* subnormal y */
> -           for (iy = -126,i=(hy<<8); i>=0; i<<=1) iy -=1;
> -       } else iy = (hy>>23)-127;
> -
> -    /* set up {hx,lx}, {hy,ly} and align y to x */
> -       if(ix >= -126)
> -           hx = 0x00800000|(0x007fffff&hx);
> -       else {          /* subnormal x, shift x to normal */
> -           n = -126-ix;
> -           hx = hx<<n;
> -       }
> -       if(iy >= -126)
> -           hy = 0x00800000|(0x007fffff&hy);
> -       else {          /* subnormal y, shift y to normal */
> -           n = -126-iy;
> -           hy = hy<<n;
> -       }
> -
> -    /* fix point fmod */
> -       n = ix - iy;
> -       while(n--) {
> -           hz=hx-hy;
> -           if(hz<0){hx = hx+hx;}
> -           else {
> -               if(hz==0)               /* return sign(x)*0 */
> -                   return Zero[(uint32_t)sx>>31];
> -               hx = hz+hz;
> -           }
> -       }
> -       hz=hx-hy;
> -       if(hz>=0) {hx=hz;}
> -
> -    /* convert back to floating value and restore the sign */
> -       if(hx==0)                       /* return sign(x)*0 */
> -           return Zero[(uint32_t)sx>>31];
> -       while(hx<0x00800000) {          /* normalize x */
> -           hx = hx+hx;
> -           iy -= 1;
> -       }
> -       if(iy>= -126) {         /* normalize output */
> -           hx = ((hx-0x00800000)|((iy+127)<<23));
> -           SET_FLOAT_WORD(x,hx|sx);
> -       } else {                /* subnormal output */
> -           n = -126 - iy;
> -           hx >>= n;
> -           SET_FLOAT_WORD(x,hx|sx);
> -           x *= one;           /* create necessary signal */
> -       }
> -       return x;               /* exact output */
> +  uint32_t hx = asuint (x);
> +  uint32_t hy = asuint (y);
> +
> +  uint32_t sx = hx & SIGN_MASK;
> +  /* Get |x| and |y|.  */
> +  hx ^= sx;
> +  hy &= ~SIGN_MASK;
> +
> +  /* Special cases:
> +     - If x or y is a Nan, NaN is returned.
> +     - If x is an inifinity, a NaN is returned.
> +     - If y is zero, Nan is returned.
> +     - If x is +0/-0, and y is not zero, +0/-0 is returned.  */
> +  if (__glibc_unlikely (hy == 0        || hx >= EXPONENT_MASK || hy > EXPONENT_MASK))
> +    return (x * y) / (x * y);
> +
> +  if (__glibc_unlikely (hx <= hy))
> +    {
> +      if (hx < hy)
> +       return x;
> +      return sx ? -0.0 : 0.0;
> +    }
> +
> +  int ex = get_unbiased_exponent (hx);
> +  int ey = get_unbiased_exponent (hy);
> +
> +  /* Common case where exponents are close: ey >= -103 and |x/y| < 2^8,  */
> +  if (__glibc_likely (ey > MANTISSA_WIDTH && ex - ey <= EXPONENT_WIDTH))
> +    {
> +      uint32_t mx = get_explicit_mantissa (hx);
> +      uint32_t my = get_explicit_mantissa (hy);
> +
> +      uint32_t d = (ex == ey) ? (mx - my) : (mx << (ex - ey)) % my;
> +      if (d == 0)
> +       return 0.0;
> +      return make_float (d, ey - 1, sx);
> +    }
> +
> +  /* Special case, both x and y are subnormal.  */
> +  if (__glibc_unlikely (ex == 0 && ey == 0))
> +    return asfloat (hx % hy);
> +
> +  /* Convert |x| and |y| to 'mx + 2^ex' and 'my + 2^ey'.  Assume that hx is
> +     not subnormal by conditions above.  */
> +  uint32_t mx = get_explicit_mantissa (hx);
> +  ex--;
> +
> +  uint32_t my = get_explicit_mantissa (hy);
> +  int lead_zeros_my = EXPONENT_WIDTH;
> +  if (__glibc_likely (ey > 0))
> +    ey--;
> +  else
> +    {
> +      my = get_mantissa (hy);
> +      lead_zeros_my = __builtin_clz (my);
> +    }
> +
> +  int tail_zeros_my = __builtin_ctz (my);
> +  int sides_zeroes = lead_zeros_my + tail_zeros_my;
> +  int exp_diff = ex - ey;
> +
> +  int right_shift = exp_diff < tail_zeros_my ? exp_diff : tail_zeros_my;
> +  my >>= right_shift;
> +  exp_diff -= right_shift;
> +  ey += right_shift;
> +
> +  int left_shift = exp_diff < EXPONENT_WIDTH ? exp_diff : EXPONENT_WIDTH;
> +  mx <<= left_shift;
> +  exp_diff -= left_shift;
> +
> +  mx %= my;
> +
> +  if (__glibc_unlikely (mx == 0))
> +    return sx ? -0.0 : 0.0;
> +
> +  if (exp_diff == 0)
> +    return make_float (my, ey, sx);
> +
> +  /* Assume modulo/divide operation is slow, so use multiplication with invert
> +     values.  */
> +  uint32_t inv_hy = UINT32_MAX / my;
> +  while (exp_diff > sides_zeroes) {
> +    exp_diff -= sides_zeroes;
> +    uint32_t hd = (mx * inv_hy) >> (BIT_WIDTH - sides_zeroes);
> +    mx <<= sides_zeroes;
> +    mx -= hd * my;
> +    while (__glibc_unlikely (mx > my))
> +      mx -= my;
> +  }
> +  uint32_t hd = (mx * inv_hy) >> (BIT_WIDTH - exp_diff);
> +  mx <<= exp_diff;
> +  mx -= hd * my;
> +  while (__glibc_unlikely (mx > my))
> +    mx -= my;
> +
> +  return make_float (mx, ey, sx);
>  }
>  libm_alias_finite (__ieee754_fmodf, __fmodf)
> diff --git a/sysdeps/ieee754/flt-32/math_config.h b/sysdeps/ieee754/flt-32/math_config.h
> index 23045f59d6..cdab3a36ef 100644
> --- a/sysdeps/ieee754/flt-32/math_config.h
> +++ b/sysdeps/ieee754/flt-32/math_config.h
> @@ -110,6 +110,95 @@ issignalingf_inline (float x)
>    return 2 * (ix ^ 0x00400000) > 2 * 0x7fc00000UL;
>  }
>
> +#define BIT_WIDTH       32
> +#define MANTISSA_WIDTH  23
> +#define EXPONENT_WIDTH  8
> +#define MANTISSA_MASK   0x007fffff
> +#define EXPONENT_MASK   0x7f800000
> +#define EXP_MANT_MASK   0x7fffffff
> +#define QUIET_NAN_MASK  0x00400000
> +#define SIGN_MASK       0x80000000
> +
> +static inline bool
> +is_nan (uint32_t x)
> +{
> +  return (x & EXP_MANT_MASK) > EXPONENT_MASK;
> +}
> +
> +static inline bool
> +is_quiet_nan (uint32_t x)
> +{
> +   return (x & EXP_MANT_MASK) == (EXPONENT_MASK | QUIET_NAN_MASK);
> +}
> +
> +static inline bool
> +is_inf_or_nan (uint32_t x)
> +{
> +  return (x & EXPONENT_MASK) == EXPONENT_MASK;
> +}
> +
> +static inline uint16_t
> +get_unbiased_exponent (uint32_t x)
> +{
> +  return (x & EXPONENT_MASK) >> MANTISSA_WIDTH;
> +}
> +
> +/* Return mantissa with the implicit bit set iff X is a normal number.  */
> +static inline uint32_t
> +get_explicit_mantissa (uint32_t x)
> +{
> +  uint32_t p1 = (get_unbiased_exponent (x) > 0 && !is_inf_or_nan (x)
> +    ? (MANTISSA_MASK + 1) : 0);
> +  uint32_t p2 = (x & MANTISSA_MASK);
> +  return p1 | p2;
> +}
> +
> +static inline uint32_t
> +set_mantissa (uint32_t x, uint32_t m)
> +{
> +  m &= MANTISSA_MASK;
> +  x &= ~(MANTISSA_MASK);
> +  return x |= m;
> +}
> +
> +static inline uint32_t
> +get_mantissa (uint32_t x)
> +{
> +  return x & MANTISSA_MASK;
> +}
> +
> +static inline uint32_t
> +set_unbiased_exponent (uint32_t x, uint32_t e)
> +{
> +  e = (e << MANTISSA_WIDTH) & EXPONENT_MASK;
> +  x &= ~(EXPONENT_MASK);
> +  return x |= e;
> +}
> +
> +/* Convert integer number X, unbiased exponent EP, and sign S to double:
> +
> +   result = X * 2^(EP+1 - exponent_bias)
> +
> +   NB: zero is not supported.  */
> +static inline double
> +make_float (uint32_t x, int ep, uint32_t s)
> +{
> +  int lz = __builtin_clz (x) - EXPONENT_WIDTH;
> +  x <<= lz;
> +  ep -= lz;
> +
> +  uint32_t r = 0;
> +  if (__glibc_likely (ep >= 0))
> +    {
> +      r = set_mantissa (r, x);
> +      r = set_unbiased_exponent (r, ep + 1);
> +    }
> +  else
> +    r = set_mantissa (r, x >> -ep);
> +
> +  return asfloat (r | s);
> +}
> +
>  #define NOINLINE __attribute__ ((noinline))
>
>  attribute_hidden float __math_oflowf (uint32_t);
> --
> 2.34.1
>


