Message ID | 1318630139-14296-1-git-send-email-tmarri@apm.com (mailing list archive) |
---|---|
State | Not Applicable |
Headers | show |
On Sat, Oct 15, 2011 at 3:38 AM, <tmarri@apm.com> wrote: > From: Tirumala Marri <tmarri@apm.com> > > Implements DWC OTG USB HCD interrupt service routine. > > Signed-off-by: Tirumala R Marri <tmarri@apm.com> > Signed-off-by: Fushen Chen <fchen@apm.com> > Signed-off-by: Mark Miesfeld <mmiesfeld@apm.com> > --- > drivers/usb/dwc/hcd_intr.c | 1477 ++++++++++++++++++++++++++++++++++++++++++++ > 1 files changed, 1477 insertions(+), 0 deletions(-) > create mode 100644 drivers/usb/dwc/hcd_intr.c > > diff --git a/drivers/usb/dwc/hcd_intr.c b/drivers/usb/dwc/hcd_intr.c > new file mode 100644 > index 0000000..b16934d > --- /dev/null > +++ b/drivers/usb/dwc/hcd_intr.c > @@ -0,0 +1,1477 @@ > +/* > + * DesignWare HS OTG controller driver > + * Copyright (C) 2006 Synopsys, Inc. > + * Portions Copyright (C) 2010 Applied Micro Circuits Corporation. > + * > + * This program is free software: you can redistribute it and/or > + * modify it under the terms of the GNU General Public License > + * version 2 as published by the Free Software Foundation. > + * > + * This program is distributed in the hope that it will be useful > + * but WITHOUT ANY WARRANTY; without even the implied warranty of > + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the > + * GNU General Public License version 2 for more details. > + * > + * You should have received a copy of the GNU General Public License > + * along with this program; if not, see http://www.gnu.org/licenses > + * or write to the Free Software Foundation, Inc., 51 Franklin Street, > + * Suite 500, Boston, MA 02110-1335 USA. > + * > + * Based on Synopsys driver version 2.60a > + * Modified by Mark Miesfeld <mmiesfeld@apm.com> > + * Modified by Stefan Roese <sr@denx.de>, DENX Software Engineering > + * Modified by Chuck Meade <chuck@theptrgroup.com> > + * > + * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" > + * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING BUT NOT LIMITED TO THE > + * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE > + * ARE DISCLAIMED. IN NO EVENT SHALL SYNOPSYS, INC. BE LIABLE FOR ANY DIRECT, > + * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES > + * (INCLUDING BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; > + * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND > + * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY OR TORT > + * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF > + * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. > + * > + */ > + > +#include "hcd.h" > + > +/* This file contains the implementation of the HCD Interrupt handlers. */ > +static const int erratum_usb09_patched; > +static const int deferral_on = 1; > +static const int nak_deferral_delay = 8; > +static const int nyet_deferral_delay = 1; > + > +/** > + * Handles the start-of-frame interrupt in host mode. Non-periodic > + * transactions may be queued to the DWC_otg controller for the current > + * (micro)frame. Periodic transactions may be queued to the controller for the > + * next (micro)frame. > + */ > +static int dwc_otg_hcd_handle_sof_intr(struct dwc_hcd *hcd) > +{ > + u32 hfnum = 0; > + struct list_head *qh_entry; > + struct dwc_qh *qh; > + enum dwc_transaction_type tr_type; > + u32 gintsts = 0; > + > + hfnum = > + dwc_reg_read(hcd->core_if->host_if->host_global_regs, > + DWC_HFNUM); > + > + hcd->frame_number = DWC_HFNUM_FRNUM_RD(hfnum); > + > + /* Determine whether any periodic QHs should be executed. */ > + qh_entry = hcd->periodic_sched_inactive.next; > + while (qh_entry != &hcd->periodic_sched_inactive) { > + qh = list_entry(qh_entry, struct dwc_qh, qh_list_entry); > + qh_entry = qh_entry->next; > + > + /* > + * If needed, move QH to the ready list to be executed next > + * (micro)frame. > + */ > + if (dwc_frame_num_le(qh->sched_frame, hcd->frame_number)) > + list_move(&qh->qh_list_entry, > + &hcd->periodic_sched_ready); > + } > + > + tr_type = dwc_otg_hcd_select_transactions(hcd); > + if (tr_type != DWC_OTG_TRANSACTION_NONE) > + dwc_otg_hcd_queue_transactions(hcd, tr_type); > + > + /* Clear interrupt */ > + gintsts |= DWC_INTMSK_STRT_OF_FRM; > + dwc_reg_write(gintsts_reg(hcd), 0, gintsts); > + return 1; > +} > + > +/** > + * Handles the Rx Status Queue Level Interrupt, which indicates that there is at > + * least one packet in the Rx FIFO. The packets are moved from the FIFO to > + * memory if the DWC_otg controller is operating in Slave mode. > + */ > +static int dwc_otg_hcd_handle_rx_status_q_level_intr(struct dwc_hcd *hcd) > +{ > + u32 grxsts; > + struct dwc_hc *hc; > + > + grxsts = dwc_reg_read(hcd->core_if->core_global_regs, DWC_GRXSTSP); > + hc = hcd->hc_ptr_array[grxsts & DWC_HM_RXSTS_CHAN_NUM_RD(grxsts)]; > + > + /* Packet Status */ > + switch (DWC_HM_RXSTS_PKT_STS_RD(grxsts)) { > + case DWC_GRXSTS_PKTSTS_IN: > + /* Read the data into the host buffer. */ > + if (DWC_HM_RXSTS_BYTE_CNT_RD(grxsts) > 0) { > + dwc_otg_read_packet(hcd->core_if, hc->xfer_buff, > + DWC_HM_RXSTS_BYTE_CNT_RD(grxsts)); > + /* Update the HC fields for the next packet received. */ > + hc->xfer_count += DWC_HM_RXSTS_BYTE_CNT_RD(grxsts); > + hc->xfer_buff += DWC_HM_RXSTS_BYTE_CNT_RD(grxsts); > + } > + case DWC_GRXSTS_PKTSTS_IN_XFER_COMP: > + case DWC_GRXSTS_PKTSTS_DATA_TOGGLE_ERR: > + case DWC_GRXSTS_PKTSTS_CH_HALTED: > + /* Handled in interrupt, just ignore data */ > + break; > + default: > + pr_err("RX_STS_Q Interrupt: Unknown status %d\n", > + DWC_HM_RXSTS_PKT_STS_RD(grxsts)); > + break; > + } > + return 1; > +} > + > +/** > + * This interrupt occurs when the non-periodic Tx FIFO is half-empty. More > + * data packets may be written to the FIFO for OUT transfers. More requests > + * may be written to the non-periodic request queue for IN transfers. This > + * interrupt is enabled only in Slave mode. > + */ > +static int dwc_otg_hcd_handle_np_tx_fifo_empty_intr(struct dwc_hcd *hcd) > +{ > + dwc_otg_hcd_queue_transactions(hcd, DWC_OTG_TRANSACTION_NON_PERIODIC); > + return 1; > +} > + > +/** > + * This interrupt occurs when the periodic Tx FIFO is half-empty. More data > + * packets may be written to the FIFO for OUT transfers. More requests may be > + * written to the periodic request queue for IN transfers. This interrupt is > + * enabled only in Slave mode. > + */ > +static int dwc_otg_hcd_handle_perio_tx_fifo_empty_intr(struct dwc_hcd *hcd) > +{ > + dwc_otg_hcd_queue_transactions(hcd, DWC_OTG_TRANSACTION_PERIODIC); > + return 1; > +} > + > +/** > + * When the port changes to enabled it may be necessary to adjust the phy clock > + * speed. > + */ > +static int adjusted_phy_clock_speed(struct dwc_hcd *hcd, u32 hprt0) > +{ > + int adjusted = 0; > + u32 usbcfg; > + ulong global_regs = hcd->core_if->core_global_regs; > + struct core_params *params = hcd->core_if->core_params; > + ulong h_regs = hcd->core_if->host_if->host_global_regs; > + > + usbcfg = dwc_reg_read(global_regs, DWC_GUSBCFG); > + > + if (DWC_HPRT0_PRT_SPD_RD(hprt0) == DWC_HPRT0_PRTSPD_LOW_SPEED || > + DWC_HPRT0_PRT_SPD_RD(hprt0) == DWC_HPRT0_PRTSPD_FULL_SPEED) { > + /* Low power */ > + u32 hcfg; > + > + if (!(usbcfg & DWC_USBCFG_PHYLPWRCLKSEL)) { > + /* Set PHY low power clock select for FS/LS devices */ > + usbcfg |= DWC_USBCFG_PHYLPWRCLKSEL; > + dwc_reg_write(global_regs, DWC_GUSBCFG, usbcfg); > + adjusted = 1; > + } > + > + hcfg = dwc_reg_read(h_regs, DWC_HCFG); > + if (DWC_HPRT0_PRT_SPD_RD(hprt0) == DWC_HPRT0_PRTSPD_LOW_SPEED && > + params->host_ls_low_power_phy_clk == > + DWC_HOST_LS_LOW_POWER_PHY_CLK_PARAM_6MHZ) { > + /* 6 MHZ, check for 6 MHZ clock select */ > + if (DWC_HCFG_FSLSP_CLK_RD(hcfg) != DWC_HCFG_6_MHZ) { > + hcfg = DWC_HCFG_FSLSP_CLK_RW(hcfg, > + DWC_HCFG_6_MHZ); > + dwc_reg_write(h_regs, DWC_HCFG, hcfg); > + adjusted = 1; > + } > + } else if (DWC_HCFG_FSLSP_CLK_RD(hcfg) != DWC_HCFG_48_MHZ) { > + /* 48 MHZ and clock select is not 48 MHZ */ > + hcfg = DWC_HCFG_FSLSP_CLK_RW(hcfg, DWC_HCFG_48_MHZ); > + dwc_reg_write(h_regs, DWC_HCFG, hcfg); > + adjusted = 1; > + } > + } else if (usbcfg & DWC_USBCFG_PHYLPWRCLKSEL) { > + usbcfg &= ~((u32) DWC_USBCFG_PHYLPWRCLKSEL); > + dwc_reg_write(global_regs, DWC_GUSBCFG, usbcfg); > + adjusted = 1; > + } > + if (adjusted) > + schedule_work(&hcd->usb_port_reset); > + > + return adjusted; > +} > + > +/** > + * Helper function to handle the port enable changed interrupt when the port > + * becomes enabled. Checks if we need to adjust the PHY clock speed for low > + * power and adjusts it if needed. > + */ > +static void port_enabled(struct dwc_hcd *hcd, u32 hprt0) > +{ > + if (hcd->core_if->core_params->host_support_fs_ls_low_power) > + if (!adjusted_phy_clock_speed(hcd, hprt0)) > + hcd->flags.b.port_reset_change = 1; > +} > + > +/** > + * There are multiple conditions that can cause a port interrupt. This function > + * determines which interrupt conditions have occurred and handles them > + * appropriately. > + */ > +static int dwc_otg_hcd_handle_port_intr(struct dwc_hcd *hcd) > +{ > + int retval = 0; > + u32 hprt0; > + u32 hprt0_modify; > + > + hprt0 = dwc_reg_read(hcd->core_if->host_if->hprt0, 0); > + hprt0_modify = dwc_reg_read(hcd->core_if->host_if->hprt0, 0); > + > + /* > + * Clear appropriate bits in HPRT0 to clear the interrupt bit in > + * GINTSTS > + */ > + hprt0_modify = DWC_HPRT0_PRT_ENA_RW(hprt0_modify, 0); > + hprt0_modify = DWC_HPRT0_PRT_CONN_DET_RW(hprt0_modify, 0); > + hprt0_modify = DWC_HPRT0_PRT_ENA_DIS_CHG_RW(hprt0_modify, 0); > + hprt0_modify = DWC_HPRT0_PRT_OVRCURR_CHG_RW(hprt0_modify, 0); > + > + /* Port connect detected interrupt */ > + if (DWC_HPRT0_PRT_CONN_DET_RD(hprt0)) { > + /* Set the status flags and clear interrupt */ > + hcd->flags.b.port_connect_status_change = 1; > + hcd->flags.b.port_connect_status = 1; > + hprt0_modify = DWC_HPRT0_PRT_CONN_DET_RW(hprt0_modify, 1); > + > + /* B-Device has connected, Delete the connection timer. */ > + del_timer_sync(&hcd->conn_timer); > + > + /* > + * The Hub driver asserts a reset when it sees port connect > + * status change flag > + */ > + retval |= 1; > + } > + > + /* Port enable changed interrupt */ > + if (DWC_HPRT0_PRT_ENA_DIS_CHG_RD(hprt0)) { > + /* Set the internal flag if the port was disabled */ > + if (DWC_HPRT0_PRT_ENA_RD(hprt0)) > + port_enabled(hcd, hprt0); > + else > + hcd->flags.b.port_enable_change = 1; > + > + /* Clear the interrupt */ > + hprt0_modify = DWC_HPRT0_PRT_ENA_DIS_CHG_RW(hprt0_modify, 1); > + retval |= 1; > + } > + > + /* Overcurrent change interrupt */ > + if (DWC_HPRT0_PRT_OVRCURR_CHG_RD(hprt0)) { > + hcd->flags.b.port_over_current_change = 1; > + hprt0_modify = DWC_HPRT0_PRT_OVRCURR_CHG_RW(hprt0_modify, 1); > + retval |= 1; > + } > + > + /* Clear the port interrupts */ > + dwc_reg_write(hcd->core_if->host_if->hprt0, 0, hprt0_modify); > + return retval; > +} > + > +/** > + * Gets the actual length of a transfer after the transfer halts. halt_status > + * holds the reason for the halt. > + * > + * For IN transfers where halt_status is DWC_OTG_HC_XFER_COMPLETE, _short_read > + * is set to 1 upon return if less than the requested number of bytes were > + * transferred. Otherwise, _short_read is set to 0 upon return. _short_read may > + * also be NULL on entry, in which case it remains unchanged. > + */ > +static u32 get_actual_xfer_length(struct dwc_hc *hc, ulong regs, > + struct dwc_qtd *qtd, > + enum dwc_halt_status halt_status, > + int *_short_read) > +{ > + u32 hctsiz = 0; > + u32 length; > + > + if (_short_read) > + *_short_read = 0; > + > + hctsiz = dwc_reg_read(regs, DWC_HCTSIZ); > + if (halt_status == DWC_OTG_HC_XFER_COMPLETE) { > + if (hc->ep_is_in) { > + length = hc->xfer_len - DWC_HCTSIZ_XFER_SIZE_RD(hctsiz); > + if (_short_read) > + *_short_read = > + (DWC_HCTSIZ_XFER_SIZE_RD(hctsiz) != 0); > + } else if (hc->qh->do_split) { > + length = qtd->ssplit_out_xfer_count; > + } else { > + length = hc->xfer_len; > + } > + } else { > + /* > + * Must use the hctsiz.pktcnt field to determine how much data > + * has been transferred. This field reflects the number of > + * packets that have been transferred via the USB. This is > + * always an integral number of packets if the transfer was > + * halted before its normal completion. (Can't use the > + * hctsiz.xfersize field because that reflects the number of > + * bytes transferred via the AHB, not the USB). > + */ > + length = (hc->start_pkt_count - DWC_HCTSIZ_PKT_CNT_RD(hctsiz)) * > + hc->max_packet; > + } > + return length; > +} > + > +/** > + * Updates the state of the URB after a Transfer Complete interrupt on the > + * host channel. Updates the actual_length field of the URB based on the > + * number of bytes transferred via the host channel. Sets the URB status > + * if the data transfer is finished. > + */ > +static int update_urb_state_xfer_comp(struct dwc_hc *hc, > + ulong regs, struct urb *urb, > + struct dwc_qtd *qtd, int *status) > +{ > + int xfer_done = 0; > + int short_read = 0; > + > + urb->actual_length += get_actual_xfer_length(hc, regs, qtd, > + DWC_OTG_HC_XFER_COMPLETE, > + &short_read); > + > + if (short_read || urb->actual_length == urb->transfer_buffer_length) { > + xfer_done = 1; > + if (short_read && (urb->transfer_flags & URB_SHORT_NOT_OK)) > + *status = -EREMOTEIO; > + else > + *status = 0; > + } > + return xfer_done; > +} > + > +/* > + * Save the starting data toggle for the next transfer. The data toggle is > + * saved in the QH for non-control transfers and it's saved in the QTD for > + * control transfers. > + */ > +static void save_data_toggle(struct dwc_hc *hc, ulong regs, struct dwc_qtd *qtd) > +{ > + u32 hctsiz = 0; > + hctsiz = dwc_reg_read(regs, DWC_HCTSIZ); > + > + if (hc->ep_type != DWC_OTG_EP_TYPE_CONTROL) { > + struct dwc_qh *qh = hc->qh; > + > + if (DWC_HCTSIZ_PKT_PID_RD(hctsiz) == DWC_HCTSIZ_DATA0) > + qh->data_toggle = DWC_OTG_HC_PID_DATA0; > + else > + qh->data_toggle = DWC_OTG_HC_PID_DATA1; > + } else { > + if (DWC_HCTSIZ_PKT_PID_RD(hctsiz) == DWC_HCTSIZ_DATA0) > + qtd->data_toggle = DWC_OTG_HC_PID_DATA0; > + else > + qtd->data_toggle = DWC_OTG_HC_PID_DATA1; > + } > +} > + > +/** > + * Frees the first QTD in the QH's list if free_qtd is 1. For non-periodic > + * QHs, removes the QH from the active non-periodic schedule. If any QTDs are > + * still linked to the QH, the QH is added to the end of the inactive > + * non-periodic schedule. For periodic QHs, removes the QH from the periodic > + * schedule if no more QTDs are linked to the QH. > + */ > +static void deactivate_qh(struct dwc_hcd *hcd, struct dwc_qh *qh, int free_qtd) > +{ > + int continue_split = 0; > + struct dwc_qtd *qtd; > + > + qtd = list_entry(qh->qtd_list.next, struct dwc_qtd, qtd_list_entry); > + if (qtd->complete_split) > + continue_split = 1; > + else if (qtd->isoc_split_pos == DWC_HCSPLIT_XACTPOS_MID || > + qtd->isoc_split_pos == DWC_HCSPLIT_XACTPOS_END) > + continue_split = 1; > + > + if (free_qtd) { > + dwc_otg_hcd_qtd_remove(qtd); > + continue_split = 0; > + } > + > + qh->channel = NULL; > + qh->qtd_in_process = NULL; > + dwc_otg_hcd_qh_deactivate(hcd, qh, continue_split); > +} > + > +/** > + * Updates the state of an Isochronous URB when the transfer is stopped for > + * any reason. The fields of the current entry in the frame descriptor array > + * are set based on the transfer state and the input status. Completes the > + * Isochronous URB if all the URB frames have been completed. > + */ > +static enum dwc_halt_status update_isoc_urb_state(struct dwc_hcd *hcd, > + struct dwc_hc *hc, u32 regs, > + struct dwc_qtd *qtd, > + enum dwc_halt_status status) > +{ > + struct urb *urb = qtd->urb; > + enum dwc_halt_status ret_val = status; > + struct usb_iso_packet_descriptor *frame_desc; > + frame_desc = &urb->iso_frame_desc[qtd->isoc_frame_index]; > + > + switch (status) { > + case DWC_OTG_HC_XFER_COMPLETE: > + frame_desc->status = 0; > + frame_desc->actual_length = > + get_actual_xfer_length(hc, regs, qtd, status, NULL); > + break; > + case DWC_OTG_HC_XFER_FRAME_OVERRUN: > + urb->error_count++; > + if (hc->ep_is_in) > + frame_desc->status = -ENOSR; > + else > + frame_desc->status = -ECOMM; > + > + frame_desc->actual_length = 0; > + break; > + case DWC_OTG_HC_XFER_BABBLE_ERR: > + /* Don't need to update actual_length in this case. */ > + urb->error_count++; > + frame_desc->status = -EOVERFLOW; > + break; > + case DWC_OTG_HC_XFER_XACT_ERR: > + urb->error_count++; > + frame_desc->status = -EPROTO; > + frame_desc->actual_length = > + get_actual_xfer_length(hc, regs, qtd, status, NULL); > + default: > + pr_err("%s: Unhandled halt_status (%d)\n", __func__, status); > + BUG(); > + break; > + } > + > + if (++qtd->isoc_frame_index == urb->number_of_packets) { > + /* > + * urb->status is not used for isoc transfers. > + * The individual frame_desc statuses are used instead. > + */ > + dwc_otg_hcd_complete_urb(hcd, urb, 0); > + ret_val = DWC_OTG_HC_XFER_URB_COMPLETE; > + } else { > + ret_val = DWC_OTG_HC_XFER_COMPLETE; > + } > + return ret_val; > +} > + > +/** > + * Releases a host channel for use by other transfers. Attempts to select and > + * queue more transactions since at least one host channel is available. > + */ > +static void release_channel(struct dwc_hcd *hcd, struct dwc_hc *hc, > + struct dwc_qtd *qtd, > + enum dwc_halt_status halt_status, int *must_free) > +{ > + enum dwc_transaction_type tr_type; > + int free_qtd; > + int deact = 