diff mbox

[RFC,1/1] BPF JIT for PPC64

Message ID 4E04288F.4090201@ozlabs.org
State RFC, archived
Delegated to: David Miller
Headers show

Commit Message

Matt Evans June 24, 2011, 6:02 a.m. UTC
arch/powerpc/Kconfig                  |    1 +
 arch/powerpc/Makefile                 |    3 +-
 arch/powerpc/include/asm/ppc-opcode.h |   40 ++
 arch/powerpc/net/Makefile             |    4 +
 arch/powerpc/net/bpf_jit.S            |  138 +++++++
 arch/powerpc/net/bpf_jit.h            |  226 +++++++++++
 arch/powerpc/net/bpf_jit_comp.c       |  697 +++++++++++++++++++++++++++++++++
 7 files changed, 1108 insertions(+), 1 deletions(-)

--
To unsubscribe from this list: send the line "unsubscribe netdev" in
the body of a message to majordomo@vger.kernel.org
More majordomo info at  http://vger.kernel.org/majordomo-info.html

Comments

Ben Hutchings June 25, 2011, 1:58 a.m. UTC | #1
On Fri, 2011-06-24 at 16:02 +1000, Matt Evans wrote:
[...]
> +		case BPF_S_ALU_ADD_K: /* A += K; */
> +			if (!K)
> +				break;
> +			if (K < 32768)
> +				PPC_ADDI(r_A, r_A, K);
> +			else
> +				PPC_ADDI(r_A, r_A, IMM_L(K));
> +				PPC_ADDIS(r_A, r_A, IMM_HA(K));
> +			break;

Missing braces.

> +		case BPF_S_ALU_SUB_X: /* A -= X; */
> +			ctx->seen |= SEEN_XREG;
> +			PPC_SUB(r_A, r_A, r_X);
> +			break;
> +		case BPF_S_ALU_SUB_K: /* A -= K */
> +			if (!K)
> +				break;
> +			if (K < 32768)
> +				PPC_ADDI(r_A, r_A, -K);
> +			else
> +				PPC_ADDI(r_A, r_A, IMM_L(-K));
> +				PPC_ADDIS(r_A, r_A, IMM_HA(-K));
> +			break;
[...]

Here as well.

Ben.
Andreas Schwab June 25, 2011, 7:33 a.m. UTC | #2
Matt Evans <matt@ozlabs.org> writes:

> +	stdu	r1, -128(r1);					\

> +	addi	r5, r1, 128+BPF_PPC_STACK_BASIC+(2*8);		\

> +	addi	r1, r1, 128;					\

> +					PPC_STD(r_M + i, 1, -128 + (8*i));

> +					PPC_LD(r_M + i, 1, -128 + (8*i));

s/128/BPF_PPC_STACK_SAVE/?

Andreas.
Eric Dumazet June 25, 2011, 7:49 a.m. UTC | #3
Le samedi 25 juin 2011 à 09:33 +0200, Andreas Schwab a écrit :
> Matt Evans <matt@ozlabs.org> writes:
> 
> > +	stdu	r1, -128(r1);					\
> 
> > +	addi	r5, r1, 128+BPF_PPC_STACK_BASIC+(2*8);		\
> 
> > +	addi	r1, r1, 128;					\
> 
> > +					PPC_STD(r_M + i, 1, -128 + (8*i));
> 
> > +					PPC_LD(r_M + i, 1, -128 + (8*i));
> 
> s/128/BPF_PPC_STACK_SAVE/?
> 

I am not sure using registers to hold MEM[] is a win if MEM[idx] is used
once in the filter

# tcpdump "tcp[20]+tcp[21]=0" -d
(000) ldh      [12]
(001) jeq      #0x800           jt 2	jf 15
(002) ldb      [23]
(003) jeq      #0x6             jt 4	jf 15
(004) ldh      [20]
(005) jset     #0x1fff          jt 15	jf 6
(006) ldxb     4*([14]&0xf)
(007) ldb      [x + 34]
(008) st       M[1]
(009) ldb      [x + 35]
(010) tax      
(011) ld       M[1]
(012) add      x
(013) jeq      #0x0             jt 14	jf 15
(014) ret      #65535
(015) ret      #0

In this sample, we use M[1] once ( one store, one load)

So saving previous register content on stack in prologue, and restoring
it in epilogue actually slow down the code, and adds two instructions in filter asm code.

This also makes epilogue code not easy (not possible as a matter of fact)
to unwind in helper function

In x86_64 implementation, I chose bpf_error be able to force
an exception, not returning to JIT code but directly to bpf_func() caller

bpf_error:
# force a return 0 from jit handler
        xor             %eax,%eax
        mov             -8(%rbp),%rbx
        leaveq
        ret


--
To unsubscribe from this list: send the line "unsubscribe netdev" in
the body of a message to majordomo@vger.kernel.org
More majordomo info at  http://vger.kernel.org/majordomo-info.html
Matt Evans July 11, 2011, 6:21 a.m. UTC | #4
On 25/06/11 11:58, Ben Hutchings wrote:
> On Fri, 2011-06-24 at 16:02 +1000, Matt Evans wrote:
> [...]
>> +		case BPF_S_ALU_ADD_K: /* A += K; */
>> +			if (!K)
>> +				break;
>> +			if (K < 32768)
>> +				PPC_ADDI(r_A, r_A, K);
>> +			else
>> +				PPC_ADDI(r_A, r_A, IMM_L(K));
>> +				PPC_ADDIS(r_A, r_A, IMM_HA(K));
>> +			break;
> 
> Missing braces.
> 
>> +		case BPF_S_ALU_SUB_X: /* A -= X; */
>> +			ctx->seen |= SEEN_XREG;
>> +			PPC_SUB(r_A, r_A, r_X);
>> +			break;
>> +		case BPF_S_ALU_SUB_K: /* A -= K */
>> +			if (!K)
>> +				break;
>> +			if (K < 32768)
>> +				PPC_ADDI(r_A, r_A, -K);
>> +			else
>> +				PPC_ADDI(r_A, r_A, IMM_L(-K));
>> +				PPC_ADDIS(r_A, r_A, IMM_HA(-K));
>> +			break;
> [...]
> 
> Here as well.

Thanks, Ben -- oops! :)  Really, just the ADDISes need to be conditional, too.


Cheers,


Matt
--
To unsubscribe from this list: send the line "unsubscribe netdev" in
the body of a message to majordomo@vger.kernel.org
More majordomo info at  http://vger.kernel.org/majordomo-info.html
Matt Evans July 11, 2011, 6:27 a.m. UTC | #5
On 25/06/11 17:33, Andreas Schwab wrote:
> Matt Evans <matt@ozlabs.org> writes:
> 
>> +	stdu	r1, -128(r1);					\
> 
>> +	addi	r5, r1, 128+BPF_PPC_STACK_BASIC+(2*8);		\
> 
>> +	addi	r1, r1, 128;					\
> 
>> +					PPC_STD(r_M + i, 1, -128 + (8*i));
> 
>> +					PPC_LD(r_M + i, 1, -128 + (8*i));
> 
> s/128/BPF_PPC_STACK_SAVE/?

Actually, that's a different 128, but that nicely illustrates that I should've
#defined something more recognisable :-) The second set, with -128, is actually
in the save area for non-volatile regs, whereas the first is just a stackframe
size.