--
H.J.
Matt Turner March 13, 2023, 3:19 p.m. UTC | #2
On Fri, Mar 10, 2023 at 1:01 PM Adhemerval Zanella via Libc-alpha
<libc-alpha@sourceware.org> wrote:
>
> This uses a new algorithm similar to already proposed earlier [1].
> With x = mx * 2^ex and y = my * 2^ey (mx, my, ex, ey being integers),
> the simplest implementation is:
>
>    mx * 2^ex == 2 * mx * 2^(ex - 1)
>
>    while (ex > ey)
>      {
>        mx *= 2;
>        --ex;
>        mx %= my;
>      }
>
> With mx/my being mantissa of double floating pointer, on each step the
> argument reduction can be improved 8 (which is sizeof of uint32_t minus
> MANTISSA_WIDTH plus the signal bit):
>
>    while (ex > ey)
>      {
>        mx << 8;
>        ex -= 8;
>        mx %= my;
>      }  */
>
> The implementation uses builtin clz and ctz, along with shifts to
> convert hx/hy back to doubles.  Different than the original patch,
> this path assume modulo/divide operation is slow, so use multiplication
> with invert values.
>
> I see the following performance improvements using fmod benchtests
> (result only show the 'mean' result):
>
>   Architecture     | Input           | master   | patch
>   -----------------|-----------------|----------|--------
>   x86_64 (Ryzen 9) | subnormals      | 17.2549  | 12.3214
>   x86_64 (Ryzen 9) | normal          | 85.4096  | 52.6625
>   x86_64 (Ryzen 9) | close-exponents | 19.1072  | 17.4622
>   aarch64 (N1)     | subnormal       | 10.2182  | 6.81778
>   aarch64 (N1)     | normal          | 60.0616  | 158.339