1; > + struct dwc_qh *qh; > + int retry_delay = 1; > + > + switch (halt_status) { > + case DWC_OTG_HC_XFER_NYET: > + case DWC_OTG_HC_XFER_NAK: > + if (halt_status == DWC_OTG_HC_XFER_NYET) > + retry_delay = nyet_deferral_delay; > + else > + retry_delay = nak_deferral_delay; > + free_qtd = 0; > + if (deferral_on && hc->do_split) { > + qh = hc->qh; > + if (qh) > + deact = dwc_otg_hcd_qh_deferr(hcd, qh, > + retry_delay); > + } > + break; > + case DWC_OTG_HC_XFER_URB_COMPLETE: > + free_qtd = 1; > + break; > + case DWC_OTG_HC_XFER_AHB_ERR: > + case DWC_OTG_HC_XFER_STALL: > + case DWC_OTG_HC_XFER_BABBLE_ERR: > + free_qtd = 1; > + break; > + case DWC_OTG_HC_XFER_XACT_ERR: > + if (qtd->error_count >= 3) { > + free_qtd = 1; > + dwc_otg_hcd_complete_urb(hcd, qtd->urb, -EPROTO); > + } else { > + free_qtd = 0; > + } > + break; > + case DWC_OTG_HC_XFER_URB_DEQUEUE: > + /* > + * The QTD has already been removed and the QH has been > + * deactivated. Don't want to do anything except release the > + * host channel and try to queue more transfers. > + */ > + goto cleanup; > + case DWC_OTG_HC_XFER_NO_HALT_STATUS: > + pr_err("%s: No halt_status, channel %d\n", __func__, > + hc->hc_num); > + free_qtd = 0; > + break; > + default: > + free_qtd = 0; > + break; > + } > + if (free_qtd) > + /* must_free pre-initialized to zero */ > + *must_free = 1; > + if (deact) > + deactivate_qh(hcd, hc->qh, free_qtd); > + > +cleanup: > + /* > + * Release the host channel for use by other transfers. The cleanup > + * function clears the channel interrupt enables and conditions, so > + * there's no need to clear the Channel Halted interrupt separately. > + */ > + dwc_otg_hc_cleanup(hcd->core_if, hc); > + list_add_tail(&hc->hc_list_entry, &hcd->free_hc_list); > + hcd->available_host_channels++; > + /* Try to queue more transfers now that there's a free channel. */ > + if (!erratum_usb09_patched) { > + tr_type = dwc_otg_hcd_select_transactions(hcd); > + if (tr_type != DWC_OTG_TRANSACTION_NONE) > + dwc_otg_hcd_queue_transactions(hcd, tr_type); > + } > +} > + > +/** > + * Halts a host channel. If the channel cannot be halted immediately because > + * the request queue is full, this function ensures that the FIFO empty > + * interrupt for the appropriate queue is enabled so that the halt request can > + * be queued when there is space in the request queue. > + * > + * This function may also be called in DMA mode. In that case, the channel is > + * simply released since the core always halts the channel automatically in > + * DMA mode. > + */ > +static void halt_channel(struct dwc_hcd *hcd, struct dwc_hc *hc, > + struct dwc_qtd *qtd, enum dwc_halt_status halt_status, > + int *must_free) > +{ > + if (hcd->core_if->dma_enable) { > + release_channel(hcd, hc, qtd, halt_status, must_free); > + return; > + } > + > + /* Slave mode processing... */ > + dwc_otg_hc_halt(hcd->core_if, hc, halt_status); > + if (hc->halt_on_queue) { > + u32 gintmsk = 0; > + > + if (hc->ep_type == DWC_OTG_EP_TYPE_CONTROL || > + hc->ep_type == DWC_OTG_EP_TYPE_BULK) { > + /* > + * Make sure the Non-periodic Tx FIFO empty interrupt > + * is enabled so that the non-periodic schedule will > + * be processed. > + */ > + gintmsk |= DWC_INTMSK_NP_TXFIFO_EMPT; > + dwc_reg_modify(gintmsk_reg(hcd), 0, 0, gintmsk); > + } else { > + /* > + * Move the QH from the periodic queued schedule to > + * the periodic assigned schedule. This allows the > + * halt to be queued when the periodic schedule is > + * processed. > + */ > + list_move(&hc->qh->qh_list_entry, > + &hcd->periodic_sched_assigned); > + > + /* > + * Make sure the Periodic Tx FIFO Empty interrupt is > + * enabled so that the periodic schedule will be > + * processed. > + */ > + gintmsk |= DWC_INTMSK_P_TXFIFO_EMPTY; > + dwc_reg_modify(gintmsk_reg(hcd), 0, 0, gintmsk); > + } > + } > +} > + > +/** > + * Performs common cleanup for non-periodic transfers after a Transfer > + * Complete interrupt. This function should be called after any endpoint type > + * specific handling is finished to release the host channel. > + */ > +static void complete_non_periodic_xfer(struct dwc_hcd *hcd, struct dwc_hc *hc, > + ulong regs, struct dwc_qtd *qtd, > + enum dwc_halt_status halt_status, > + int *must_free) > +{ > + u32 hcint; > + > + qtd->error_count = 0; > + hcint = dwc_reg_read(regs, DWC_HCINT); > + if (DWC_HCINT_NYET_RESP_REC_RD(hcint)) { > + u32 hcint_clear = 0; > + > + hcint_clear = DWC_HCINT_NYET_RESP_REC_RW(hcint_clear, 1); > + /* > + * Got a NYET on the last transaction of the transfer. This > + * means that the endpoint should be in the PING state at the > + * beginning of the next transfer. > + */ > + hc->qh->ping_state = 1; > + dwc_reg_write(regs, DWC_HCINT, hcint_clear); > + } > + > + /* > + * Always halt and release the host channel to make it available for > + * more transfers. There may still be more phases for a control > + * transfer or more data packets for a bulk transfer at this point, > + * but the host channel is still halted. A channel will be reassigned > + * to the transfer when the non-periodic schedule is processed after > + * the channel is released. This allows transactions to be queued > + * properly via dwc_otg_hcd_queue_transactions, which also enables the > + * Tx FIFO Empty interrupt if necessary. > + * > + * IN transfers in Slave mode require an explicit disable to > + * halt the channel. (In DMA mode, this call simply releases > + * the channel.) > + * > + * The channel is automatically disabled by the core for OUT > + * transfers in Slave mode. > + */ > + if (hc->ep_is_in) > + halt_channel(hcd, hc, qtd, halt_status, must_free); > + else > + release_channel(hcd, hc, qtd, halt_status, must_free); > +} > + > +/** > + * Performs common cleanup for periodic transfers after a Transfer Complete > + * interrupt. This function should be called after any endpoint type specific > + * handling is finished to release the host channel. > + */ > +static void complete_periodic_xfer(struct dwc_hcd *hcd, struct dwc_hc *hc, > + ulong regs, struct dwc_qtd *qtd, > + enum dwc_halt_status halt_status, > + int *must_free) > +{ > + u32 hctsiz = 0; > + > + hctsiz = dwc_reg_read(regs, DWC_HCTSIZ); > + qtd->error_count = 0; > + > + /* > + * For OUT transfers and 0 packet count, the Core halts the channel, > + * otherwise, Flush any outstanding requests from the Tx queue. > + */ > + if (!hc->ep_is_in || (DWC_HCTSIZ_PKT_CNT_RD(hctsiz) == 0)) > + release_channel(hcd, hc, qtd, halt_status, must_free); > + else > + halt_channel(hcd, hc, qtd, halt_status, must_free); > +} > + > +/** > + * Handles a host channel Transfer Complete interrupt. This handler may be > + * called in either DMA mode or Slave mode. > + */ > +static int handle_hc_xfercomp_intr(struct dwc_hcd *hcd, struct dwc_hc *hc, > + ulong regs, struct dwc_qtd *qtd, > + int *must_free) > +{ > + int urb_xfer_done; > + enum dwc_halt_status halt_status = DWC_OTG_HC_XFER_COMPLETE; > + struct urb *urb = qtd->urb; > + int pipe_type = usb_pipetype(urb->pipe); > + int status = -EINPROGRESS; > + u32 hcintmsk = 0; > + > + /* Handle xfer complete on CSPLIT. */ > + if (hc->qh->do_split) > + qtd->complete_split = 0; > + > + /* Update the QTD and URB states. */ > + switch (pipe_type) { > + case PIPE_CONTROL: > + switch (qtd->control_phase) { > + case DWC_OTG_CONTROL_SETUP: > + if (urb->transfer_buffer_length > 0) > + qtd->control_phase = DWC_OTG_CONTROL_DATA; > + else > + qtd->control_phase = DWC_OTG_CONTROL_STATUS; > + halt_status = DWC_OTG_HC_XFER_COMPLETE; > + break; > + case DWC_OTG_CONTROL_DATA: > + urb_xfer_done = update_urb_state_xfer_comp(hc, regs, > + urb, qtd, > + &status); > + if (urb_xfer_done) > + qtd->control_phase = DWC_OTG_CONTROL_STATUS; > + else > + save_data_toggle(hc, regs, qtd); > + halt_status = DWC_OTG_HC_XFER_COMPLETE; > + break; > + case DWC_OTG_CONTROL_STATUS: > + if (status == -EINPROGRESS) > + status = 0; > + dwc_otg_hcd_complete_urb(hcd, urb, status); > + halt_status = DWC_OTG_HC_XFER_URB_COMPLETE; > + break; > + } > + complete_non_periodic_xfer(hcd, hc, regs, qtd, > + halt_status, must_free); > + break; > + case PIPE_BULK: > + urb_xfer_done = update_urb_state_xfer_comp(hc, regs, urb, qtd, > + &status); > + if (urb_xfer_done) { > + dwc_otg_hcd_complete_urb(hcd, urb, status); > + halt_status = DWC_OTG_HC_XFER_URB_COMPLETE; > + } else { > + halt_status = DWC_OTG_HC_XFER_COMPLETE; > + } > + > + save_data_toggle(hc, regs, qtd); > + complete_non_periodic_xfer(hcd, hc, regs, qtd, > + halt_status, must_free); > + break; > + case PIPE_INTERRUPT: > + update_urb_state_xfer_comp(hc, regs, urb, qtd, &status); > + /* > + * Interrupt URB is done on the first transfer complete > + * interrupt. > + */ > + dwc_otg_hcd_complete_urb(hcd, urb, status); > + save_data_toggle(hc, regs, qtd); > + complete_periodic_xfer(hcd, hc, regs, qtd, > + DWC_OTG_HC_XFER_URB_COMPLETE, must_free); > + break; > + case PIPE_ISOCHRONOUS: > + if (qtd->isoc_split_pos == DWC_HCSPLIT_XACTPOS_ALL) { > + halt_status = update_isoc_urb_state(hcd, hc, regs, qtd, > + DWC_OTG_HC_XFER_COMPLETE); > + } > + complete_periodic_xfer(hcd, hc, regs, qtd, > + halt_status, must_free); > + break; > + } > + > + /* disable xfercompl */ > + hcintmsk = DWC_HCINTMSK_TXFER_CMPL_RW(hcintmsk, 1); > + dwc_reg_modify(regs, DWC_HCINTMSK, hcintmsk, 0); > + > + return 1; > +} > + > +/** > + * Handles a host channel STALL interrupt. This handler may be called in > + * either DMA mode or Slave mode. > + */ > +static int handle_hc_stall_intr(struct dwc_hcd *hcd, struct dwc_hc *hc, > + u32 regs, struct dwc_qtd *qtd, int *must_free) > +{ > + struct urb *urb = qtd->urb; > + int pipe_type = usb_pipetype(urb->pipe); > + u32 hcintmsk = 0; > + > + if (pipe_type == PIPE_CONTROL) > + dwc_otg_hcd_complete_urb(hcd, qtd->urb, -EPIPE); > + > + if (pipe_type == PIPE_BULK || pipe_type == PIPE_INTERRUPT) { > + dwc_otg_hcd_complete_urb(hcd, qtd->urb, -EPIPE); > + /* > + * USB protocol requires resetting the data toggle for bulk > + * and interrupt endpoints when a CLEAR_FEATURE(ENDPOINT_HALT) > + * setup command is issued to the endpoint. Anticipate the > + * CLEAR_FEATURE command since a STALL has occurred and reset > + * the data toggle now. > + */ > + hc->qh->data_toggle = 0; > + } > + > + halt_channel(hcd, hc, qtd, DWC_OTG_HC_XFER_STALL, must_free); > + /* disable stall */ > + hcintmsk = DWC_HCINTMSK_STALL_RESP_REC_RW(hcintmsk, 1); > + dwc_reg_modify(regs, DWC_HCINTMSK, hcintmsk, 0); > + > + return 1; > +} > + > +/** > + * Updates the state of the URB when a transfer has been stopped due to an > + * abnormal condition before the transfer completes. Modifies the > + * actual_length field of the URB to reflect the number of bytes that have > + * actually been transferred via the host channel. > + */ > +static void update_urb_state_xfer_intr(struct dwc_hc *hc, > + u32 regs, struct urb *urb, > + struct dwc_qtd *qtd, > + enum dwc_halt_status sts) > +{ > + u32 xfr_len = get_actual_xfer_length(hc, regs, qtd, sts, NULL); > + urb->actual_length += xfr_len; > +} > + > +/** > + * Handles a host channel NAK interrupt. This handler may be called in either > + * DMA mode or Slave mode. > + */ > +static int handle_hc_nak_intr(struct dwc_hcd *hcd, struct dwc_hc *hc, > + u32 regs, struct dwc_qtd *qtd, int *must_free) > +{ > + u32 hcintmsk = 0; > + > + /* > + * Handle NAK for IN/OUT SSPLIT/CSPLIT transfers, bulk, control, and > + * interrupt. Re-start the SSPLIT transfer. > + */ > + if (hc->do_split) { > + if (hc->complete_split) > + qtd->error_count = 0; > + > + qtd->complete_split = 0; > + halt_channel(hcd, hc, qtd, DWC_OTG_HC_XFER_NAK, must_free); > + goto handle_nak_done; > + } > + switch (usb_pipetype(qtd->urb->pipe)) { > + case PIPE_CONTROL: > + case PIPE_BULK: > + if (hcd->core_if->dma_enable && hc->ep_is_in) { > + /* > + * NAK interrupts are enabled on bulk/control IN > + * transfers in DMA mode for the sole purpose of > + * resetting the error count after a transaction error > + * occurs. The core will continue transferring data. > + */ > + qtd->error_count = 0; > + goto handle_nak_done; > + } > + > + /* > + * NAK interrupts normally occur during OUT transfers in DMA > + * or Slave mode. For IN transfers, more requests will be > + * queued as request queue space is available. > + */ > + qtd->error_count = 0; > + if (!hc->qh->ping_state) { > + update_urb_state_xfer_intr(hc, regs, qtd->urb, qtd, > + DWC_OTG_HC_XFER_NAK); > + > + save_data_toggle(hc, regs, qtd); > + if (qtd->urb->dev->speed == USB_SPEED_HIGH) > + hc->qh->ping_state = 1; > + } > + > + /* > + * Halt the channel so the transfer can be re-started from > + * the appropriate point or the PING protocol will > + * start/continue. > + */ > + halt_channel(hcd, hc, qtd, DWC_OTG_HC_XFER_NAK, must_free); > + break; > + case PIPE_INTERRUPT: > + qtd->error_count = 0; > + halt_channel(hcd, hc, qtd, DWC_OTG_HC_XFER_NAK, must_free); > + break; > + case PIPE_ISOCHRONOUS: > + /* Should never get called for isochronous transfers. */ > + BUG(); > + break; > + } > + > +handle_nak_done: > + /* disable nak */ > + hcintmsk = DWC_HCINTMSK_NAK_RESP_REC_RW(hcintmsk, 1); > + dwc_reg_modify(regs, DWC_HCINTMSK, hcintmsk, 0); > + > + return 1; > +} > + > +/** > + * Helper function for handle_hc_ack_intr(). Sets the split values for an ACK > + * on SSPLIT for ISOC OUT. > + */ > +static void set_isoc_out_vals(struct dwc_hc *hc, struct dwc_qtd *qtd) > +{ > + struct usb_iso_packet_descriptor *frame_desc; > + > + switch (hc->xact_pos) { > + case DWC_HCSPLIT_XACTPOS_ALL: > + break; > + case DWC_HCSPLIT_XACTPOS_END: > + qtd->isoc_split_pos = DWC_HCSPLIT_XACTPOS_ALL; > + qtd->isoc_split_offset = 0; > + break; > + case DWC_HCSPLIT_XACTPOS_BEGIN: > + case DWC_HCSPLIT_XACTPOS_MID: > + /* > + * For BEGIN or MID, calculate the length for the next > + * microframe to determine the correct SSPLIT token, either MID > + * or END. > + */ > + frame_desc = &qtd->urb->iso_frame_desc[qtd->isoc_frame_index]; > + qtd->isoc_split_offset += 188; > + > + if ((frame_desc->length - qtd->isoc_split_offset) <= 188) > + qtd->isoc_split_pos = DWC_HCSPLIT_XACTPOS_END; > + else > + qtd->isoc_split_pos = DWC_HCSPLIT_XACTPOS_MID; > + > + break; > + } > +} > + > +/** > + * Handles a host channel ACK interrupt. This interrupt is enabled when > + * performing the PING protocol in Slave mode, when errors occur during > + * either Slave mode or DMA mode, and during Start Split transactions. > + */ > +static int handle_hc_ack_intr(struct dwc_hcd *hcd, struct dwc_hc *hc, > + u32 regs, struct dwc_qtd *qtd, int *must_free) > +{ > + u32 hcintmsk = 0; > + > + if (hc->do_split) { > + /* Handle ACK on SSPLIT. ACK should not occur in CSPLIT. */ > + if (!hc->ep_is_in && hc->data_pid_start != DWC_OTG_HC_PID_SETUP) > + qtd->ssplit_out_xfer_count = hc->xfer_len; > + > + /* Don't need complete for isochronous out transfers. */ > + if (!(hc->ep_type == DWC_OTG_EP_TYPE_ISOC && !hc->ep_is_in)) > + qtd->complete_split = 1; > + > + if (hc->ep_type == DWC_OTG_EP_TYPE_ISOC && !hc->ep_is_in) > + set_isoc_out_vals(hc, qtd); > + else > + halt_channel(hcd, hc, qtd, DWC_OTG_HC_XFER_ACK, > + must_free); > + } else { > + qtd->error_count = 0; > + if (hc->qh->ping_state) { > + hc->qh->ping_state = 0; > + > + /* > + * Halt the channel so the transfer can be re-started > + * from the appropriate point. This only happens in > + * Slave mode. In DMA mode, the ping_state is cleared > + * when the transfer is started because the core > + * automatically executes the PING, then the transfer. > + */ > + halt_channel(hcd, hc, qtd, DWC_OTG_HC_XFER_ACK, > + must_free); > + } > + } > + > + /* > + * If the ACK occurred when _not_ in the PING state, let the channel > + * continue transferring data after clearing the error count. > + */ > + /* disable ack */ > + hcintmsk = DWC_HCINTMSK_ACK_RESP_REC_RW(hcintmsk, 1); > + dwc_reg_modify(regs, DWC_HCINTMSK, hcintmsk, 0); > + > + return 1; > +} > + > +/** > + * Handles a host channel NYET interrupt. This interrupt should only occur on > + * Bulk and Control OUT endpoints and for complete split transactions. If a > + * NYET occurs at the same time as a Transfer Complete interrupt, it is > + * handled in the xfercomp interrupt handler, not here. This handler may be > + * called in either DMA mode or Slave mode. > + */ > +static int handle_hc_nyet_intr(struct dwc_hcd *hcd, struct dwc_hc *hc, > + u32 regs, struct dwc_qtd *qtd, int *must_free) > +{ > + u32 hcintmsk = 0; > + u32 hcint_clear = 0; > + > + /* > + * NYET on CSPLIT > + * re-do the CSPLIT immediately on non-periodic > + */ > + if (hc->do_split && hc->complete_split) { > + if (hc->ep_type == DWC_OTG_EP_TYPE_INTR || > + hc->ep_type == DWC_OTG_EP_TYPE_ISOC) { > + int frnum = > + dwc_otg_hcd_get_frame_number(dwc_otg_hcd_to_hcd > + (hcd)); > + if (dwc_full_frame_num(frnum) != > + dwc_full_frame_num(hc->qh->sched_frame)) { > + qtd->complete_split = 0; > + halt_channel(hcd, hc, qtd, > + DWC_OTG_HC_XFER_XACT_ERR, > + must_free); > + goto handle_nyet_done; > + } > + } > + halt_channel(hcd, hc, qtd, DWC_OTG_HC_XFER_NYET, must_free); > + goto handle_nyet_done; > + } > + hc->qh->ping_state = 1; > + qtd->error_count = 0; > + update_urb_state_xfer_intr(hc, regs, qtd->urb, qtd, > + DWC_OTG_HC_XFER_NYET); > + save_data_toggle(hc, regs, qtd); > + /* > + * Halt the channel and re-start the transfer so the PING > + * protocol will start. > + */ > + halt_channel(hcd, hc, qtd, DWC_OTG_HC_XFER_NYET, must_free); > + > +handle_nyet_done: > + /* disable nyet */ > + hcintmsk = DWC_HCINTMSK_NYET_RESP_REC_RW(hcintmsk, 1); > + dwc_reg_modify(regs, DWC_HCINTMSK, hcintmsk, 0); > + /* clear nyet */ > + hcint_clear = DWC_HCINT_NYET_RESP_REC_RW(hcint_clear, 1); > + dwc_reg_write(regs, DWC_HCINT, hcint_clear); > + return 1; > +} > + > +/** > + * Handles a host channel babble interrupt. This handler may be called in > + * either DMA mode or Slave mode. > + */ > +static int handle_hc_babble_intr(struct dwc_hcd *hcd, struct dwc_hc *hc, > + u32 regs, struct dwc_qtd *qtd, int *must_free) > +{ > + u32 hcintmsk = 0; > + > + if (hc->ep_type != DWC_OTG_EP_TYPE_ISOC) { > + dwc_otg_hcd_complete_urb(hcd, qtd->urb, -EOVERFLOW); > + halt_channel(hcd, hc, qtd, DWC_OTG_HC_XFER_BABBLE_ERR, > + must_free); > + } else { > + enum dwc_halt_status halt_status; > + halt_status = update_isoc_urb_state(hcd, hc, regs, qtd, > + DWC_OTG_HC_XFER_BABBLE_ERR); > + halt_channel(hcd, hc, qtd, halt_status, must_free); > + } > + /* disable bblerr */ > + hcintmsk = DWC_HCINTMSK_BBL_ERR_RW(hcintmsk, 1); > + dwc_reg_modify(regs, DWC_HCINTMSK, hcintmsk, 0); > + return 1; > +} > + > +/** > + * Handles a host channel AHB error interrupt. This handler is only called in > + * DMA mode. > + */ > +static int handle_hc_ahberr_intr(struct dwc_hcd *hcd, struct dwc_hc *hc, > + u32 regs, struct dwc_qtd *qtd) > +{ > + u32 hcchar; > + u32 hcsplt; > + u32 hctsiz = 0; > + u32 hcdma; > + struct urb *urb = qtd->urb; > + u32 hcintmsk = 0; > + > + hcchar = dwc_reg_read(regs, DWC_HCCHAR); > + hcsplt = dwc_reg_read(regs, DWC_HCSPLT); > + hctsiz = dwc_reg_read(regs, DWC_HCTSIZ); > + hcdma = dwc_reg_read(regs, DWC_HCDMA); > + > + pr_err("AHB ERROR, Channel %d\n", hc->hc_num); > + pr_err(" hcchar 0x%08x, hcsplt 0x%08x\n", hcchar, hcsplt); > + pr_err(" hctsiz 0x%08x, hcdma 0x%08x\n", hctsiz, hcdma); > + > + pr_err(" Device address: %d\n", usb_pipedevice(urb->pipe)); > + pr_err(" Endpoint: %d, %s\n", usb_pipeendpoint(urb->pipe), > + (usb_pipein(urb->pipe) ? "IN" : "OUT")); > + > + pr_err(" Endpoint type: %s\n", pipetype_str(urb->pipe)); > + pr_err(" Speed: %s\n", dev_speed_str(urb->dev->speed)); > + pr_err(" Max packet size: %d\n", > + usb_maxpacket(urb->dev, urb->pipe, usb_pipeout(urb->pipe))); > + pr_err(" Data buffer length: %d\n", urb->transfer_buffer_length); > + pr_err(" Transfer buffer: %p, Transfer DMA: %p\n", > + urb->transfer_buffer, (void *)(u32) urb->transfer_dma); > + pr_err(" Setup buffer: %p, Setup DMA: %p\n", > + urb->setup_packet, (void *)(u32) urb->setup_dma); > + pr_err(" Interval: %d\n", urb->interval); > + > + dwc_otg_hcd_complete_urb(hcd, urb, -EIO); > + > + /* > + * Force a channel halt. Don't call halt_channel because that won't > + * write to the HCCHARn register in DMA mode to force the halt. > + */ > + dwc_otg_hc_halt(hcd->core_if, hc, DWC_OTG_HC_XFER_AHB_ERR); > + /* disable ahberr */ > + hcintmsk = DWC_HCINTMSK_AHB_ERR_RW(hcintmsk, 1); > + dwc_reg_modify(regs, DWC_HCINTMSK, hcintmsk, 0); > + > + return 1; > +} > + > +/** > + * Handles a host channel transaction error interrupt. This handler may be > + * called in either DMA mode or Slave mode. > + */ > +static int handle_hc_xacterr_intr(struct dwc_hcd *hcd, struct dwc_hc *hc, > + u32 regs, struct dwc_qtd *qtd, int *must_free) > +{ > + enum dwc_halt_status status = DWC_OTG_HC_XFER_XACT_ERR; > + u32 hcintmsk = 0; > + > + switch (usb_pipetype(qtd->urb->pipe)) { > + case PIPE_CONTROL: > + case PIPE_BULK: > + qtd->error_count++; > + if (!hc->qh->ping_state) { > + update_urb_state_xfer_intr(hc, regs, qtd->urb, qtd, > + status); > + save_data_toggle(hc, regs, qtd); > + > + if (!hc->ep_is_in && qtd->urb->dev->speed == > + USB_SPEED_HIGH) > + hc->qh->ping_state = 1; > + } > + /* > + * Halt the channel so the transfer can be re-started from > + * the appropriate point or the PING protocol will start. > + */ > + halt_channel(hcd, hc, qtd, status, must_free); > + break; > + case PIPE_INTERRUPT: > + qtd->error_count++; > + if (hc->do_split && hc->complete_split) > + qtd->complete_split = 0; > + > + halt_channel(hcd, hc, qtd, status, must_free); > + break; > + case PIPE_ISOCHRONOUS: > + status = update_isoc_urb_state(hcd, hc, regs, qtd, status); > + halt_channel(hcd, hc, qtd, status, must_free); > + break; > + } > + /* Disable xacterr */ > + hcintmsk = DWC_HCINTMSK_TRANS_ERR_RW(hcintmsk, 1); > + dwc_reg_modify(regs, DWC_HCINTMSK, hcintmsk, 0); > + > + return 1; > +} > + > +/** > + * Handles a host channel frame overrun interrupt. This handler may be called > + * in either DMA mode or Slave mode. > + */ > +static int handle_hc_frmovrun_intr(struct dwc_hcd *hcd, struct dwc_hc *hc, > + u32 regs, struct dwc_qtd *qtd, > + int *must_free) > +{ > + enum dwc_halt_status status = DWC_OTG_HC_XFER_FRAME_OVERRUN; > + u32 hcintmsk = 0; > + > + switch (usb_pipetype(qtd->urb->pipe)) { > + case PIPE_CONTROL: > + case PIPE_BULK: > + break; > + case PIPE_INTERRUPT: > + halt_channel(hcd, hc, qtd, status, must_free); > + break; > + case PIPE_ISOCHRONOUS: > + status = update_isoc_urb_state(hcd, hc, regs, qtd, status); > + halt_channel(hcd, hc, qtd, status, must_free); > + break; > + } > + /* Disable frmovrun */ > + hcintmsk = DWC_HCINTMSK_FRAME_OVERN_ERR_RW(hcintmsk, 1); > + dwc_reg_modify(regs, DWC_HCINTMSK, hcintmsk, 0); > + > + return 1; > +} > + > +/** > + * Handles a host channel data toggle error interrupt. This handler may be > + * called in either DMA mode or Slave mode. > + */ > +static int handle_hc_datatglerr_intr(struct dwc_hcd *hcd, struct dwc_hc *hc, > + u32 regs, struct dwc_qtd *qtd) > +{ > + u32 hcintmsk = 0; > + > + if (hc->ep_is_in) > + qtd->error_count = 0; > + else > + pr_err("Data Toggle Error on OUT transfer, channel " > + "%d\n", hc->hc_num); > + > + /* disable datatglerr */ > + hcintmsk = DWC_HCINTMSK_DATA_TOG_ERR_RW(hcintmsk, 1); > + dwc_reg_modify(regs, DWC_HCINTMSK, hcintmsk, 0); > + > + return 1; > +} > + > +/** > + * Handles a host Channel Halted interrupt in DMA mode. This handler > + * determines the reason the channel halted and proceeds accordingly. > + */ > +static void handle_hc_chhltd_intr_dma(struct dwc_hcd *hcd, struct dwc_hc *hc, > + ulong regs, struct dwc_qtd *qtd, > + int *must_free) > +{ > + u32 hcint; > + u32 hcintmsk = 0; > + > + if (hc->halt_status == DWC_OTG_HC_XFER_URB_DEQUEUE || > + hc->halt_status == DWC_OTG_HC_XFER_AHB_ERR) { > + /* > + * Just release the channel. A dequeue can happen on a > + * transfer timeout. In the case of an AHB Error, the channel > + * was forced to halt because there's no way to gracefully > + * recover. > + */ > + release_channel(hcd, hc, qtd, hc->halt_status, must_free); > + return; > + } > + > + /* Read the HCINTn register to determine the cause for the halt. */ > + hcint = dwc_reg_read(regs, DWC_HCINT); > + hcintmsk = dwc_reg_read(regs, DWC_HCINTMSK); > + if (DWC_HCINT_TXFER_CMPL_RD(hcint)) { > + /* > + * This is here because of a possible hardware bug. Spec > + * says that on SPLIT-ISOC OUT transfers in DMA mode that a HALT > + * interrupt w/ACK bit set should occur, but I only see the > + * XFERCOMP bit, even with it masked out. This is a workaround > + * for that behavior. Should fix this when hardware is fixed. > + */ > + if (hc->ep_type == DWC_OTG_EP_TYPE_ISOC && !hc->ep_is_in) > + handle_hc_ack_intr(hcd, hc, regs, qtd, must_free); > + > + handle_hc_xfercomp_intr(hcd, hc, regs, qtd, must_free); > + } else if (DWC_HCINT_STALL_RESP_REC_RD(hcint)) { > + handle_hc_stall_intr(hcd, hc, regs, qtd, must_free); > + } else if (DWC_HCINT_TRANS_ERR_RD(hcint)) { > + /* > + * Must handle xacterr before nak or ack. Could get a xacterr > + * at the same time as either of these on a BULK/CONTROL OUT > + * that started with a PING. The xacterr takes precedence. > + */ > + handle_hc_xacterr_intr(hcd, hc, regs, qtd, must_free); > + } else if (DWC_HCINT_NYET_RESP_REC_RD(hcint)) { > + /* > + * Must handle nyet before nak or ack. Could get a nyet at the > + * same time as either of those on a BULK/CONTROL OUT that > + * started with a PING. The nyet takes precedence. > + */ > + handle_hc_nyet_intr(hcd, hc, regs, qtd, must_free); > + } else if (DWC_HCINT_BBL_ERR_RD(hcint)) { > + handle_hc_babble_intr(hcd, hc, regs, qtd, must_free); > + } else if (DWC_HCINT_FRAME_OVERN_ERR_RD(hcint)) { > + handle_hc_frmovrun_intr(hcd, hc, regs, qtd, must_free); > + } else if (DWC_HCINT_DATA_TOG_ERR_RD(hcint)) { > + handle_hc_datatglerr_intr(hcd, hc, regs, qtd); > + hc->qh->data_toggle = 0; > + halt_channel(hcd, hc, qtd, hc->halt_status, must_free); > + } else if (DWC_HCINT_NAK_RESP_REC_RD(hcint) && > + !DWC_HCINTMSK_NAK_RESP_REC_RD(hcintmsk)) { > + /* > + * If nak is not masked, it's because a non-split IN transfer > + * is in an error state. In that case, the nak is handled by > + * the nak interrupt