Cheers,


Matt
--
To unsubscribe from this list: send the line "unsubscribe netdev" in
the body of a message to majordomo@vger.kernel.org
More majordomo info at  http://vger.kernel.org/majordomo-info.html
Matt Evans July 11, 2011, 7:04 a.m. UTC | #6
Hi Eric,

On 25/06/11 17:49, Eric Dumazet wrote:
> Le samedi 25 juin 2011 à 09:33 +0200, Andreas Schwab a écrit :
>> Matt Evans <matt@ozlabs.org> writes:
>>
>>> +	stdu	r1, -128(r1);					\
>>
>>> +	addi	r5, r1, 128+BPF_PPC_STACK_BASIC+(2*8);		\
>>
>>> +	addi	r1, r1, 128;					\
>>
>>> +					PPC_STD(r_M + i, 1, -128 + (8*i));
>>
>>> +					PPC_LD(r_M + i, 1, -128 + (8*i));
>>
>> s/128/BPF_PPC_STACK_SAVE/?
>>
> 
> I am not sure using registers to hold MEM[] is a win if MEM[idx] is used
> once in the filter
> 
> # tcpdump "tcp[20]+tcp[21]=0" -d
> (000) ldh      [12]
> (001) jeq      #0x800           jt 2	jf 15
> (002) ldb      [23]
> (003) jeq      #0x6             jt 4	jf 15
> (004) ldh      [20]
> (005) jset     #0x1fff          jt 15	jf 6
> (006) ldxb     4*([14]&0xf)
> (007) ldb      [x + 34]
> (008) st       M[1]
> (009) ldb      [x + 35]
> (010) tax      
> (011) ld       M[1]
> (012) add      x
> (013) jeq      #0x0             jt 14	jf 15
> (014) ret      #65535
> (015) ret      #0
> 
> In this sample, we use M[1] once ( one store, one load)
> 
> So saving previous register content on stack in prologue, and restoring
> it in epilogue actually slow down the code, and adds two instructions in
> filter asm code.

The x86 version generates all accesses of M[x] as a load or store to the
stackframe, so your example would result in one store + one load to/from the
stack.  More than one access would result in N stores/loads.  By having M[] live
in r16-31 on PPC, there is a one-off cost of saving/restoring the (non-volatile)
register to the stack plus a per-use cost of a register-register move (MR, which
is pretty cheap compared to loads/stores!).

You are correct in that, for a single store/load of M[1] above, I'll generate
a STD, MR, MR, LD, but this extra cost of the two MRs is pretty small.  With the
current implementation the gains seen when accessing M[x] /more/ than once will
IMHO more than justify this.  (For several M[x] accesses, x86 would have several
mem ops, PPC would have several reg-reg moves and one load+store.)

An obvious alternative would be to use some of the three free volatile registers
first (in the hope that "most" filters won't use >3 M[] locations), with a
simple register allocator.  This would save the (non-volatile reg) spill/fill to
stack, too.  In the interest of simplicity I didn't want to do that on a first
pass.

> This also makes epilogue code not easy (not possible as a matter of fact)
> to unwind in helper function
> 
> In x86_64 implementation, I chose bpf_error be able to force
> an exception, not returning to JIT code but directly to bpf_func() caller
> 
> bpf_error:
> # force a return 0 from jit handler
>         xor             %eax,%eax
>         mov             -8(%rbp),%rbx
>         leaveq
>         ret

Yep, if I use non-volatile regs a return isn't just a simple stack "pop".
Currently, I've an extra branch in the return path to hit the common epilogue.
This could be optimised such that the out of line error path jumps directly to
the common epilogue to return (rather than back to the callsite, checking a flag
and /then/ to the epilogue) to speed up the non-error case.  However, it's just
a question of getting to the (existing) epilogue code to clean up; it doesn't
need to be unwound in the helper function.  I don't think this issue is a
strong argument against having M[] exist in registers, though.

From the current position, I think going in the direction of using volatile regs
(without backup/restore cost) is better than going in the direction of making
all M[] references stack accesses.  Do you think it's bearable to continue as it
is and then perform that optimisation later?

Also, thanks for reading/commenting on the patch!



Cheers,


Matt
--
To unsubscribe from this list: send the line "unsubscribe netdev" in
the body of a message to majordomo@vger.kernel.org
More majordomo info at  http://vger.kernel.org/majordomo-info.html
diff mbox

Patch

diff --git a/arch/powerpc/Kconfig b/arch/powerpc/Kconfig
index 2729c66..39860fc 100644
--- a/arch/powerpc/Kconfig
+++ b/arch/powerpc/Kconfig
@@ -134,6 +134,7 @@  config PPC
 	select GENERIC_IRQ_SHOW_LEVEL
 	select HAVE_RCU_TABLE_FREE if SMP
 	select HAVE_SYSCALL_TRACEPOINTS
+	select HAVE_BPF_JIT if PPC64
 
 config EARLY_PRINTK
 	bool
diff --git a/arch/powerpc/Makefile b/arch/powerpc/Makefile
index b7212b6..b94740f 100644
--- a/arch/powerpc/Makefile
+++ b/arch/powerpc/Makefile
@@ -154,7 +154,8 @@  core-y				+= arch/powerpc/kernel/ \
 				   arch/powerpc/lib/ \
 				   arch/powerpc/sysdev/ \
 				   arch/powerpc/platforms/ \
-				   arch/powerpc/math-emu/
+				   arch/powerpc/math-emu/ \
+				   arch/powerpc/net/
 core-$(CONFIG_XMON)		+= arch/powerpc/xmon/
 core-$(CONFIG_KVM) 		+= arch/powerpc/kvm/
 
diff --git a/arch/powerpc/include/asm/ppc-opcode.h b/arch/powerpc/include/asm/ppc-opcode.h
index e472659..e980faa 100644
--- a/arch/powerpc/include/asm/ppc-opcode.h
+++ b/arch/powerpc/include/asm/ppc-opcode.h
@@ -71,6 +71,42 @@ 
 #define PPC_INST_ERATSX			0x7c000126
 #define PPC_INST_ERATSX_DOT		0x7c000127
 
+/* Misc instructions for BPF compiler */
+#define PPC_INST_LD			0xe8000000
+#define PPC_INST_LHZ			0xa0000000
+#define PPC_INST_LWZ			0x80000000
+#define PPC_INST_STD			0xf8000000
+#define PPC_INST_STDU			0xf8000001
+#define PPC_INST_MFLR			0x7c0802a6
+#define PPC_INST_MTLR			0x7c0803a6
+#define PPC_INST_CMPWI			0x2c000000
+#define PPC_INST_CMPDI			0x2c200000
+#define PPC_INST_CMPLW			0x7c000040
+#define PPC_INST_CMPLWI			0x28000000
+#define PPC_INST_ADDI			0x38000000
+#define PPC_INST_ADDIS			0x3c000000
+#define PPC_INST_ADD			0x7c000214
+#define PPC_INST_SUB			0x7c000050
+#define PPC_INST_BLR			0x4e800020
+#define PPC_INST_BLRL			0x4e800021
+#define PPC_INST_MULLW			0x7c0001d6
+#define PPC_INST_MULHWU			0x7c000016
+#define PPC_INST_MULLI			0x1c000000
+#define PPC_INST_DIVWU			0x7c0003d6
+#define PPC_INST_RLWINM			0x54000000
+#define PPC_INST_RLDICR			0x78000004
+#define PPC_INST_SLW			0x7c000030
+#define PPC_INST_SRW			0x7c000430
+#define PPC_INST_AND			0x7c000038
+#define PPC_INST_ANDDOT			0x7c000039
+#define PPC_INST_OR			0x7c000378
+#define PPC_INST_ANDI			0x70000000
+#define PPC_INST_ORI			0x60000000
+#define PPC_INST_ORIS			0x64000000
+#define PPC_INST_NEG			0x7c0000d0
+#define PPC_INST_BRANCH			0x48000000
+#define PPC_INST_BRANCH_COND		0x40800000
+
 /* macros to insert fields into opcodes */
 #define __PPC_RA(a)	(((a) & 0x1f) << 16)
 #define __PPC_RB(b)	(((b) & 0x1f) << 11)
@@ -83,6 +119,10 @@ 
 #define __PPC_T_TLB(t)	(((t) & 0x3) << 21)
 #define __PPC_WC(w)	(((w) & 0x3) << 21)
 #define __PPC_WS(w)	(((w) & 0x1f) << 11)
+#define __PPC_SH(s)	__PPC_WS(s)
+#define __PPC_MB(s)	(((s) & 0x1f) << 6)
+#define __PPC_ME(s)	(((s) & 0x1f) << 1)
+#define __PPC_BI(s)	(((s) & 0x1f) << 16)
 