Is this line correct? 60 -> 158?
Adhemerval Zanella Netto March 13, 2023, 4:38 p.m. UTC | #3
On 13/03/23 12:19, Matt Turner wrote:
> On Fri, Mar 10, 2023 at 1:01 PM Adhemerval Zanella via Libc-alpha
> <libc-alpha@sourceware.org> wrote:
>>
>> This uses a new algorithm similar to already proposed earlier [1].
>> With x = mx * 2^ex and y = my * 2^ey (mx, my, ex, ey being integers),
>> the simplest implementation is:
>>
>>    mx * 2^ex == 2 * mx * 2^(ex - 1)
>>
>>    while (ex > ey)
>>      {
>>        mx *= 2;
>>        --ex;
>>        mx %= my;
>>      }
>>
>> With mx/my being mantissa of double floating pointer, on each step the
>> argument reduction can be improved 8 (which is sizeof of uint32_t minus
>> MANTISSA_WIDTH plus the signal bit):
>>
>>    while (ex > ey)
>>      {
>>        mx << 8;
>>        ex -= 8;
>>        mx %= my;
>>      }  */
>>
>> The implementation uses builtin clz and ctz, along with shifts to
>> convert hx/hy back to doubles.  Different than the original patch,
>> this path assume modulo/divide operation is slow, so use multiplication
>> with invert values.
>>
>> I see the following performance improvements using fmod benchtests
>> (result only show the 'mean' result):
>>
>>   Architecture     | Input           | master   | patch
>>   -----------------|-----------------|----------|--------
>>   x86_64 (Ryzen 9) | subnormals      | 17.2549  | 12.3214
>>   x86_64 (Ryzen 9) | normal          | 85.4096  | 52.6625
>>   x86_64 (Ryzen 9) | close-exponents | 19.1072  | 17.4622
>>   aarch64 (N1)     | subnormal       | 10.2182  | 6.81778
>>   aarch64 (N1)     | normal          | 60.0616  | 158.339
> 
> Is this line correct? 60 -> 158?

Nops, it was an overlook from my part.  I reran the benchmark to double
check it and the corrects numbers are:

      Architecture     | Input           | master   | patch
      -----------------|-----------------|----------|--------
      x86_64 (Ryzen 9) | subnormals      | 17.2549  | 12.3214
      x86_64 (Ryzen 9) | normal          | 85.4096  | 52.6625
      x86_64 (Ryzen 9) | close-exponents | 19.1072  | 17.4622
      aarch64 (N1)     | subnormal       | 10.2182  | 6.81778
      aarch64 (N1)     | normal          | 60.0616  | 21.2581
      aarch64 (N1)     | close-exponents | 11.5256  | 8.67894
Wilco Dijkstra March 14, 2023, 4:42 p.m. UTC | #4
Hi Adhemerval,

This looks good overall. I guess we still needs error handling and the wrapper
disabled since it spends 1/3 of the time in the useless wrapper but that can be
a separate patch.

A few comments below, there are a few things that look wrong, and I think most
of the helper functions just add extra complexity and branches for no gain:


+  uint32_t sx = hx & SIGN_MASK;
+  /* Get |x| and |y|.  */
+  hx ^= sx;
+  hy &= ~SIGN_MASK;
+
+  /* Special cases:
+     - If x or y is a Nan, NaN is returned.
+     - If x is an inifinity, a NaN is returned.
+     - If y is zero, Nan is returned.
+     - If x is +0/-0, and y is not zero, +0/-0 is returned.  */
+  if (__glibc_unlikely (hy == 0        || hx >= EXPONENT_MASK || hy > EXPONENT_MASK))
+    return (x * y) / (x * y);
+
+  if (__glibc_unlikely (hx <= hy))
+    {
+      if (hx < hy)
+       return x;
+      return sx ? -0.0 : 0.0;

This should be return asfloat (sx);

+    }
+
+  int ex = get_unbiased_exponent (hx);
+  int ey = get_unbiased_exponent (hy);

Should be hx >> MANTISSA_WIDTH since we cleared the sign bits (now we don't
need to add get_unbiased_exponent).

+  /* Common case where exponents are close: ey >= -103 and |x/y| < 2^8,  */
+  if (__glibc_likely (ey > MANTISSA_WIDTH && ex - ey <= EXPONENT_WIDTH))
+    {
+      uint32_t mx = get_explicit_mantissa (hx);
+      uint32_t my = get_explicit_mantissa (hy);

Note this is equivalent to:

mx = (hx & MANTISSA_MASK) | (MANTISSA_MASK + 1);

So we don't need get_explicit_mantissa (or we could change it to do the above).
If we do this before the if statement, we don't need to repeat it below.

+      uint32_t d = (ex == ey) ? (mx - my) : (mx << (ex - ey)) % my;
+      if (d == 0)
+       return 0.0;

Looks like a bug, should be asfloat (sx)?

+      return make_float (d, ey - 1, sx);
+    }
+
+  /* Special case, both x and y are subnormal.  */
+  if (__glibc_unlikely (ex == 0 && ey == 0))
+    return asfloat (hx % hy);

Similarly, shouldn't this be asfloat (sx | (hx % hy))?

+  /* Convert |x| and |y| to 'mx + 2^ex' and 'my + 2^ey'.  Assume that hx is
+     not subnormal by conditions above.  */
+  uint32_t mx = get_explicit_mantissa (hx);
+  ex--;
+
+  uint32_t my = get_explicit_mantissa (hy);

If we set mx/my above then this isn't needed.