handler, not here. Handle nak here for > + * BULK/CONTROL OUT transfers, which halt on a NAK to allow > + * rewinding the buffer pointer. > + */ > + handle_hc_nak_intr(hcd, hc, regs, qtd, must_free); > + } else if (DWC_HCINT_ACK_RESP_REC_RD(hcint) && > + !DWC_HCINTMSK_ACK_RESP_REC_RD(hcintmsk)) { > + /* > + * If ack is not masked, it's because a non-split IN transfer > + * is in an error state. In that case, the ack is handled by > + * the ack interrupt handler, not here. Handle ack here for > + * split transfers. Start splits halt on ACK. > + */ > + handle_hc_ack_intr(hcd, hc, regs, qtd, must_free); > + } else { > + if (hc->ep_type == DWC_OTG_EP_TYPE_INTR || > + hc->ep_type == DWC_OTG_EP_TYPE_ISOC) { > + /* > + * A periodic transfer halted with no other channel > + * interrupts set. Assume it was halted by the core > + * because it could not be completed in its scheduled > + * (micro)frame. > + */ > + halt_channel(hcd, hc, qtd, > + DWC_OTG_HC_XFER_PERIODIC_INCOMPLETE, > + must_free); > + } else { > + pr_err("%s: Channel %d, DMA Mode -- ChHltd " > + "set, but reason for halting is unknown, " > + "hcint 0x%08x, intsts 0x%08x\n", > + __func__, hc->hc_num, hcint, > + dwc_reg_read(gintsts_reg(hcd), 0)); > + } > + } > +} > + > +/** > + * Handles a host channel Channel Halted interrupt. > + * > + * In slave mode, this handler is called only when the driver specifically > + * requests a halt. This occurs during handling other host channel interrupts > + * (e.g. nak, xacterr, stall, nyet, etc.). > + * > + * In DMA mode, this is the interrupt that occurs when the core has finished > + * processing a transfer on a channel. Other host channel interrupts (except > + * ahberr) are disabled in DMA mode. > + */ > +static int handle_hc_chhltd_intr(struct dwc_hcd *hcd, struct dwc_hc *hc, > + ulong regs, struct dwc_qtd *qtd, int *must_free) > +{ > + if (hcd->core_if->dma_enable) > + handle_hc_chhltd_intr_dma(hcd, hc, regs, qtd, must_free); > + else > + release_channel(hcd, hc, qtd, hc->halt_status, must_free); > + > + return 1; > +} > + > +/* Handles interrupt for a specific Host Channel */ > +static int dwc_otg_hcd_handle_hc_n_intr(struct dwc_hcd *hcd, u32 num) > +{ > + int must_free = 0; > + int retval = 0; > + u32 hcint; > + u32 hcintmsk = 0; > + struct dwc_hc *hc; > + ulong hc_regs; > + struct dwc_qtd *qtd; > + > + hc = hcd->hc_ptr_array[num]; > + hc_regs = hcd->core_if->host_if->hc_regs[num]; > + qtd = list_entry(hc->qh->qtd_list.next, struct dwc_qtd, qtd_list_entry); > + > + hcint = dwc_reg_read(hc_regs, DWC_HCINT); > + hcintmsk = dwc_reg_read(hc_regs, DWC_HCINTMSK); > + > + hcint = hcint & hcintmsk; > + if (!hcd->core_if->dma_enable && DWC_HCINT_CHAN_HALTED_RD(hcint) > + && hcint != 0x2) > + hcint = DWC_HCINT_CHAN_HALTED_RW(hcint, 0); > + > + if (DWC_HCINT_TXFER_CMPL_RD(hcint)) { > + retval |= handle_hc_xfercomp_intr(hcd, hc, hc_regs, > + qtd, &must_free); > + /* > + * If NYET occurred at same time as Xfer Complete, the NYET is > + * handled by the Xfer Complete interrupt handler. Don't want > + * to call the NYET interrupt handler in this case. > + */ > + hcint = DWC_HCINT_NYET_RESP_REC_RW(hcint, 0); > + } > + > + if (DWC_HCINT_CHAN_HALTED_RD(hcint)) > + retval |= handle_hc_chhltd_intr(hcd, hc, hc_regs, > + qtd, &must_free); > + if (DWC_HCINT_AHB_ERR_RD(hcint)) > + retval |= handle_hc_ahberr_intr(hcd, hc, hc_regs, qtd); > + if (DWC_HCINT_STALL_RESP_REC_RD(hcint)) > + retval |= handle_hc_stall_intr(hcd, hc, hc_regs, > + qtd, &must_free); > + if (DWC_HCINT_NAK_RESP_REC_RD(hcint)) > + retval |= handle_hc_nak_intr(hcd, hc, hc_regs, qtd, &must_free); > + if (DWC_HCINT_ACK_RESP_REC_RD(hcint)) > + retval |= handle_hc_ack_intr(hcd, hc, hc_regs, qtd, &must_free); > + if (DWC_HCINT_NYET_RESP_REC_RD(hcint)) > + retval |= handle_hc_nyet_intr(hcd, hc, hc_regs, > + qtd, &must_free); > + if (DWC_HCINT_TRANS_ERR_RD(hcint)) > + retval |= handle_hc_xacterr_intr(hcd, hc, hc_regs, > + qtd, &must_free); > + if (DWC_HCINT_BBL_ERR_RD(hcint)) > + retval |= handle_hc_babble_intr(hcd, hc, hc_regs, > + qtd, &must_free); > + if (DWC_HCINT_FRAME_OVERN_ERR_RD(hcint)) > + retval |= handle_hc_frmovrun_intr(hcd, hc, hc_regs, > + qtd, &must_free); > + if (DWC_HCINT_DATA_TOG_ERR_RD(hcint)) > + retval |= handle_hc_datatglerr_intr(hcd, hc, hc_regs, qtd); > + > + if (must_free) > + /* Free the qtd here now that we are done using it. */ > + dwc_otg_hcd_qtd_free(qtd); > + return retval; > +} > + > +/** > + * This function returns the Host All Channel Interrupt register > + */ > +static inline u32 dwc_otg_read_host_all_channels_intr(struct core_if > + *core_if) > +{ > + return dwc_reg_read(core_if->host_if->host_global_regs, DWC_HAINT); > +} > + > +/** > + * This interrupt indicates that one or more host channels has a pending > + * interrupt. There are multiple conditions that can cause each host channel > + * interrupt. This function determines which conditions have occurred for each > + * host channel interrupt and handles them appropriately. > + */ > +static int dwc_otg_hcd_handle_hc_intr(struct dwc_hcd *hcd) > +{ > + u32 i; > + int retval = 0; > + u32 haint; > + > + /* > + * Clear appropriate bits in HCINTn to clear the interrupt bit in > + * GINTSTS > + */ > + haint = dwc_otg_read_host_all_channels_intr(hcd->core_if); > + for (i = 0; i < hcd->core_if->core_params->host_channels; i++) > + if (DWC_HAINT_RD(haint) & (1 << i)) > + retval |= dwc_otg_hcd_handle_hc_n_intr(hcd, i); > + > + return retval; > +} > + > +/* This function handles interrupts for the HCD.*/ > +int dwc_otg_hcd_handle_intr(struct dwc_hcd *hcd) > +{ > + int ret = 0; > + struct core_if *core_if = hcd->core_if; > + u32 gintsts; > + > + /* Check if HOST Mode */ > + if (dwc_otg_is_host_mode(core_if)) { > + spin_lock(&hcd->lock); > + gintsts = dwc_otg_read_core_intr(core_if); > + if (!gintsts) { > + spin_unlock(&hcd->lock); > + return IRQ_NONE; > + } > + > + if (gintsts & DWC_INTMSK_STRT_OF_FRM) > + ret |= dwc_otg_hcd_handle_sof_intr(hcd); > + if (gintsts & DWC_INTMSK_RXFIFO_NOT_EMPT) > + ret |= dwc_otg_hcd_handle_rx_status_q_level_intr(hcd); > + if (gintsts & DWC_INTMSK_NP_TXFIFO_EMPT) > + ret |= dwc_otg_hcd_handle_np_tx_fifo_empty_intr(hcd); > + if (gintsts & DWC_INTMSK_HST_PORT) > + ret |= dwc_otg_hcd_handle_port_intr(hcd); > + if (gintsts & DWC_INTMSK_HST_CHAN) > + ret |= dwc_otg_hcd_handle_hc_intr(hcd); > + if (gintsts & DWC_INTMSK_P_TXFIFO_EMPTY) > + ret |= dwc_otg_hcd_handle_perio_tx_fifo_empty_intr(hcd); > + > + spin_unlock(&hcd->lock); > + } > + return ret; > +} > -- > 1.6.1.rc3 > > -- > To unsubscribe from this list: send the line "unsubscribe linux-usb" in > the body of a message to majordomo@vger.kernel.org > More majordomo info at http://vger.kernel.org/majordomo-info.html > Reviewed-by: Pratyush Anand <pratyush.anand@st.com>
diff --git a/drivers/usb/dwc/hcd_intr.c b/drivers/usb/dwc/hcd_intr.c new file mode 100644 index 0000000..b16934d --- /dev/null +++ b/drivers/usb/dwc/hcd_intr.c @@ -0,0 +1,1477 @@ +/* + * DesignWare HS OTG controller driver + * Copyright (C) 2006 Synopsys, Inc. + * Portions Copyright (C) 2010 Applied Micro Circuits Corporation. + * + * This program is free software: you can redistribute it and/or + * modify it under the terms of the GNU General Public License + * version 2 as published by the Free Software Foundation. + * + * This program is distributed in the hope that it will be useful + * but WITHOUT ANY WARRANTY; without even the implied warranty of + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the + * GNU General Public License version 2 for more details. + * + * You should have received a copy of the GNU General Public License + * along with this program; if not, see http://www.gnu.org/licenses + * or write to the Free Software Foundation, Inc., 51 Franklin Street, + * Suite 500, Boston, MA 02110-1335 USA. + * + * Based on Synopsys driver version 2.60a + * Modified by Mark Miesfeld <mmiesfeld@apm.com> + * Modified by Stefan Roese <sr@denx.de>, DENX Software Engineering + * Modified by Chuck Meade <chuck@theptrgroup.com> + * + * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" + * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING BUT NOT LIMITED TO THE + * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE + * ARE DISCLAIMED. IN NO EVENT SHALL SYNOPSYS, INC. BE LIABLE FOR ANY DIRECT, + * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES + * (INCLUDING BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; + * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND + * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY OR TORT + * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF + * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. + * + */ + +#include "hcd.h" + +/* This