 /*
  * Only use the larx hint bit on 64bit CPUs. e500v1/v2 based CPUs will treat a
diff --git a/arch/powerpc/net/Makefile b/arch/powerpc/net/Makefile
new file mode 100644
index 0000000..90568c3
--- /dev/null
+++ b/arch/powerpc/net/Makefile
@@ -0,0 +1,4 @@ 
+#
+# Arch-specific network modules
+#
+obj-$(CONFIG_BPF_JIT) += bpf_jit.o bpf_jit_comp.o
diff --git a/arch/powerpc/net/bpf_jit.S b/arch/powerpc/net/bpf_jit.S
new file mode 100644
index 0000000..ce2225e
--- /dev/null
+++ b/arch/powerpc/net/bpf_jit.S
@@ -0,0 +1,138 @@ 
+/* bpf_jit.S: Packet/header access helper functions
+ * for PPC64 BPF compiler.
+ *
+ * Copyright 2011 Matt Evans <matt@ozlabs.org>, IBM Corporation
+ *
+ * This program is free software; you can redistribute it and/or
+ * modify it under the terms of the GNU General Public License
+ * as published by the Free Software Foundation; version 2
+ * of the License.
+ */
+
+#include <asm/ppc_asm.h>
+#include "bpf_jit.h"
+
+/*
+ * All of these routines are called directly from generated code,
+ * whose register usage is:
+ *
+ * r3		skb
+ * r4,r5	A,X
+ * r6		*** address parameter to helper ***
+ * r7-r10	scratch
+ * r14		skb->data
+ * r15		skb headlen
+ * r16-31	M[]
+ */
+
+/*
+ * To consider:	 These helpers are so small it may be better to just
+ * generate them inline.  They're out here for debug at the moment,
+ * but inline code can do the simple headlen check then branch
+ * directly to slow_path_XXX if required.  (In fact, could load a spare
+ * GPR with slow_path_generic and pass size as an argument.)
+ *
+ * Technically, the "is addr < 0" check is unnecessary & slowing down
+ * the ABS path, as it's statically checked on generation.
+ */
+	.globl	sk_load_word
+sk_load_word:
+	cmpdi	r_addr, 0
+	blt	bpf_error
+	/* Are we accessing past headlen? */
+	subi	r_scratch1, r_HL, 4
+	cmpd	r_scratch1, r_addr
+	blt	bpf_slow_path_word
+	/* Nope, just hitting the header.  cr0 here is eq or gt! */
+	lwzx	r_A, r_D, r_addr
+	/* When big endian we don't need to byteswap. */
+	blr	/* Return success, cr0 != LT */
+
+	.globl	sk_load_half
+sk_load_half:
+	cmpdi	r_addr, 0
+	blt	bpf_error
+	subi	r_scratch1, r_HL, 2
+	cmpd	r_scratch1, r_addr
+	blt	bpf_slow_path_half
+	lhzx	r_A, r_D, r_addr
+	blr
+
+	.globl	sk_load_byte
+sk_load_byte:
+	cmpdi	r_addr, 0
+	blt	bpf_error
+	cmpd	r_HL, r_addr
+	ble	bpf_slow_path_byte
+	lbzx	r_A, r_D, r_addr
+	blr
+
+/*
+ * BPF_S_LDX_B_MSH: ldxb  4*([offset]&0xf)
+ * r_addr is the offset value, already known positive
+ */
+	.globl sk_load_byte_msh
+sk_load_byte_msh:
+	cmpd	r_HL, r_addr
+	ble	bpf_slow_path_byte_msh
+	lbzx	r_X, r_D, r_addr
+	rlwinm	r_X, r_X, 2, 32-4-2, 31-2
+	blr
+
+bpf_error:
+	/* Entered with cr0 = lt */
+	li	r3, 0
+	/* Generated code will 'blt epilogue', returning 0. */
+	blr
+
+/* Call out to skb_copy_bits:
+ * We'll need to back up our volatile regs first; we have
+ * local variable space at r1+(BPF_PPC_STACK_BASIC).
+ * Allocate a new stack frame here to remain ABI-compliant in
+ * stashing LR.
+ */
+#define bpf_slow_path_common(SIZE)				\
+	mflr	r0;						\
+	std	r0, 16(r1);					\
+	/* R3 goes in parameter space of caller's frame */	\
+	std	r_skb, (BPF_PPC_STACKFRAME+48)(r1);		\
+	std	r_A, (BPF_PPC_STACK_BASIC+(0*8))(r1);		\
+	std	r_X, (BPF_PPC_STACK_BASIC+(1*8))(r1);		\
+	stdu	r1, -128(r1);					\
+	/* R3 = r_skb, as passed */				\
+	mr	r4, r_addr;					\
+	addi	r5, r1, 128+BPF_PPC_STACK_BASIC+(2*8);		\
+	li	r6, SIZE;					\
+	bl	skb_copy_bits;					\
+	/* R3 = 0 on success */					\
+	addi	r1, r1, 128;					\
+	ld	r0, 16(r1);					\
+	ld	r_A, (BPF_PPC_STACK_BASIC+(0*8))(r1);		\
+	ld	r_X, (BPF_PPC_STACK_BASIC+(1*8))(r1);		\
+	mtlr	r0;						\
+	cmpdi	r3, 0;						\
+	blt	bpf_error;	/* cr0 = LT */			\
+	ld	r_skb, (BPF_PPC_STACKFRAME+48)(r1);		\
+	/* Great success! */
+
+bpf_slow_path_word:
+	bpf_slow_path_common(4)
+	/* Data value is on stack, and cr0 != LT */
+	lwz	r_A, BPF_PPC_STACK_BASIC+(2*8)(r1)
+	blr
+
+bpf_slow_path_half:
+	bpf_slow_path_common(2)
+	lhz	r_A, BPF_PPC_STACK_BASIC+(2*8)(r1)
+	blr
+
+bpf_slow_path_byte:
+	bpf_slow_path_common(1)
+	lbz	r_A, BPF_PPC_STACK_BASIC+(2*8)(r1)
+	blr
+
+bpf_slow_path_byte_msh:
+	bpf_slow_path_common(1)
+	lbz	r_X, BPF_PPC_STACK_BASIC+(2*8)(r1)
+	rlwinm	r_X, r_X, 2, 32-4-2, 31-2
+	blr
diff --git a/arch/powerpc/net/bpf_jit.h b/arch/powerpc/net/bpf_jit.h
new file mode 100644
index 0000000..1fe54b9
--- /dev/null
+++ b/arch/powerpc/net/bpf_jit.h
@@ -0,0 +1,226 @@ 
+/* bpf_jit.h: BPF JIT compiler for PPC64
+ *
+ * Copyright 2011 Matt Evans <matt@ozlabs.org>, IBM Corporation
+ *
+ * This program is free software; you can redistribute it and/or
+ * modify it under the terms of the GNU General Public License
+ * as published by the Free Software Foundation; version 2
+ * of the License.
+ */
+#ifndef _BPF_JIT_H
+#define _BPF_JIT_H
+
+#define BPF_PPC_STACK_LOCALS	32
+#define BPF_PPC_STACK_BASIC	112
+#define BPF_PPC_STACK_SAVE	128
+#define BPF_PPC_STACKFRAME	(BPF_PPC_STACK_BASIC+BPF_PPC_STACK_LOCALS+ \
+				 BPF_PPC_STACK_SAVE)
+
+/*
+ * Generated code register usage:
+ *
+ * As normal PPC C ABI (e.g. r1=sp, r2=TOC), with:
+ *
+ * skb		r3	(Entry parameter)
+ * A register	r4
+ * X register	r5
+ * addr param	r6
+ * r7-r10	scratch
+ * skb->data	r14
+ * skb headlen	r15	(skb->len - skb->data_len)
+ * m[0]		r16
+ * m[...]	...
+ * m[15]	r31
+ */
+#define r_skb		3
+#define r_ret		3
+#define r_A		4
+#define r_X		5
+#define r_addr		6
+#define r_scratch1	7
+#define r_D		14
+#define r_HL		15
+#define r_M		16