+  int lead_zeros_my = EXPONENT_WIDTH;
+  if (__glibc_likely (ey > 0))
+    ey--;
+  else
+    {
+      my = get_mantissa (hy);

This is really my = hy; since we know hy is positive denormal.

+      lead_zeros_my = __builtin_clz (my);
+    }
+
+  int tail_zeros_my = __builtin_ctz (my);
+  int sides_zeroes = lead_zeros_my + tail_zeros_my;
+  int exp_diff = ex - ey;
+
+  int right_shift = exp_diff < tail_zeros_my ? exp_diff : tail_zeros_my;
+  my >>= right_shift;
+  exp_diff -= right_shift;
+  ey += right_shift;
+
+  int left_shift = exp_diff < EXPONENT_WIDTH ? exp_diff : EXPONENT_WIDTH;
+  mx <<= left_shift;
+  exp_diff -= left_shift;
+
+  mx %= my;
+
+  if (__glibc_unlikely (mx == 0))
+    return sx ? -0.0 : 0.0;

Should be asfloat (sx);

+  if (exp_diff == 0)
+    return make_float (my, ey, sx);
+
+  /* Assume modulo/divide operation is slow, so use multiplication with invert
+     values.  */
+  uint32_t inv_hy = UINT32_MAX / my;
+  while (exp_diff > sides_zeroes) {
+    exp_diff -= sides_zeroes;
+    uint32_t hd = (mx * inv_hy) >> (BIT_WIDTH - sides_zeroes);
+    mx <<= sides_zeroes;
+    mx -= hd * my;
+    while (__glibc_unlikely (mx > my))
+      mx -= my;
+  }
+  uint32_t hd = (mx * inv_hy) >> (BIT_WIDTH - exp_diff);
+  mx <<= exp_diff;
+  mx -= hd * my;
+  while (__glibc_unlikely (mx > my))
+    mx -= my;
+
+  return make_float (mx, ey, sx);
 }
 libm_alias_finite (__ieee754_fmodf, __fmodf)
diff --git a/sysdeps/ieee754/flt-32/math_config.h b/sysdeps/ieee754/flt-32/math_config.h
index 23045f59d6..cdab3a36ef 100644
--- a/sysdeps/ieee754/flt-32/math_config.h
+++ b/sysdeps/ieee754/flt-32/math_config.h
@@ -110,6 +110,95 @@ issignalingf_inline (float x)
   return 2 * (ix ^ 0x00400000) > 2 * 0x7fc00000UL;
 }
 
+#define BIT_WIDTH       32
+#define MANTISSA_WIDTH  23
+#define EXPONENT_WIDTH  8
+#define MANTISSA_MASK   0x007fffff
+#define EXPONENT_MASK   0x7f800000
+#define EXP_MANT_MASK   0x7fffffff
+#define QUIET_NAN_MASK  0x00400000
+#define SIGN_MASK       0x80000000
+
+static inline bool
+is_nan (uint32_t x)
+{
+  return (x & EXP_MANT_MASK) > EXPONENT_MASK;
+}
+
+static inline bool
+is_quiet_nan (uint32_t x)
+{
+   return (x & EXP_MANT_MASK) == (EXPONENT_MASK | QUIET_NAN_MASK);
+}
+
+static inline bool
+is_inf_or_nan (uint32_t x)
+{
+  return (x & EXPONENT_MASK) == EXPONENT_MASK;
+}
+
+static inline uint16_t
+get_unbiased_exponent (uint32_t x)
+{
+  return (x & EXPONENT_MASK) >> MANTISSA_WIDTH;
+}
+
+/* Return mantissa with the implicit bit set iff X is a normal number.  */
+static inline uint32_t
+get_explicit_mantissa (uint32_t x)
+{
+  uint32_t p1 = (get_unbiased_exponent (x) > 0 && !is_inf_or_nan (x)
+    ? (MANTISSA_MASK + 1) : 0);
+  uint32_t p2 = (x & MANTISSA_MASK);
+  return p1 | p2;
+}

I don't think we need this (and anything called by it).

+static inline uint32_t
+set_mantissa (uint32_t x, uint32_t m)
+{
+  m &= MANTISSA_MASK;
+  x &= ~(MANTISSA_MASK);
+  return x |= m;
+}
+
+static inline uint32_t
+get_mantissa (uint32_t x)
+{
+  return x & MANTISSA_MASK;
+}
+
+static inline uint32_t
+set_unbiased_exponent (uint32_t x, uint32_t e)
+{
+  e = (e << MANTISSA_WIDTH) & EXPONENT_MASK;
+  x &= ~(EXPONENT_MASK);
+  return x |= e;
+}
+
+/* Convert integer number X, unbiased exponent EP, and sign S to double:
+
+   result = X * 2^(EP+1 - exponent_bias)
+
+   NB: zero is not supported.  */
+static inline double
+make_float (uint32_t x, int ep, uint32_t s)
+{
+  int lz = __builtin_clz (x) - EXPONENT_WIDTH;
+  x <<= lz;
+  ep -= lz;
+
+  uint32_t r = 0;
+  if (__glibc_likely (ep >= 0))
+    {
+      r = set_mantissa (r, x);
+      r = set_unbiased_exponent (r, ep + 1);
+    }
+  else
+    r = set_mantissa (r, x >> -ep);
+
+  return asfloat (r | s);
+}

This is overly complex, make_float is as trivial as:

static inline double
make_float (uint32_t x, int ep, uint32_t s)
{
  int lz = __builtin_clz (x) - EXPONENT_WIDTH;
  x <<= lz;
  ep -= lz;

  if (__glibc_unlikely (ep < 0))
  {
    x >> -ep;
    ep = 0;
  }
  return asfloat (s + x + (ep << MANTISSA_WIDTH));
}

And now you don't need set_unbiased_exponent and set_mantissa either.