+
+#ifndef __ASSEMBLY__
+
+/*
+ * Assembly helpers from arch/powerpc/net/bpf_jit.S:
+ */
+extern u8 sk_load_word[], sk_load_half[], sk_load_byte[], sk_load_byte_msh[];
+
+#define FUNCTION_DESCR_SIZE	24
+
+/*
+ * 16-bit immediate helper macros: HA() is for use with sign-extending instrs
+ * (e.g. LD, ADDI).  If the bottom 16 bits is "-ve", add another bit into the
+ * top half to negate the effect (i.e. 0xffff + 1 = 0x(1)0000).
+ */
+#define IMM_H(i)		((uintptr_t)(i)>>16)
+#define IMM_HA(i)		(((uintptr_t)(i)>>16) +			      \
+				 (((uintptr_t)(i) & 0x8000) >> 15))
+#define IMM_L(i)		((uintptr_t)(i) & 0xffff)
+
+#define PLANT_INSTR(d, idx, instr)					      \
+	do { if (d) { (d)[idx] = instr; } idx++; } while (0)
+#define EMIT(instr)		PLANT_INSTR(image, ctx->idx, instr)
+
+#define PPC_NOP()		EMIT(PPC_INST_NOP)
+#define PPC_BLR()		EMIT(PPC_INST_BLR)
+#define PPC_BLRL()		EMIT(PPC_INST_BLRL)
+#define PPC_MTLR(r)		EMIT(PPC_INST_MTLR | __PPC_RT(r))
+#define PPC_ADDI(d, a, i)	EMIT(PPC_INST_ADDI | __PPC_RT(d) |	      \
+				     __PPC_RA(a) | IMM_L(i))
+#define PPC_MR(d, a)		PPC_OR(d, a, a)
+#define PPC_LI(r, i)		PPC_ADDI(r, 0, i)
+#define PPC_ADDIS(d, a, i)	EMIT(PPC_INST_ADDIS |			      \
+				     __PPC_RS(d) | __PPC_RA(a) | IMM_L(i))
+#define PPC_LIS(r, i)		PPC_ADDIS(r, 0, i)
+#define PPC_STD(r, base, i)	EMIT(PPC_INST_STD | __PPC_RS(r) |	      \
+				     __PPC_RA(base) | ((i) & 0xfffc))
+
+#define PPC_LD(r, base, i)	EMIT(PPC_INST_LD | __PPC_RT(r) |	      \
+				     __PPC_RA(base) | IMM_L(i))
+#define PPC_LWZ(r, base, i)	EMIT(PPC_INST_LWZ | __PPC_RT(r) |	      \
+				     __PPC_RA(base) | IMM_L(i))
+#define PPC_LHZ(r, base, i)	EMIT(PPC_INST_LHZ | __PPC_RT(r) |	      \
+				     __PPC_RA(base) | IMM_L(i))
+/* Convenience helpers for the above with 'far' offsets: */
+#define PPC_LD_OFFS(r, base, i) do { if ((i) < 32768) PPC_LD(r, base, i);     \
+		else {	PPC_ADDIS(r, base, IMM_HA(i));			      \
+			PPC_LD(r, r, IMM_L(i)); } } while(0)
+
+#define PPC_LWZ_OFFS(r, base, i) do { if ((i) < 32768) PPC_LWZ(r, base, i);   \
+		else {	PPC_ADDIS(r, base, IMM_HA(i));			      \
+			PPC_LWZ(r, r, IMM_L(i)); } } while(0)
+
+#define PPC_LHZ_OFFS(r, base, i) do { if ((i) < 32768) PPC_LHZ(r, base, i);   \
+		else {	PPC_ADDIS(r, base, IMM_HA(i));			      \
+			PPC_LHZ(r, r, IMM_L(i)); } } while(0)
+
+#define PPC_CMPWI(a, i)		EMIT(PPC_INST_CMPWI | __PPC_RA(a) | IMM_L(i))
+#define PPC_CMPDI(a, i)		EMIT(PPC_INST_CMPDI | __PPC_RA(a) | IMM_L(i))
+#define PPC_CMPLWI(a, i)	EMIT(PPC_INST_CMPLWI | __PPC_RA(a) | IMM_L(i))
+#define PPC_CMPLW(a, b)		EMIT(PPC_INST_CMPLW | __PPC_RA(a) | __PPC_RB(b))
+
+#define PPC_SUB(d, a, b)	EMIT(PPC_INST_SUB | __PPC_RT(d) |	      \
+				     __PPC_RB(a) | __PPC_RA(b))
+#define PPC_ADD(d, a, b)	EMIT(PPC_INST_ADD | __PPC_RT(d) |	      \
+				     __PPC_RA(a) | __PPC_RB(b))
+#define PPC_MUL(d, a, b)	EMIT(PPC_INST_MULLW | __PPC_RT(d) |	      \
+				     __PPC_RA(a) | __PPC_RB(b))
+#define PPC_MULHWU(d, a, b)	EMIT(PPC_INST_MULHWU | __PPC_RT(d) |	      \
+				     __PPC_RA(a) | __PPC_RB(b))
+#define PPC_MULI(d, a, i)	EMIT(PPC_INST_MULLI | __PPC_RT(d) |	      \
+				     __PPC_RA(a) | IMM_L(i))
+#define PPC_DIVWU(d, a, b)	EMIT(PPC_INST_DIVWU | __PPC_RT(d) |	      \
+				     __PPC_RA(a) | __PPC_RB(b))
+#define PPC_AND(d, a, b)	EMIT(PPC_INST_AND | __PPC_RA(d) |	      \
+				     __PPC_RS(a) | __PPC_RB(b))
+#define PPC_ANDI(d, a, i)	EMIT(PPC_INST_ANDI | __PPC_RA(d) |	      \
+				     __PPC_RS(a) | IMM_L(i))
+#define PPC_AND_DOT(d, a, b)	EMIT(PPC_INST_ANDDOT | __PPC_RA(d) |	      \
+				     __PPC_RS(a) | __PPC_RB(b))
+#define PPC_OR(d, a, b)		EMIT(PPC_INST_OR | __PPC_RA(d) |	      \
+				     __PPC_RS(a) | __PPC_RB(b))
+#define PPC_ORI(d, a, i)	EMIT(PPC_INST_ORI | __PPC_RA(d) |	      \
+				     __PPC_RS(a) | IMM_L(i))
+#define PPC_ORIS(d, a, i)	EMIT(PPC_INST_ORIS | __PPC_RA(d) |	      \
+				     __PPC_RS(a) | IMM_L(i))
+#define PPC_SLW(d, a, s)	EMIT(PPC_INST_SLW | __PPC_RA(d) |	      \
+				     __PPC_RS(a) | __PPC_RB(s))
+#define PPC_SRW(d, a, s)	EMIT(PPC_INST_SRW | __PPC_RA(d) |	      \
+				     __PPC_RS(a) | __PPC_RB(s))
+/* slwi = rlwinm Rx, Ry, n, 0, 31-n */
+#define PPC_SLWI(d, a, i)	EMIT(PPC_INST_RLWINM | __PPC_RA(d) |	      \
+				     __PPC_RS(a) | __PPC_SH(i) |	      \
+				     __PPC_MB(0) | __PPC_ME(31-(i)))
+/* srwi = rlwinm Rx, Ry, 32-n, n, 31 */
+#define PPC_SRWI(d, a, i)	EMIT(PPC_INST_RLWINM | __PPC_RA(d) |	      \
+				     __PPC_RS(a) | __PPC_SH(32-(i)) |	      \
+				     __PPC_MB(i) | __PPC_ME(31))
+/* sldi = rldicr Rx, Ry, n, 63-n */
+#define PPC_SLDI(d, a, i)	EMIT(PPC_INST_RLDICR | __PPC_RA(d) |	      \
+				     __PPC_RS(a) | __PPC_SH(i) |	      \
+				     __PPC_MB(63-(i)) | (((i) & 0x20) >> 4))
+#define PPC_NEG(d, a)		EMIT(PPC_INST_NEG | __PPC_RT(d) | __PPC_RA(a))
+
+/* Long jump; (unconditional 'branch') */
+#define PPC_JMP(dest)		EMIT(PPC_INST_BRANCH |			      \
+				     (((dest) - (ctx->idx * 4)) & 0x03fffffc))
+/* "cond" here covers BO:BI fields. */
+#define PPC_BCC_SHORT(cond, dest)	EMIT(PPC_INST_BRANCH_COND |	      \
+					     (((cond) & 0x3ff) << 16) |	      \
+					     (((dest) - (ctx->idx * 4)) &     \
+					      0xfffc))
+#define PPC_LI32(d, i)		do { PPC_LI(d, IMM_L(i));		      \
+		if ((u32)(uintptr_t)(i) >= 32768) {			      \
+			PPC_ADDIS(d, d, IMM_HA(i));			      \
+		} } while(0)
+#define PPC_LI64(d, i)		do {					      \
+		if (!((uintptr_t)(i) & 0xffffffff00000000ULL))		      \
+			PPC_LI32(d, i);					      \