Cheers,
Wilco
Adhemerval Zanella Netto March 15, 2023, 5:50 p.m. UTC | #5
On 14/03/23 13:42, Wilco Dijkstra wrote:
> Hi Adhemerval,
> 
> This looks good overall. I guess we still needs error handling and the wrapper
> disabled since it spends 1/3 of the time in the useless wrapper but that can be
> a separate patch.

The wrapper should be simple to add.

> 
> A few comments below, there are a few things that look wrong, and I think most
> of the helper functions just add extra complexity and branches for no gain:
> 
> 
> +  uint32_t sx = hx & SIGN_MASK;
> +  /* Get |x| and |y|.  */
> +  hx ^= sx;
> +  hy &= ~SIGN_MASK;
> +
> +  /* Special cases:
> +     - If x or y is a Nan, NaN is returned.
> +     - If x is an inifinity, a NaN is returned.
> +     - If y is zero, Nan is returned.
> +     - If x is +0/-0, and y is not zero, +0/-0 is returned.  */
> +  if (__glibc_unlikely (hy == 0        || hx >= EXPONENT_MASK || hy > EXPONENT_MASK))
> +    return (x * y) / (x * y);
> +
> +  if (__glibc_unlikely (hx <= hy))
> +    {
> +      if (hx < hy)
> +       return x;
> +      return sx ? -0.0 : 0.0;
> 
> This should be return asfloat (sx);

Ack.

> 
> +    }
> +
> +  int ex = get_unbiased_exponent (hx);
> +  int ey = get_unbiased_exponent (hy);
> 
> Should be hx >> MANTISSA_WIDTH since we cleared the sign bits (now we don't
> need to add get_unbiased_exponent).

Ack.

> 
> +  /* Common case where exponents are close: ey >= -103 and |x/y| < 2^8,  */
> +  if (__glibc_likely (ey > MANTISSA_WIDTH && ex - ey <= EXPONENT_WIDTH))
> +    {
> +      uint32_t mx = get_explicit_mantissa (hx);
> +      uint32_t my = get_explicit_mantissa (hy);
> 
> Note this is equivalent to:
> 
> mx = (hx & MANTISSA_MASK) | (MANTISSA_MASK + 1);

Ack.

> 
> So we don't need get_explicit_mantissa (or we could change it to do the above).
> If we do this before the if statement, we don't need to repeat it below.
> 
> +      uint32_t d = (ex == ey) ? (mx - my) : (mx << (ex - ey)) % my;
> +      if (d == 0)
> +       return 0.0;
> 
> Looks like a bug, should be asfloat (sx)?

In fact I think this check is not really required since we already if
inputs are equal.

> 
> +      return make_float (d, ey - 1, sx);
> +    }
> +
> +  /* Special case, both x and y are subnormal.  */
> +  if (__glibc_unlikely (ex == 0 && ey == 0))
> +    return asfloat (hx % hy);
> 
> Similarly, shouldn't this be asfloat (sx | (hx % hy))?

Yes, I will add tests to check for it.

> 
> +  /* Convert |x| and |y| to 'mx + 2^ex' and 'my + 2^ey'.  Assume that hx is
> +     not subnormal by conditions above.  */
> +  uint32_t mx = get_explicit_mantissa (hx);
> +  ex--;
> +
> +  uint32_t my = get_explicit_mantissa (hy);
> 
> If we set mx/my above then this isn't needed.

Right, I think we can mask out the mantissa and set the implicit bit then.

> 
> +  int lead_zeros_my = EXPONENT_WIDTH;
> +  if (__glibc_likely (ey > 0))
> +    ey--;
> +  else
> +    {
> +      my = get_mantissa (hy);
> 
> This is really my = hy; since we know hy is positive denormal.

Indeed.

> 
> +      lead_zeros_my = __builtin_clz (my);
> +    }
> +
> +  int tail_zeros_my = __builtin_ctz (my);
> +  int sides_zeroes = lead_zeros_my + tail_zeros_my;
> +  int exp_diff = ex - ey;
> +
> +  int right_shift = exp_diff < tail_zeros_my ? exp_diff : tail_zeros_my;
> +  my >>= right_shift;
> +  exp_diff -= right_shift;
> +  ey += right_shift;
> +
> +  int left_shift = exp_diff < EXPONENT_WIDTH ? exp_diff : EXPONENT_WIDTH;
> +  mx <<= left_shift;
> +  exp_diff -= left_shift;
> +
> +  mx %= my;
> +
> +  if (__glibc_unlikely (mx == 0))
> +    return sx ? -0.0 : 0.0;
> 
> Should be asfloat (sx);

Ack.