+		else {							      \
+			PPC_LIS(d, ((uintptr_t)(i) >> 48));		      \
+			if ((uintptr_t)(i) & 0x0000ffff00000000ULL)	      \
+				PPC_ORI(d, d,				      \
+					((uintptr_t)(i) >> 32) & 0xffff);     \
+			PPC_SLDI(d, d, 32);				      \
+			if ((uintptr_t)(i) & 0x00000000ffff0000ULL)	      \
+				PPC_ORIS(d, d,				      \
+					 ((uintptr_t)(i) >> 16) & 0xffff);    \
+			if ((uintptr_t)(i) & 0x000000000000ffffULL)	      \
+				PPC_ORI(d, d, (uintptr_t)(i) & 0xffff);	      \
+		} } while (0);
+
+static inline bool is_nearbranch(int offset)
+{
+	return (offset < 32768) && (offset >= -32768);
+}
+
+/*
+ * The fly in the ointment of code size changing from pass to pass is
+ * avoided by padding the short branch case with a NOP.	 If code size differs
+ * with different branch reaches we will have the issue of code moving from
+ * one pass to the next and will need a few passes to converge on a stable
+ * state.
+ */
+#define PPC_BCC(cond, dest)	do {					      \
+		if (is_nearbranch((dest) - (ctx->idx * 4))) {		      \
+			PPC_BCC_SHORT(cond, dest);			      \
+			PPC_NOP();					      \
+		} else {						      \
+			/* Flip the 'T or F' bit to invert comparison */      \
+			PPC_BCC_SHORT(cond ^ COND_CMP_TRUE, (ctx->idx+2)*4);  \
+			PPC_JMP(dest);					      \
+		} } while(0)
+
+/* To create a branch condition, select a bit of cr0... */
+#define CR0_LT		0
+#define CR0_GT		1
+#define CR0_EQ		2
+/* ...and modify BO[3] */
+#define COND_CMP_TRUE	0x100
+#define COND_CMP_FALSE	0x000
+/* Together, they make all required comparisons: */
+#define COND_GT		(CR0_GT | COND_CMP_TRUE)
+#define COND_GE		(CR0_LT | COND_CMP_FALSE)
+#define COND_EQ		(CR0_EQ | COND_CMP_TRUE)
+#define COND_NE		(CR0_EQ | COND_CMP_FALSE)
+#define COND_LT		(CR0_LT | COND_CMP_TRUE)
+
+#define SEEN_DATAREF 0x10000 /* might call external helpers */
+#define SEEN_XREG    0x20000 /* X reg is used */
+#define SEEN_MEM     0x40000 /* SEEN_MEM+(1<<n) = use mem[n] for temporary
+			      * storage */
+#define SEEN_MEM_MSK 0x0ffff
+
+struct codegen_context {
+	unsigned int seen;
+	unsigned int idx;
+	int pc_ret0; /* bpf index of first RET #0 instruction (if any) */
+};
+
+#endif
+
+#endif
diff --git a/arch/powerpc/net/bpf_jit_comp.c b/arch/powerpc/net/bpf_jit_comp.c
new file mode 100644
index 0000000..8a76350
--- /dev/null
+++ b/arch/powerpc/net/bpf_jit_comp.c
@@ -0,0 +1,697 @@ 
+/* bpf_jit_comp.c: BPF JIT compiler for PPC64
+ *
+ * Copyright 2011 Matt Evans <matt@ozlabs.org>, IBM Corporation
+ *
+ * Based on the x86 BPF compiler, by Eric Dumazet (eric.dumazet@gmail.com)
+ *
+ * This program is free software; you can redistribute it and/or
+ * modify it under the terms of the GNU General Public License
+ * as published by the Free Software Foundation; version 2
+ * of the License.
+ */
+#include <linux/moduleloader.h>
+#include <asm/cacheflush.h>
+#include <linux/netdevice.h>
+#include <linux/filter.h>
+#include "bpf_jit.h"
+
+#ifndef __BIG_ENDIAN
+/* There are endianness assumptions herein. */
+#error "Little-endian PPC not supported in BPF compiler"
+#endif
+
+int bpf_jit_enable __read_mostly;
+
+
+static inline void bpf_flush_icache(void *start, void *end)
+{
+	smp_wmb();
+	flush_icache_range((unsigned long)start, (unsigned long)end);
+}
+
+static void bpf_jit_build_prologue(struct sk_filter *fp, u32 *image,
+				   struct codegen_context *ctx)
+{
+	int i;
+	const struct sock_filter *filter = fp->insns;
+
+	if (ctx->seen & (SEEN_MEM | SEEN_DATAREF)) {
+		/* Make stackframe */
+		if (ctx->seen & SEEN_DATAREF) {
+			/* If we call any helpers (for loads), save LR */
+			EMIT(PPC_INST_MFLR | __PPC_RT(0));
+			PPC_STD(0, 1, 16);
+
+			/* Back up non-volatile regs. */
+			PPC_STD(r_D, 1, -(8*(32-r_D)));
+			PPC_STD(r_HL, 1, -(8*(32-r_HL)));
+		}
+		if (ctx->seen & SEEN_MEM) {
+			/*
+			 * Conditionally save regs r15-r31 as some will be used
+			 * for M[] data.
+			 */
+			for (i = 0; i < 16; i++) {
+				if (ctx->seen & (1 << i))
+					PPC_STD(r_M + i, 1, -128 + (8*i));
+			}
+		}
+		EMIT(PPC_INST_STDU | __PPC_RS(1) | __PPC_RA(1) |
+		     (-BPF_PPC_STACKFRAME & 0xfffc));
+	}
+
+	if (ctx->seen & SEEN_DATAREF) {
+		/*
+		 * If this filter needs to access skb data,
+		 * prepare r_D and r_HL:
+		 *  r_HL = skb->len - skb->data_len
+		 *  r_D	 = skb->data
+		 */
+		PPC_LWZ_OFFS(r_scratch1, r_skb, offsetof(struct sk_buff,
+							 data_len));
+		PPC_LWZ_OFFS(r_HL, r_skb, offsetof(struct sk_buff, len));
+		PPC_SUB(r_HL, r_HL, r_scratch1);
+		PPC_LD_OFFS(r_D, r_skb, offsetof(struct sk_buff, data));
+	}
+
+	if (ctx->seen & SEEN_XREG) {
+		/*
+		 * TODO: Could also detect whether first instr. sets X and
+		 * avoid this (as below, with A).
+		 */
+		PPC_LI(r_X, 0);
+	}
+
+	switch (filter[0].code) {
+	case BPF_S_RET_K:
+	case BPF_S_LD_W_LEN:
+	case BPF_S_ANC_PROTOCOL:
+	case BPF_S_ANC_IFINDEX:
+	case BPF_S_ANC_MARK:
+	case BPF_S_ANC_RXHASH:
+	case BPF_S_ANC_CPU:
+	case BPF_S_ANC_QUEUE:
+	case BPF_S_LD_W_ABS:
+	case BPF_S_LD_H_ABS:
+	case BPF_S_LD_B_ABS:
+		/* first instruction sets A register (or is RET 'constant') */
+		break;
+	default:
+		/* make sure we dont leak kernel information to user */
+		PPC_LI(r_A, 0);
+	}
+}
+
+static void bpf_jit_build_epilogue(u32 *image, struct codegen_context *ctx)
+{
+	int i;
+
+	if (ctx->seen & (SEEN_MEM | SEEN_DATAREF)) {
+		PPC_ADDI(1, 1, BPF_PPC_STACKFRAME);
+		if (ctx->seen & SEEN_DATAREF) {
+			PPC_LD(0, 1, 16);
+			PPC_MTLR(0);
+			PPC_LD(r_D, 1, -(8*(32-r_D)));