> 
> +  if (exp_diff == 0)
> +    return make_float (my, ey, sx);
> +
> +  /* Assume modulo/divide operation is slow, so use multiplication with invert
> +     values.  */
> +  uint32_t inv_hy = UINT32_MAX / my;
> +  while (exp_diff > sides_zeroes) {
> +    exp_diff -= sides_zeroes;
> +    uint32_t hd = (mx * inv_hy) >> (BIT_WIDTH - sides_zeroes);
> +    mx <<= sides_zeroes;
> +    mx -= hd * my;
> +    while (__glibc_unlikely (mx > my))
> +      mx -= my;
> +  }
> +  uint32_t hd = (mx * inv_hy) >> (BIT_WIDTH - exp_diff);
> +  mx <<= exp_diff;
> +  mx -= hd * my;
> +  while (__glibc_unlikely (mx > my))
> +    mx -= my;
> +
> +  return make_float (mx, ey, sx);
>  }
>  libm_alias_finite (__ieee754_fmodf, __fmodf)
> diff --git a/sysdeps/ieee754/flt-32/math_config.h b/sysdeps/ieee754/flt-32/math_config.h
> index 23045f59d6..cdab3a36ef 100644
> --- a/sysdeps/ieee754/flt-32/math_config.h
> +++ b/sysdeps/ieee754/flt-32/math_config.h
> @@ -110,6 +110,95 @@ issignalingf_inline (float x)
>    return 2 * (ix ^ 0x00400000) > 2 * 0x7fc00000UL;
>  }
>  
> +#define BIT_WIDTH       32
> +#define MANTISSA_WIDTH  23
> +#define EXPONENT_WIDTH  8
> +#define MANTISSA_MASK   0x007fffff
> +#define EXPONENT_MASK   0x7f800000
> +#define EXP_MANT_MASK   0x7fffffff
> +#define QUIET_NAN_MASK  0x00400000
> +#define SIGN_MASK       0x80000000
> +
> +static inline bool
> +is_nan (uint32_t x)
> +{
> +  return (x & EXP_MANT_MASK) > EXPONENT_MASK;
> +}
> +
> +static inline bool
> +is_quiet_nan (uint32_t x)
> +{
> +   return (x & EXP_MANT_MASK) == (EXPONENT_MASK | QUIET_NAN_MASK);
> +}
> +
> +static inline bool
> +is_inf_or_nan (uint32_t x)
> +{
> +  return (x & EXPONENT_MASK) == EXPONENT_MASK;
> +}
> +
> +static inline uint16_t
> +get_unbiased_exponent (uint32_t x)
> +{
> +  return (x & EXPONENT_MASK) >> MANTISSA_WIDTH;
> +}
> +
> +/* Return mantissa with the implicit bit set iff X is a normal number.  */
> +static inline uint32_t
> +get_explicit_mantissa (uint32_t x)
> +{
> +  uint32_t p1 = (get_unbiased_exponent (x) > 0 && !is_inf_or_nan (x)
> +    ? (MANTISSA_MASK + 1) : 0);
> +  uint32_t p2 = (x & MANTISSA_MASK);
> +  return p1 | p2;
> +}
> 
> I don't think we need this (and anything called by it).
> 
> +static inline uint32_t
> +set_mantissa (uint32_t x, uint32_t m)
> +{
> +  m &= MANTISSA_MASK;
> +  x &= ~(MANTISSA_MASK);
> +  return x |= m;
> +}
> +
> +static inline uint32_t
> +get_mantissa (uint32_t x)
> +{
> +  return x & MANTISSA_MASK;
> +}
> +
> +static inline uint32_t
> +set_unbiased_exponent (uint32_t x, uint32_t e)
> +{
> +  e = (e << MANTISSA_WIDTH) & EXPONENT_MASK;
> +  x &= ~(EXPONENT_MASK);
> +  return x |= e;
> +}
> +
> +/* Convert integer number X, unbiased exponent EP, and sign S to double:
> +
> +   result = X * 2^(EP+1 - exponent_bias)
> +
> +   NB: zero is not supported.  */
> +static inline double
> +make_float (uint32_t x, int ep, uint32_t s)
> +{
> +  int lz = __builtin_clz (x) - EXPONENT_WIDTH;
> +  x <<= lz;
> +  ep -= lz;
> +
> +  uint32_t r = 0;
> +  if (__glibc_likely (ep >= 0))
> +    {
> +      r = set_mantissa (r, x);
> +      r = set_unbiased_exponent (r, ep + 1);
> +    }
> +  else
> +    r = set_mantissa (r, x >> -ep);
> +
> +  return asfloat (r | s);
> +}
> 
> This is overly complex, make_float is as trivial as:
> 
> static inline double
> make_float (uint32_t x, int ep, uint32_t s)
> {
>   int lz = __builtin_clz (x) - EXPONENT_WIDTH;
>   x <<= lz;
>   ep -= lz;
> 
>   if (__glibc_unlikely (ep < 0))
>   {
>     x >> -ep;
>     ep = 0;
>   }
>   return asfloat (s + x + (ep << MANTISSA_WIDTH));
> }
> 
> And now you don't need set_unbiased_exponent and set_mantissa either.

Indeed it is simpler, thanks.

> 
> Cheers,
> Wilco
diff mbox series

Patch

diff --git a/sysdeps/ieee754/flt-32/e_fmodf.c b/sysdeps/ieee754/flt-32/e_fmodf.c
index b71c4f754f..b516605ce7 100644
--- a/sysdeps/ieee754/flt-32/e_fmodf.c
+++ b/sysdeps/ieee754/flt-32/e_fmodf.c
@@ -1,102 +1,146 @@ 
-/* e_fmodf.c -- float version of e_fmod.c.
- */
-
-/*
- * ====================================================
- * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
- *
- * Developed at SunPro, a Sun Microsystems, Inc. business.
- * Permission to use, copy, modify, and distribute this
- * software is freely granted, provided that this notice
- * is preserved.
- * ====================================================
- */
-
-/*
- * __ieee754_fmodf(x,y)
- * Return x mod y in exact arithmetic
- * Method: shift and subtract
- */
+/* Floating-point remainder function.
+   Copyright (C) 2023 Free Software Foundation, Inc.
+   This file is part of the GNU C Library.
+
+   The GNU C Library is free software; you can redistribute it and/or
+   modify it under the terms of the GNU Lesser General Public
+   License as published by the Free Software Foundation; either
+   version 2.1 of the License, or (at your option) any later version.
+
+   The GNU C Library is distributed in the hope that it will be useful,
+   but WITHOUT ANY WARRANTY; without even the implied warranty of
+   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
+   Lesser General Public License for more details.
+
+   You should have received a copy of the GNU Lesser General Public
+   License along with the GNU C Library; if not, see
+   <https://www.gnu.org/licenses/>.  */
 