+			PPC_LD(r_HL, 1, -(8*(32-r_HL)));
+		}
+		if (ctx->seen & SEEN_MEM) {
+			/* Restore any saved non-vol registers */
+			for (i = 0; i < 16; i++) {
+				if (ctx->seen & (1 << i))
+					PPC_LD(r_M + i, 1, -128 + (8*i));
+			}
+		}
+	}
+	/* The RETs have left a return value in R3. */
+
+	PPC_BLR();
+}
+
+/* Assemble the body code between the prologue & epilogue. */
+static int bpf_jit_build_body(struct sk_filter *fp, u32 *image,
+			      struct codegen_context *ctx,
+			      unsigned int *addrs)
+{
+	const struct sock_filter *filter = fp->insns;
+	int flen = fp->len;
+	u8 *func;
+	unsigned int true_cond;
+	int i;
+
+	/* Start of epilogue code */
+	unsigned int exit_addr = addrs[flen];
+
+	for (i = 0; i < flen; i++) {
+		unsigned int K = filter[i].k;
+
+		/*
+		 * addrs[] maps a BPF bytecode address into a real offset from
+		 * the start of the body code.
+		 */
+		addrs[i] = ctx->idx * 4;
+
+		switch (filter[i].code) {
+			/*** ALU ops ***/
+		case BPF_S_ALU_ADD_X: /* A += X; */
+			ctx->seen |= SEEN_XREG;
+			PPC_ADD(r_A, r_A, r_X);
+			break;
+		case BPF_S_ALU_ADD_K: /* A += K; */
+			if (!K)
+				break;
+			if (K < 32768)
+				PPC_ADDI(r_A, r_A, K);
+			else
+				PPC_ADDI(r_A, r_A, IMM_L(K));
+				PPC_ADDIS(r_A, r_A, IMM_HA(K));
+			break;
+		case BPF_S_ALU_SUB_X: /* A -= X; */
+			ctx->seen |= SEEN_XREG;
+			PPC_SUB(r_A, r_A, r_X);
+			break;
+		case BPF_S_ALU_SUB_K: /* A -= K */
+			if (!K)
+				break;
+			if (K < 32768)
+				PPC_ADDI(r_A, r_A, -K);
+			else
+				PPC_ADDI(r_A, r_A, IMM_L(-K));
+				PPC_ADDIS(r_A, r_A, IMM_HA(-K));
+			break;
+		case BPF_S_ALU_MUL_X: /* A *= X; */
+			ctx->seen |= SEEN_XREG;
+			PPC_MUL(r_A, r_A, r_X);
+			break;
+		case BPF_S_ALU_MUL_K: /* A *= K */
+			if (K < 32768)
+				PPC_MULI(r_A, r_A, K);
+			else {
+				PPC_LI32(r_scratch1, K);
+				PPC_MUL(r_A, r_A, r_scratch1);
+			}
+			break;
+		case BPF_S_ALU_DIV_X: /* A /= X; */
+			ctx->seen |= SEEN_XREG;
+			PPC_CMPWI(r_X, 0);
+			if (ctx->pc_ret0 != -1) {
+				PPC_BCC(COND_EQ, addrs[ctx->pc_ret0]);
+			} else {
+				/*
+				 * Exit, returning 0; first pass hits here
+				 * (longer worst-case code size).
+				 */
+				PPC_BCC_SHORT(COND_NE, (ctx->idx*4)+12);
+				PPC_LI(r_ret, 0);
+				PPC_JMP(exit_addr);
+			}
+			PPC_DIVWU(r_A, r_A, r_X);
+			break;
+		case BPF_S_ALU_DIV_K: /* A = reciprocal_divide(A, K); */
+			PPC_LI32(r_scratch1, K);
+			/* Top 32 bits of 64bit result -> A */
+			PPC_MULHWU(r_A, r_A, r_scratch1);
+			break;
+		case BPF_S_ALU_AND_X:
+			ctx->seen |= SEEN_XREG;
+			PPC_AND(r_A, r_A, r_X);
+			break;
+		case BPF_S_ALU_AND_K:
+			if (!IMM_H(K))
+				PPC_ANDI(r_A, r_A, K);
+			else {
+				PPC_LI32(r_scratch1, K);
+				PPC_AND(r_A, r_A, r_scratch1);
+			}
+			break;
+		case BPF_S_ALU_OR_X:
+			ctx->seen |= SEEN_XREG;
+			PPC_OR(r_A, r_A, r_X);
+			break;
+		case BPF_S_ALU_OR_K:
+			if (IMM_L(K))
+				PPC_ORI(r_A, r_A, IMM_L(K));
+			if (K >= 65536)
+				PPC_ORIS(r_A, r_A, IMM_H(K));
+			break;
+		case BPF_S_ALU_LSH_X: /* A <<= X; */
+			ctx->seen |= SEEN_XREG;
+			PPC_SLW(r_A, r_A, r_X);
+			break;
+		case BPF_S_ALU_LSH_K:
+			if (K == 0)
+				break;
+			else
+				PPC_SLWI(r_A, r_A, K);
+			break;
+		case BPF_S_ALU_RSH_X: /* A >>= X; */
+			ctx->seen |= SEEN_XREG;
+			PPC_SRW(r_A, r_A, r_X);
+			break;
+		case BPF_S_ALU_RSH_K: /* A >>= K; */
+			if (K == 0)
+				break;
+			else
+				PPC_SRWI(r_A, r_A, K);
+			break;
+		case BPF_S_ALU_NEG:
+			PPC_NEG(r_A, r_A);
+			break;
+		case BPF_S_RET_K:
+			PPC_LI32(r_ret, K);
+			if (!K) {
+				if (ctx->pc_ret0 == -1)
+					ctx->pc_ret0 = i;
+			}
+			/*
+			 * If this isn't the very last instruction, branch to
+			 * the epilogue if we've stuff to clean up.  Otherwise,
+			 * if there's nothing to tidy, just return.  If we /are/
+			 * the last instruction, we're about to fall through to
+			 * the epilogue to return.
+			 */
+			if (i != flen - 1) {
+				/*
+				 * Note: 'seen' is properly valid only on pass
+				 * #2.	Both parts of this conditional are the
+				 * same instruction size though, meaning the
+				 * first pass will still correctly determine the
+				 * code size/addresses.
+				 */
+				if (ctx->seen)
+					PPC_JMP(exit_addr);
+				else
+					PPC_BLR();
+			}
+			break;
+		case BPF_S_RET_A:
+			PPC_MR(r_ret, r_A);
+			if (i != flen - 1) {
+				if (ctx->seen)
+					PPC_JMP(exit_addr);
+				else
+					PPC_BLR();
+			}
+			break;
+		case BPF_S_MISC_TAX: /* X = A */
+			ctx->seen |= SEEN_XREG;
+			PPC_MR(r_X, r_A);
+			break;
+		case BPF_S_MISC_TXA: /* A = X */
+			ctx->seen |= SEEN_XREG;
+			PPC_MR(r_A, r_X);
+			break;
+
+			/*** Constant loads/M[] access ***/
+		case BPF_S_LD_IMM: /* A = K */
+			PPC_LI32(r_A, K);
+			break;
+		case BPF_S_LDX_IMM: /* X = K */
+			ctx->seen |= SEEN_XREG;
+			PPC_LI32(r_X, K);
+			break;
+		case BPF_S_LD_MEM: /* A = mem[K] */
+			PPC_MR(r_A, r_M + (K & 0xf));
+			ctx->seen |= SEEN_MEM | (1<<(K & 0xf));
+			break;
+		case BPF_S_LDX_MEM: /* X = mem[K] */
+			PPC_MR(r_X, r_M + (K & 0xf));
+			ctx->seen |= SEEN_XREG | SEEN_MEM | (1<<(K & 0xf));
+			break;
+		case BPF_S_ST: /* mem[K] = A */
+			PPC_MR(r_M + (K & 0xf), r_A);
+			ctx->seen |= SEEN_MEM | (1<<(K & 0xf));
+			break;
+		case BPF_S_STX: /* mem[K] = X */
+			PPC_MR(r_M + (K & 0xf), r_X);
+			ctx->seen |= SEEN_XREG | SEEN_MEM | (1<<(K & 0xf));
+			break;
+		case BPF_S_LD_W_LEN: /*	A = skb->len; */
+			BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff, len) != 4);
+			PPC_LWZ_OFFS(r_A, r_skb, offsetof(struct sk_buff, len));