-#include <math.h>
-#include <math_private.h>
 #include <libm-alias-finite.h>
+#include <math.h>
+#include "math_config.h"
+
+/* With x = mx * 2^ex and y = my * 2^ey (mx, my, ex, ey being integers), the
+   simplest implementation is:
+
+   mx * 2^ex == 2 * mx * 2^(ex - 1)
 
-static const float one = 1.0, Zero[] = {0.0, -0.0,};
+   while (ex > ey)
+     {
+       mx *= 2;
+       --ex;
+       mx %= my;
+     }
+
+   With mx/my being mantissa of double floating pointer, on each step the
+   argument reduction can be improved 11 (which is sizeo of uint64_t minus
+   MANTISSA_WIDTH plus the signal bit):
+
+   while (ex > ey)
+     {
+       mx << 11;
+       ex -= 11;
+       mx %= my;
+     }  */
 
 float
 __ieee754_fmodf (float x, float y)
 {
-	int32_t n,hx,hy,hz,ix,iy,sx,i;
-
-	GET_FLOAT_WORD(hx,x);
-	GET_FLOAT_WORD(hy,y);
-	sx = hx&0x80000000;		/* sign of x */
-	hx ^=sx;		/* |x| */
-	hy &= 0x7fffffff;	/* |y| */
-
-    /* purge off exception values */
-	if(hy==0||(hx>=0x7f800000)||		/* y=0,or x not finite */
-	   (hy>0x7f800000))			/* or y is NaN */
-	    return (x*y)/(x*y);
-	if(hx<hy) return x;			/* |x|<|y| return x */
-	if(hx==hy)
-	    return Zero[(uint32_t)sx>>31];	/* |x|=|y| return x*0*/
-
-    /* determine ix = ilogb(x) */
-	if(hx<0x00800000) {	/* subnormal x */
-	    for (ix = -126,i=(hx<<8); i>0; i<<=1) ix -=1;
-	} else ix = (hx>>23)-127;
-
-    /* determine iy = ilogb(y) */
-	if(hy<0x00800000) {	/* subnormal y */
-	    for (iy = -126,i=(hy<<8); i>=0; i<<=1) iy -=1;
-	} else iy = (hy>>23)-127;
-
-    /* set up {hx,lx}, {hy,ly} and align y to x */
-	if(ix >= -126)
-	    hx = 0x00800000|(0x007fffff&hx);
-	else {		/* subnormal x, shift x to normal */
-	    n = -126-ix;
-	    hx = hx<<n;
-	}
-	if(iy >= -126)
-	    hy = 0x00800000|(0x007fffff&hy);
-	else {		/* subnormal y, shift y to normal */
-	    n = -126-iy;
-	    hy = hy<<n;
-	}
-
-    /* fix point fmod */
-	n = ix - iy;
-	while(n--) {
-	    hz=hx-hy;
-	    if(hz<0){hx = hx+hx;}
-	    else {
-		if(hz==0)		/* return sign(x)*0 */
-		    return Zero[(uint32_t)sx>>31];
-		hx = hz+hz;
-	    }
-	}
-	hz=hx-hy;
-	if(hz>=0) {hx=hz;}
-
-    /* convert back to floating value and restore the sign */
-	if(hx==0)			/* return sign(x)*0 */
-	    return Zero[(uint32_t)sx>>31];
-	while(hx<0x00800000) {		/* normalize x */
-	    hx = hx+hx;
-	    iy -= 1;
-	}
-	if(iy>= -126) {		/* normalize output */
-	    hx = ((hx-0x00800000)|((iy+127)<<23));
-	    SET_FLOAT_WORD(x,hx|sx);
-	} else {		/* subnormal output */
-	    n = -126 - iy;
-	    hx >>= n;
-	    SET_FLOAT_WORD(x,hx|sx);
-	    x *= one;		/* create necessary signal */
-	}
-	return x;		/* exact output */
+  uint32_t hx = asuint (x);
+  uint32_t hy = asuint (y);
+
+  uint32_t sx = hx & SIGN_MASK;
+  /* Get |x| and |y|.  */
+  hx ^= sx;
+  hy &= ~SIGN_MASK;
+
+  /* Special cases:
+     - If x or y is a Nan, NaN is returned.
+     - If x is an inifinity, a NaN is returned.
+     - If y is zero, Nan is returned.
+     - If x is +0/-0, and y is not zero, +0/-0 is returned.  */
+  if (__glibc_unlikely (hy == 0	|| hx >= EXPONENT_MASK || hy > EXPONENT_MASK))
+    return (x * y) / (x * y);
+
+  if (__glibc_unlikely (hx <= hy))
+    {
+      if (hx < hy)
+	return x;
+      return sx ? -0.0 : 0.0;
+    }
+
+  int ex = get_unbiased_exponent (hx);
+  int ey = get_unbiased_exponent (hy);
+
+  /* Common case where exponents are close: ey >= -103 and |x/y| < 2^8,  */
+  if (__glibc_likely (ey > MANTISSA_WIDTH && ex - ey <= EXPONENT_WIDTH))
+    {
+      uint32_t mx = get_explicit_mantissa (hx);
+      uint32_t my = get_explicit_mantissa (hy);
+
+      uint32_t d = (ex == ey) ? (mx - my) : (mx << (ex - ey)) % my;
+      if (d == 0)
+	return 0.0;
+      return make_float (d, ey - 1, sx);
+    }
+
+  /* Special case, both x and y are subnormal.  */
+  if (__glibc_unlikely (ex == 0 && ey == 0))
+    return asfloat (hx % hy);
+
+  /* Convert |x| and |y| to 'mx + 2^ex' and 'my + 2^ey'.  Assume that hx is
+     not subnormal by conditions above.  */
+  uint32_t mx = get_explicit_mantissa (hx);
+  ex--;
+
+  uint32_t my = get_explicit_mantissa (hy);
+  int lead_zeros_my = EXPONENT_WIDTH;
+  if (__glibc_likely (ey > 0))
+    ey--;
+  else
+    {
+      my = get_mantissa (hy);
+      lead_zeros_my = __builtin_clz (my);
+    }
+
+  int tail_zeros_my = __builtin_ctz (my);
+  int sides_zeroes = lead_zeros_my + tail_zeros_my;
+  int exp_diff = ex - ey;
+
+  int right_shift = exp_diff < tail_zeros_my ? exp_diff : tail_zeros_my;
+  my >>= right_shift;
+  exp_diff -= right_shift;
+  ey += right_shift;
+
+  int left_shift = exp_diff < EXPONENT_WIDTH ? exp_diff : EXPONENT_WIDTH;
+  mx <<= left_shift;
+  exp_diff -= left_shift;
+
+  mx %= my;
+
+  if (__glibc_unlikely (mx == 0))
+    return sx ? -0.0 : 0.0;
+
+  if (exp_diff == 0)
+    return make_float (my, ey, sx);
+
+  /* Assume modulo/divide operation is slow, so use multiplication with invert
+     values.  */
+  uint32_t inv_hy = UINT32_MAX / my;
+  while (exp_diff > sides_zeroes) {
+    exp_diff -= sides_zeroes;
+    uint32_t hd = (mx * inv_hy) >> (BIT_WIDTH - sides_zeroes);
+    mx <<= sides_zeroes;
+    mx -= hd * my;
+    while (__glibc_unlikely (mx > my))
+      mx -= my;
+  }
+  uint32_t hd = (mx * inv_hy) >> (BIT_WIDTH - exp_diff);
+  mx <<= exp_diff;
+  mx -= hd * my;
+  while (__glibc_unlikely (mx > my))
+    mx -= my;
+
+  return make_float (mx, ey, sx);
 }
 libm_alias_finite (__ieee754_fmodf, __fmodf)
diff --git a/sysdeps/ieee754/flt-32/math_config.h b/sysdeps/ieee754/flt-32/math_config.h
index 23045f59d6..cdab3a36ef 100644
--- a/sysdeps/ieee754/flt-32/math_config.h
+++ b/sysdeps/ieee754/flt-32/math_config.h
@@ -110,6 +110,95 @@  issignalingf_inline (float x)
   return 2 * (ix ^ 0x00400000) > 2 * 0x7fc00000UL;
 }
 