+			break;
+		case BPF_S_LDX_W_LEN: /* X = skb->len; */
+			ctx->seen |= SEEN_XREG;
+			PPC_LWZ_OFFS(r_X, r_skb, offsetof(struct sk_buff, len));
+			break;
+
+			/*** Ancillary info loads ***/
+
+			/* None of the BPF_S_ANC* codes appear to be passed by
+			 * sk_chk_filter().  The interpreter and the x86 BPF
+			 * compiler implement them so we do too -- they may be
+			 * planted in future.
+			 */
+		case BPF_S_ANC_PROTOCOL: /* A = ntohs(skb->protocol); */
+			BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff,
+						  protocol) != 2);
+			PPC_LHZ_OFFS(r_A, r_skb, offsetof(struct sk_buff,
+							  protocol));
+			/* ntohs is a NOP with BE loads. */
+			break;
+		case BPF_S_ANC_IFINDEX:
+			PPC_LD_OFFS(r_scratch1, r_skb, offsetof(struct sk_buff,
+								dev));
+			PPC_CMPDI(r_scratch1, 0);
+			if (ctx->pc_ret0 != -1) {
+				PPC_BCC(COND_EQ, addrs[ctx->pc_ret0]);
+			} else {
+				/* Exit, returning 0; first pass hits here. */
+				PPC_BCC_SHORT(COND_NE, (ctx->idx*4)+12);
+				PPC_LI(r_ret, 0);
+				PPC_JMP(exit_addr);
+			}
+			BUILD_BUG_ON(FIELD_SIZEOF(struct net_device,
+						  ifindex) != 4);
+			PPC_LWZ_OFFS(r_A, r_scratch1,
+				     offsetof(struct net_device, ifindex));
+			break;
+		case BPF_S_ANC_MARK:
+			BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff, mark) != 4);
+			PPC_LWZ_OFFS(r_A, r_skb, offsetof(struct sk_buff,
+							  mark));
+			break;
+		case BPF_S_ANC_RXHASH:
+			BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff, rxhash) != 4);
+			PPC_LWZ_OFFS(r_A, r_skb, offsetof(struct sk_buff,
+							  rxhash));
+			break;
+		case BPF_S_ANC_QUEUE:
+			BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff,
+						  queue_mapping) != 2);
+			PPC_LWZ_OFFS(r_A, r_skb, offsetof(struct sk_buff,
+							  queue_mapping));
+			break;
+		case BPF_S_ANC_CPU:
+#ifdef CONFIG_SMP
+			/*
+			 * PACA ptr is r13:
+			 * raw_smp_processor_id() = local_paca->paca_index
+			 */
+			PPC_LHZ_OFFS(r_A, 13,
+				     offsetof(struct paca_struct, paca_index));
+#else
+			PPC_LI(r_A, 0);
+#endif
+			break;
+
+			/*** Absolute loads from packet header/data ***/
+		case BPF_S_LD_W_ABS:
+			func = sk_load_word;
+			goto common_load;
+		case BPF_S_LD_H_ABS:
+			func = sk_load_half;
+			goto common_load;
+		case BPF_S_LD_B_ABS:
+			func = sk_load_byte;
+		common_load:
+			/*
+			 * Load from [K].  Reference with the (negative)
+			 * SKF_NET_OFF/SKF_LL_OFF offsets is unsupported.
+			 */
+			ctx->seen |= SEEN_DATAREF;
+			if ((int)K < 0)
+				return -ENOTSUPP;
+			PPC_LI64(r_scratch1, func);
+			PPC_MTLR(r_scratch1);
+			PPC_LI32(r_addr, K);
+			PPC_BLRL();
+			/*
+			 * Helper returns 'lt' condition on error, and an
+			 * appropriate return value in r3
+			 */
+			PPC_BCC(COND_LT, exit_addr);
+			break;
+
+			/*** Indirect loads from packet header/data ***/
+		case BPF_S_LD_W_IND:
+			func = sk_load_word;
+			goto common_load_ind;
+		case BPF_S_LD_H_IND:
+			func = sk_load_half;
+			goto common_load_ind;
+		case BPF_S_LD_B_IND:
+			func = sk_load_byte;
+		common_load_ind:
+			/*
+			 * Load from [X + K].  Negative offsets are tested for
+			 * in the helper functions, and result in a 'ret 0'.
+			 */
+			ctx->seen |= SEEN_DATAREF | SEEN_XREG;
+			PPC_LI64(r_scratch1, func);
+			PPC_MTLR(r_scratch1);
+			PPC_ADDI(r_addr, r_X, IMM_L(K));
+			if (K >= 32768)
+				PPC_ADDIS(r_addr, r_addr, IMM_HA(K));
+			PPC_BLRL();
+			/* If error, cr0.LT set */
+			PPC_BCC(COND_LT, exit_addr);
+			break;
+
+		case BPF_S_LDX_B_MSH:
+			/*
+			 * x86 version drops packet (RET 0) when K<0, whereas
+			 * interpreter does allow K<0 (__load_pointer, special
+			 * ancillary data).
+			 */
+			ctx->seen |= SEEN_XREG;
+			func = sk_load_byte_msh;
+			goto common_load;
+			break;
+
+			/*** Jump and branches ***/
+		case BPF_S_JMP_JA:
+			PPC_JMP(addrs[i + K]);
+			break;
+
+		case BPF_S_JMP_JGT_K:
+		case BPF_S_JMP_JGT_X:
+			true_cond = COND_GT;
+			goto cond_branch;
+		case BPF_S_JMP_JGE_K:
+		case BPF_S_JMP_JGE_X:
+			true_cond = COND_GE;
+			goto cond_branch;
+		case BPF_S_JMP_JEQ_K:
+		case BPF_S_JMP_JEQ_X:
+			true_cond = COND_EQ;
+			goto cond_branch;
+		case BPF_S_JMP_JSET_K:
+		case BPF_S_JMP_JSET_X:
+			true_cond = COND_NE;
+			/* Fall through */
+		cond_branch:
+			/* same targets, can avoid doing the test :) */
+			if (filter[i].jt == filter[i].jf) {
+				if (filter[i].jt > 0)
+					PPC_JMP(addrs[i + 1 + filter[i].jt]);
+				break;
+			}
+
+			switch (filter[i].code) {
+			case BPF_S_JMP_JGT_X:
+			case BPF_S_JMP_JGE_X:
+			case BPF_S_JMP_JEQ_X:
+				ctx->seen |= SEEN_XREG;
+				PPC_CMPLW(r_A, r_X);
+				break;
+			case BPF_S_JMP_JSET_X:
+				ctx->seen |= SEEN_XREG;
+				PPC_AND_DOT(r_scratch1, r_A, r_X);
+				break;
+			case BPF_S_JMP_JEQ_K:
+			case BPF_S_JMP_JGT_K:
+			case BPF_S_JMP_JGE_K:
+				if (K < 32768)
+					PPC_CMPLWI(r_A, K);
+				else {
+					PPC_LI32(r_scratch1, K);
+					PPC_CMPLW(r_A, r_scratch1);
+				}
+				break;
+			case BPF_S_JMP_JSET_K:
+				if (K < 32768)
+					/* PPC_ANDI is /only/ dot-form */
+					PPC_ANDI(r_scratch1, r_A, K);
+				else {
+					PPC_LI32(r_scratch1, K);
+					PPC_AND_DOT(r_scratch1, r_A,
+						    r_scratch1);
+				}
+				break;
+			}
+			/* Sometimes branches are constructed "backward", with
+			 * the false path being the branch and true path being
+			 * a fallthrough to the next instruction.
+			 */
+			if (filter[i].jt == 0)
+				/* Swap the sense of the branch */
+				PPC_BCC(true_cond ^ COND_CMP_TRUE,
+					addrs[i + 1 + filter[i].jf]);
+			else {
+				PPC_BCC(true_cond, addrs[i + 1 + filter[i].jt]);
+				if (filter[i].jf != 0)
+					PPC_JMP(addrs[i + 1 + filter[i].jf]);
+			}
+			break;
+		default:
+			/* The filter contains something cruel & unusual.
+			 * We don't handle it, but also there shouldn't be
+			 * anything missing from our list.
+			 */
+			pr_err("BPF filter opcode %04x (@%d) unsupported\n",
+			       filter[i].code, i);
+			return -ENOTSUPP;
+		}
+
+	}
+	/* Set end-of-body-code address for exit. */
+	addrs[i] = ctx->idx * 4;
+
+	return 0;
+}
+
+void bpf_jit_compile(struct sk_filter *fp)
+{
+	unsigned int proglen;
+	unsigned int alloclen;
+	u32 *image = NULL;
+	u32 *code_base;
+	unsigned int *addrs;
+	struct codegen_context cgctx;
+	int pass;
+	int flen = fp->len;
+
+	if (!bpf_jit_enable)
+		return;
+
+	addrs = kzalloc((flen+1) * sizeof(*addrs), GFP_KERNEL);
+	if (addrs == NULL)
+		return;
+
+	/*
+	 * There are multiple assembly passes as the generated code will change
+	 * size as it settles down, figuring out the max branch offsets/exit
+	 * paths required.
+	 *
+	 * The range of standard conditional branches is +/- 32Kbytes.	Since
+	 * BPF_MAXINSNS = 4096, we can only jump from (worst case) start to
+	 * finish with 8 bytes/instruction.  Not feasible, so long jumps are
+	 * used, distinct from short branches.
+	 *
+	 * Current:
+	 *
+	 * For now, both branch types assemble to 2 words (short branches padded
+	 * with a NOP); this is inefficient, but assembly will always complete
+	 * after exactly 3 passes:
+	 *
+	 * First pass: No code buffer; Program is "faux-generated" -- no code
+	 * emitted but maximum size of output determined (and addrs[] filled
+	 * in).	 Also, we note whether we use M[], whether we use skb data, etc.
+	 * All generation choices assumed to be 'worst-case', e.g. branches all
+	 * far (2 instructions), return path code reduction not available, etc.
+	 *
+	 * Second pass: Code buffer allocated with size determined previously.
+	 * Prologue generated to support features we have seen used.  Exit paths
+	 * determined and addrs[] is filled in again, as code may be slightly
+	 * smaller as a result.
+	 *
+	 * Third pass: Code generated 'for real', and branch destinations
+	 * determined from now-accurate addrs[] map.
+	 *
+	 * Ideal:
+	 *
+	 * If we optimise this, near branches will be shorter.	On the
+	 * first assembly pass, we should err on the side of caution and
+	 * generate the biggest code.  On subsequent passes, branches will be
+	 * generated short or long and code size will reduce.  With smaller
+	 * code, more branches may fall into the short category, and code will
+	 * reduce more.
+	 *
+	 * Finally, if we see one pass generate code the same size as the
+	 * previous pass we have converged and should now generate code for
+	 * real.  Allocating at the end will also save the memory that would
+	 * otherwise be wasted by the (small) current code shrinkage.
+	 * Preferably, we should do a small number of passes (e.g. 5) and if we
+	 * haven't converged by then, get impatient and force code to generate
+	 * as-is, even if the odd branch would be left long.  The chances of a
+	 * long jump are tiny with all but the most enormous of BPF filter
+	 * inputs, so we should usually converge on the third pass.
+	 */
+
+	cgctx.idx = 0;
+	cgctx.seen = 0;
+	cgctx.pc_ret0 = -1;
+	/* Scouting faux-generate pass 0 */
+	if (bpf_jit_build_body(fp, 0, &cgctx, addrs))
+		/* We hit something illegal or unsupported. */
+		goto out;
+
+	/*
+	 * Pretend to build prologue, given the features we've seen.  This will
+	 * update ctgtx.idx as it pretends to output instructions, then we can
+	 * calculate total size from idx.
+	 */
+	bpf_jit_build_prologue(fp, 0, &cgctx);
+	bpf_jit_build_epilogue(0, &cgctx);
+
+	proglen = cgctx.idx * 4;
+	alloclen = proglen + FUNCTION_DESCR_SIZE;
+	image = module_alloc(max_t(unsigned int, alloclen,
+				   sizeof(struct work_struct)));
+	if (!image)
+		goto out;
+
+	code_base = image + (FUNCTION_DESCR_SIZE/4);
+
+	/* Code generation passes 1-2 */
+	for (pass = 1; pass < 3; pass++) {
+		/* Now build the prologue, body code & epilogue for real. */
+		cgctx.idx = 0;
+		bpf_jit_build_prologue(fp, code_base, &cgctx);
+		bpf_jit_build_body(fp, code_base, &cgctx, addrs);
+		bpf_jit_build_epilogue(code_base, &cgctx);
+
+		if (bpf_jit_enable > 1)
+			pr_info("Pass %d: shrink = %d, seen = 0x%x\n", pass,
+				proglen - (cgctx.idx * 4), cgctx.seen);
+	}
+
+	if (bpf_jit_enable > 1)
+		pr_info("flen=%d proglen=%u pass=%d image=%p\n",
+		       flen, proglen, pass, image);
+
+	if (image) {
+		if (bpf_jit_enable > 1)
+			print_hex_dump(KERN_ERR, "JIT code: ",
+				       DUMP_PREFIX_ADDRESS,
+				       16, 1, code_base,
+				       proglen, false);
+
+		bpf_flush_icache(code_base, code_base + (proglen/4));
+		/* Function descriptor nastiness: Address + TOC */
+		((u64 *)image)[0] = (u64)code_base;
+		((u64 *)image)[1] = local_paca->kernel_toc;
+		fp->bpf_func = (void *)image;
+	}
+out:
+	kfree(addrs);
+	return;
+}
+
+static void jit_free_defer(struct work_struct *arg)
+{
+	module_free(NULL, arg);
+}
+
+/* run from softirq, we must use a work_struct to call
+ * module_free() from process context
+ */
+void bpf_jit_free(struct sk_filter *fp)
+{
+	if (fp->bpf_func != sk_run_filter) {
+		struct work_struct *work = (struct work_struct *)fp->bpf_func;
+
+		INIT_WORK(work, jit_free_defer);
+		schedule_work(work);
+	}
+}