+#define BIT_WIDTH       32
+#define MANTISSA_WIDTH  23
+#define EXPONENT_WIDTH  8
+#define MANTISSA_MASK   0x007fffff
+#define EXPONENT_MASK   0x7f800000
+#define EXP_MANT_MASK   0x7fffffff
+#define QUIET_NAN_MASK  0x00400000
+#define SIGN_MASK       0x80000000
+
+static inline bool
+is_nan (uint32_t x)
+{
+  return (x & EXP_MANT_MASK) > EXPONENT_MASK;
+}
+
+static inline bool
+is_quiet_nan (uint32_t x)
+{
+   return (x & EXP_MANT_MASK) == (EXPONENT_MASK | QUIET_NAN_MASK);
+}
+
+static inline bool
+is_inf_or_nan (uint32_t x)
+{
+  return (x & EXPONENT_MASK) == EXPONENT_MASK;
+}
+
+static inline uint16_t
+get_unbiased_exponent (uint32_t x)
+{
+  return (x & EXPONENT_MASK) >> MANTISSA_WIDTH;
+}
+
+/* Return mantissa with the implicit bit set iff X is a normal number.  */
+static inline uint32_t
+get_explicit_mantissa (uint32_t x)
+{
+  uint32_t p1 = (get_unbiased_exponent (x) > 0 && !is_inf_or_nan (x)
+    ? (MANTISSA_MASK + 1) : 0);
+  uint32_t p2 = (x & MANTISSA_MASK);
+  return p1 | p2;
+}
+
+static inline uint32_t
+set_mantissa (uint32_t x, uint32_t m)
+{
+  m &= MANTISSA_MASK;
+  x &= ~(MANTISSA_MASK);
+  return x |= m;
+}
+
+static inline uint32_t
+get_mantissa (uint32_t x)
+{
+  return x & MANTISSA_MASK;
+}
+
+static inline uint32_t
+set_unbiased_exponent (uint32_t x, uint32_t e)
+{
+  e = (e << MANTISSA_WIDTH) & EXPONENT_MASK;
+  x &= ~(EXPONENT_MASK);
+  return x |= e;
+}
+
+/* Convert integer number X, unbiased exponent EP, and sign S to double:
+
+   result = X * 2^(EP+1 - exponent_bias)
+
+   NB: zero is not supported.  */
+static inline double
+make_float (uint32_t x, int ep, uint32_t s)
+{
+  int lz = __builtin_clz (x) - EXPONENT_WIDTH;
+  x <<= lz;
+  ep -= lz;
+
+  uint32_t r = 0;
+  if (__glibc_likely (ep >= 0))
+    {
+      r = set_mantissa (r, x);
+      r = set_unbiased_exponent (r, ep + 1);
+    }
+  else
+    r = set_mantissa (r, x >> -ep);
+
+  return asfloat (r | s);
+}
+
 #define NOINLINE __attribute__ ((noinline))
 
 attribute_hidden float __math_oflowf (uint32_t);