file contains the implementation of the HCD Interrupt handlers. */ +static const int erratum_usb09_patched; +static const int deferral_on = 1; +static const int nak_deferral_delay = 8; +static const int nyet_deferral_delay = 1; + +/** + * Handles the start-of-frame interrupt in host mode. Non-periodic + * transactions may be queued to the DWC_otg controller for the current + * (micro)frame. Periodic transactions may be queued to the controller for the + * next (micro)frame. + */ +static int dwc_otg_hcd_handle_sof_intr(struct dwc_hcd *hcd) +{ + u32 hfnum = 0; + struct list_head *qh_entry; + struct dwc_qh *qh; + enum dwc_transaction_type tr_type; + u32 gintsts = 0; + + hfnum = + dwc_reg_read(hcd->core_if->host_if->host_global_regs, + DWC_HFNUM); + + hcd->frame_number = DWC_HFNUM_FRNUM_RD(hfnum); + + /* Determine whether any periodic QHs should be executed. */ + qh_entry = hcd->periodic_sched_inactive.next; + while (qh_entry != &hcd->periodic_sched_inactive) { + qh = list_entry(qh_entry, struct dwc_qh, qh_list_entry); + qh_entry = qh_entry->next; + + /* + * If needed, move QH to the ready list to be executed next + * (micro)frame. + */ + if (dwc_frame_num_le(qh->sched_frame, hcd->frame_number)) + list_move(&qh->qh_list_entry, + &hcd->periodic_sched_ready); + } + + tr_type = dwc_otg_hcd_select_transactions(hcd); + if (tr_type != DWC_OTG_TRANSACTION_NONE) + dwc_otg_hcd_queue_transactions(hcd, tr_type); + + /* Clear interrupt */ + gintsts |= DWC_INTMSK_STRT_OF_FRM; + dwc_reg_write(gintsts_reg(hcd), 0, gintsts); + return 1; +} + +/** + * Handles the Rx Status Queue Level Interrupt, which indicates that there is at + * least one packet in the Rx FIFO. The packets are moved from the FIFO to + * memory if the DWC_otg controller is operating in Slave mode. + */ +static int dwc_otg_hcd_handle_rx_status_q_level_intr(struct dwc_hcd *hcd) +{ + u32 grxsts; + struct dwc_hc *hc; + + grxsts = dwc_reg_read(hcd->core_if->core_global_regs, DWC_GRXSTSP); + hc = hcd->hc_ptr_array[grxsts & DWC_HM_RXSTS_CHAN_NUM_RD(grxsts)]; + + /* Packet Status */ + switch (DWC_HM_RXSTS_PKT_STS_RD(grxsts)) { + case DWC_GRXSTS_PKTSTS_IN: + /* Read the data into the host buffer. */ + if (DWC_HM_RXSTS_BYTE_CNT_RD(grxsts) > 0) { + dwc_otg_read_packet(hcd->core_if, hc->xfer_buff, + DWC_HM_RXSTS_BYTE_CNT_RD(grxsts)); + /* Update the HC fields for the next packet received. */ + hc->xfer_count += DWC_HM_RXSTS_BYTE_CNT_RD(grxsts); + hc->xfer_buff += DWC_HM_RXSTS_BYTE_CNT_RD(grxsts); + } + case DWC_GRXSTS_PKTSTS_IN_XFER_COMP: + case DWC_GRXSTS_PKTSTS_DATA_TOGGLE_ERR: + case DWC_GRXSTS_PKTSTS_CH_HALTED: + /* Handled in interrupt, just ignore data */ + break; + default: + pr_err("RX_STS_Q Interrupt: Unknown status %d\n", + DWC_HM_RXSTS_PKT_STS_RD(grxsts)); + break; + } + return 1; +} + +/** + * This interrupt occurs when the non-periodic Tx FIFO is half-empty. More + * data packets may be written to the FIFO for OUT transfers. More requests + * may be written to the non-periodic request queue for IN transfers. This + * interrupt is enabled only in Slave mode. + */ +static int dwc_otg_hcd_handle_np_tx_fifo_empty_intr(struct dwc_hcd *hcd) +{ + dwc_otg_hcd_queue_transactions(hcd, DWC_OTG_TRANSACTION_NON_PERIODIC); + return 1; +} + +/** + * This interrupt occurs when the periodic Tx FIFO is half-empty. More data + * packets may be written to the FIFO for OUT transfers. More requests may be + * written to the periodic request queue for IN transfers. This interrupt is + * enabled only in Slave mode. + */ +static int dwc_otg_hcd_handle_perio_tx_fifo_empty_intr(struct dwc_hcd *hcd) +{ + dwc_otg_hcd_queue_transactions(hcd, DWC_OTG_TRANSACTION_PERIODIC); + return 1; +} + +/** + * When the port changes to enabled it may be necessary to adjust the phy clock + * speed. + */ +static int adjusted_phy_clock_speed(struct dwc_hcd *hcd, u32 hprt0) +{ + int adjusted = 0; + u32 usbcfg; + ulong global_regs = hcd->core_if->core_global_regs; + struct core_params *params = hcd->core_if->core_params; + ulong h_regs = hcd->core_if->host_if->host_global_regs; + + usbcfg = dwc_reg_read(global_regs, DWC_GUSBCFG); + + if (DWC_HPRT0_PRT_SPD_RD(hprt0) == DWC_HPRT0_PRTSPD_LOW_SPEED || + DWC_HPRT0_PRT_SPD_RD(hprt0) == DWC_HPRT0_PRTSPD_FULL_SPEED) { + /* Low power */ + u32 hcfg; + + if (!(usbcfg & DWC_USBCFG_PHYLPWRCLKSEL)) { + /* Set PHY low power clock select for FS/LS devices */ + usbcfg |= DWC_USBCFG_PHYLPWRCLKSEL; + dwc_reg_write(global_regs, DWC_GUSBCFG, usbcfg); + adjusted = 1; + } + + hcfg = dwc_reg_read(h_regs, DWC_HCFG); + if (DWC_HPRT0_PRT_SPD_RD(hprt0) == DWC_HPRT0_PRTSPD_LOW_SPEED && + params->host_ls_low_power_phy_clk == + DWC_HOST_LS_LOW_POWER_PHY_CLK_PARAM_6MHZ) { + /* 6 MHZ, check for 6 MHZ clock select */ + if (DWC_HCFG_FSLSP_CLK_RD(hcfg) != DWC_HCFG_6_MHZ) { + hcfg = DWC_HCFG_FSLSP_CLK_RW(hcfg, + DWC_HCFG_6_MHZ); + dwc_reg_write(h_regs, DWC_HCFG, hcfg); + adjusted = 1; + } + } else if (DWC_HCFG_FSLSP_CLK_RD(hcfg) != DWC_HCFG_48_MHZ) { + /* 48 MHZ and clock select is not 48 MHZ */ + hcfg = DWC_HCFG_FSLSP_CLK_RW(hcfg, DWC_HCFG_48_MHZ); + dwc_reg_write(h_regs, DWC_HCFG, hcfg); + adjusted = 1; + } + } else if (usbcfg & DWC_USBCFG_PHYLPWRCLKSEL) { + usbcfg &= ~((u32) DWC_USBCFG_PHYLPWRCLKSEL); + dwc_reg_write(global_regs, DWC_GUSBCFG, usbcfg); + adjusted = 1; + } + if (adjusted) + schedule_work(&hcd->usb_port_reset); + + return adjusted; +} + +/** + * Helper function to handle the port enable changed interrupt when the port + * becomes enabled. Checks if we need to adjust the PHY clock speed for low + * power and adjusts it if needed. + */ +static void port_enabled(struct dwc_hcd *hcd, u32 hprt0) +{ + if (hcd->core_if->core_params->host_support_fs_ls_low_power) + if (!adjusted_phy_clock_speed(hcd, hprt0)) + hcd->flags.b.port_reset_change = 1; +} + +/** + * There are multiple conditions that can cause a port interrupt. This function + * determines which interrupt conditions have occurred and handles them + * appropriately. + */ +static int dwc_otg_hcd_handle_port_intr(struct dwc_hcd *hcd) +{ + int retval = 0; + u32 hprt0; + u32 hprt0_modify; + + hprt0 = dwc_reg_read(hcd->core_if->host_if->hprt0, 0); + hprt0_modify = dwc_reg_read(hcd->core_if->host_if->hprt0, 0); + + /* + * Clear appropriate bits in HPRT0 to clear the interrupt bit in + * GINTSTS + */ + hprt0_modify = DWC_HPRT0_PRT_ENA_RW(hprt0_modify, 0); + hprt0_modify = DWC_HPRT0_PRT_CONN_DET_RW(hprt0_modify, 0); + hprt0_modify = DWC_HPRT0_PRT_ENA_DIS_CHG_RW(hprt0_modify, 0); + hprt0_modify = DWC_HPRT0_PRT_OVRCURR_CHG_RW(hprt0_modify, 0); + + /* Port connect detected interrupt */ + if (DWC_HPRT0_PRT_CONN_DET_RD(hprt0)) { + /* Set the status flags and clear interrupt */ + hcd->flags.b.port_connect_status_change = 1; + hcd->flags.b.port_connect_status = 1; + hprt0_modify = DWC_HPRT0_PRT_CONN_DET_RW(hprt0_modify, 1); + + /* B-Device has connected, Delete the connection timer. */ + del_timer_sync(&hcd->conn_timer); + + /* + * The Hub driver asserts a reset when it sees port connect + * status change flag + */ + retval |= 1; + } + + /* Port enable changed interrupt */ + if (DWC_HPRT0_PRT_ENA_DIS_CHG_RD(hprt0)) { + /* Set the internal flag if the port was disabled */ + if (DWC_HPRT0_PRT_ENA_RD(hprt0)) + port_enabled(hcd, hprt0); + else + hcd->flags.b.port_enable_change = 1; + + /* Clear the interrupt */ + hprt0_modify = DWC_HPRT0_PRT_ENA_DIS_CHG_RW(hprt0_modify, 1); + retval |= 1; + } + + /* Overcurrent change interrupt */ + if (DWC_HPRT0_PRT_OVRCURR_CHG_RD(hprt0)) { + hcd->flags.b.port_over_current_change = 1; + hprt0_modify = DWC_HPRT0_PRT_OVRCURR_CHG_RW(hprt0_modify, 1); + retval |= 1; + } + + /* Clear the port interrupts */ + dwc_reg_write(hcd->core_if->host_if->hprt0, 0, hprt0_modify); + return retval; +} + +/** + * Gets the actual length of a transfer after the transfer halts. halt_status + * holds the reason for the halt. + * + * For IN transfers where halt_status is DWC_OTG_HC_XFER_COMPLETE, _short_read + * is set to 1 upon return if less than the requested number of bytes were + * transferred. Otherwise, _short_read is set to 0 upon return. _short_read may + * also be NULL on entry, in which case it remains unchanged. + */ +static u32 get_actual_xfer_length(struct dwc_hc *hc, ulong regs, + struct dwc_qtd *qtd, + enum dwc_halt_status halt_status, + int *_short_read) +{ + u32 hctsiz = 0; + u32 length; + + if (_short_read) + *_short_read = 0; + + hctsiz = dwc_reg_read(regs, DWC_HCTSIZ); + if (halt_status == DWC_OTG_HC_XFER_COMPLETE) { + if (hc->ep_is_in) { + length = hc->xfer_len - DWC_HCTSIZ_XFER_SIZE_RD(hctsiz); + if (_short_read) + *_short_read = + (DWC_HCTSIZ_XFER_SIZE_RD(hctsiz) != 0); + } else if (hc->qh->do_split) { + length = qtd->ssplit_out_xfer_count; + } else { + length = hc->xfer_len; + } + } else { + /* + * Must use the hctsiz.pktcnt field to determine how much data + * has been transferred. This field reflects the number of + * packets that have been transferred via the USB. This is + * always an integral number of packets if the transfer was + * halted before its normal completion. (Can't use the + * hctsiz.xfersize field because that reflects the number of + * bytes transferred via the AHB, not the USB). + */ + length = (hc->start_pkt_count - DWC_HCTSIZ_PKT_CNT_RD(hctsiz)) * + hc->max_packet; + } + return length; +} + +/** + * Updates the state of the URB after a Transfer Complete interrupt on the + * host channel. Updates the actual_length field of the URB based on the + * number of bytes transferred via the host channel. Sets the URB status + * if the data transfer is finished. + */ +static int update_urb_state_xfer_comp(struct dwc_hc *hc, + ulong regs, struct urb *urb, + struct dwc_qtd *qtd, int *status) +{ + int xfer_done = 0; + int short_read = 0; + + urb->actual_length += get_actual_xfer_length(hc, regs, qtd, + DWC_OTG_HC_XFER_COMPLETE, + &short_read); + + if (short_read || urb->actual_length == urb->transfer_buffer_length) { + xfer_done = 1; + if (short_read && (urb->transfer_flags & URB_SHORT_NOT_OK)) + *status = -EREMOTEIO; + else + *status = 0; + } + return xfer_done; +} + +/* + * Save the starting data toggle for the next transfer. The data toggle is + * saved in the QH for non-control transfers and it's saved in the QTD for + * control transfers. + */ +static void save_data_toggle(struct dwc_hc *hc, ulong regs, struct dwc_qtd *qtd) +{ + u32 hctsiz = 0; + hctsiz = dwc_reg_read(regs, DWC_HCTSIZ); + + if (hc->ep_type != DWC_OTG_EP_TYPE_CONTROL) { + struct dwc_qh *qh = hc->qh; + + if (DWC_HCTSIZ_PKT_PID_RD(hctsiz) == DWC_HCTSIZ_DATA0) + qh->data_toggle = DWC_OTG_HC_PID_DATA0; + else + qh->data_toggle = DWC_OTG_HC_PID_DATA1; + } else { + if (DWC_HCTSIZ_PKT_PID_RD(hctsiz) == DWC_HCTSIZ_DATA0) + qtd->data_toggle = DWC_OTG_HC_PID_DATA0; + else + qtd->data_toggle = DWC_OTG_HC_PID_DATA1; + } +} + +/** + * Frees the first QTD in the QH's list if free_qtd is 1. For non-periodic + * QHs, removes the QH from the active non-periodic schedule. If any QTDs are + * still linked to the QH, the QH is added to the end of the inactive + * non-periodic schedule. For periodic QHs, removes the QH from the periodic + * schedule if no more QTDs are linked to the QH. + */ +static void deactivate_qh(struct dwc_hcd *hcd, struct dwc_qh *qh, int free_qtd) +{ + int continue_split = 0; + struct dwc_qtd *qtd; + + qtd = list_entry(qh->qtd_list.next, struct dwc_qtd, qtd_list_entry); + if (qtd->complete_split) + continue_split = 1; + else if (qtd->isoc_split_pos == DWC_HCSPLIT_XACTPOS_MID || + qtd->isoc_split_pos == DWC_HCSPLIT_XACTPOS_END) + continue_split = 1; + + if (free_qtd) { + dwc_otg_hcd_qtd_remove(qtd); + continue_split = 0; + } + + qh->channel = NULL; + qh->qtd_in_process = NULL; + dwc_otg_hcd_qh_deactivate(hcd, qh, continue_split); +} + +/** + * Updates the state of an Isochronous URB when the transfer is stopped for + * any reason. The fields of the current entry in the frame descriptor array + * are set based on the transfer state and the input status. Completes the + * Isochronous URB if all the URB frames have been completed. + */ +static enum dwc_halt_status update_isoc_urb_state(struct dwc_hcd *hcd, + struct dwc_hc *hc, u32 regs, + struct dwc_qtd *qtd, + enum dwc_halt_status status) +{ + struct urb *urb = qtd->urb; + enum dwc_halt_status ret_val = status; + struct usb_iso_packet_descriptor *frame_desc; + frame_desc = &urb->iso_frame_desc[qtd->isoc_frame_index]; + + switch (status) { + case DWC_OTG_HC_XFER_COMPLETE: + frame_desc->status = 0; + frame_desc->actual_length = + get_actual_xfer_length(hc, regs, qtd, status, NULL); + break; + case DWC_OTG_HC_XFER_FRAME_OVERRUN: + urb->error_count++; + if (hc->ep_is_in) + frame_desc->status = -ENOSR; + else + frame_desc->status = -ECOMM; + + frame_desc->actual_length = 0; + break; + case DWC_OTG_HC_XFER_BABBLE_ERR: + /* Don't need to update actual_length in this case. */ + urb->error_count++; + frame_desc->status = -EOVERFLOW; + break; + case DWC_OTG_HC_XFER_XACT_ERR: + urb->error_count++; + frame_desc->status = -EPROTO; + frame_desc->actual_length = + get_actual_xfer_length(hc, regs, qtd, status, NULL); + default: + pr_err("%s: Unhandled halt_status (%d)\n", __func__, status); + BUG(); + break; + } + + if (++qtd->isoc_frame_index == urb->number_of_packets) { + /* + * urb->status is not used for isoc transfers. + * The individual frame_desc statuses are used instead. + */ + dwc_otg_hcd_complete_urb(hcd, urb, 0); + ret_val = DWC_OTG_HC_XFER_URB_COMPLETE; + } else { + ret_val = DWC_OTG_HC_XFER_COMPLETE; + } + return ret_val; +} + +/** + * Releases a host channel for use by other transfers. Attempts to select and + * queue more transactions since at least one host channel is available. + */ +static void release_channel(struct dwc_hcd *hcd, struct dwc_hc *hc, + struct dwc_qtd *qtd, + enum dwc_halt_status halt_status, int *must_free) +{ + enum dwc_transaction_type tr_type; + int free_qtd; + int deact = 1; + struct dwc_qh *qh; + int retry_delay = 1; + + switch (halt_status) { + case DWC_OTG_HC_XFER_NYET: + case DWC_OTG_HC_XFER_NAK: + if (halt_status == DWC_OTG_HC_XFER_NYET) + retry_delay = nyet_deferral_delay; + else + retry_delay = nak_deferral_delay; + free_qtd = 0; + if (deferral_on && hc->do_split) { + qh = hc->qh; + if (qh) + deact = dwc_otg_hcd_qh_deferr(hcd, qh, + retry_delay); + } + break; + case DWC_OTG_HC_XFER_URB_COMPLETE: + free_qtd = 1; + break; + case DWC_OTG_HC_XFER_AHB_ERR: + case DWC_OTG_HC_XFER_STALL: + case DWC_OTG_HC_XFER_BABBLE_ERR: + free_qtd = 1; + break; + case DWC_OTG_HC_XFER_XACT_ERR: + if (qtd->error_count >= 3) { + free_qtd = 1; + dwc_otg_hcd_complete_urb(hcd, qtd->urb, -EPROTO); + } else { + free_qtd = 0; + } + break; + case DWC_OTG_HC_XFER_URB_DEQUEUE: + /* + * The QTD has already been removed and the QH has been + * deactivated. Don't want to do anything except release the + * host channel and try to queue more transfers. + */ + goto cleanup; + case DWC_OTG_HC_XFER_NO_HALT_STATUS: + pr_err("%s: No halt_status, channel %d\n", __func__, + hc->hc_num); + free_qtd = 0; + break; + default: + free_qtd = 0; + break; + } + if (free_qtd) + /* must_free pre-initialized to zero */ + *must_free = 1; + if (deact) + deactivate_qh(hcd, hc->qh, free_qtd); + +cleanup: + /* + * Release the host channel for use by other transfers. The cleanup + * function clears the channel interrupt enables and conditions, so + * there's no need to clear the Channel Halted interrupt separately. + */ + dwc_otg_hc_cleanup(hcd->core_if, hc); + list_add_tail(&hc->hc_list_entry, &hcd->free_hc_list); + hcd->available_host_channels++; + /* Try to queue more transfers now that there's a free channel. */ + if (!erratum_usb09_patched) { + tr_type = dwc_otg_hcd_select_transactions(hcd); + if (tr_type != DWC_OTG_TRANSACTION_NONE) + dwc_otg_hcd_queue_transactions(hcd, tr_type); + } +} + +/** + * Halts a host channel. If the channel cannot be halted immediately because + * the request queue is full, this function ensures that the FIFO empty + * interrupt for the appropriate queue is enabled so that the halt request can + * be queued when there is space in the request queue. + * + * This function may also be called in DMA mode. In that case, the channel is + * simply released since the core always halts the channel automatically in + * DMA mode. + */ +static void halt_channel(struct dwc_hcd *hcd, struct dwc_hc *hc, + struct dwc_qtd *qtd, enum dwc_halt_status halt_status, + int *must_free) +{ + if (hcd->core_if->dma_enable) { + release_channel(hcd, hc, qtd, halt_status, must_free); + return; + } + + /* Slave mode processing... */ + dwc_otg_hc_halt(hcd->core_if, hc, halt_status); + if (hc->halt_on_queue) { + u32 gintmsk = 0; + + if (hc->ep_type == DWC_OTG_EP_TYPE_CONTROL || + hc->ep_type == DWC_OTG_EP_TYPE_BULK) { + /* + * Make sure the Non-periodic Tx FIFO empty interrupt + * is enabled so that the non-periodic schedule will + * be processed. + */ + gintmsk |= DWC_INTMSK_NP_TXFIFO_EMPT; + dwc_reg_modify(gintmsk_reg(hcd), 0, 0, gintmsk); + } else { + /* + * Move the QH from the periodic queued schedule to + * the periodic assigned schedule. This allows the + * halt to be queued when the periodic schedule is + * processed. + */ + list_move(&hc->qh->qh_list_entry, + &hcd->periodic_sched_assigned); + + /* + * Make sure the Periodic Tx FIFO Empty interrupt is + * enabled so that the periodic schedule will be + * processed. + */ + gintmsk |= DWC_INTMSK_P_TXFIFO_EMPTY; + dwc_reg_modify(gintmsk_reg(hcd), 0, 0, gintmsk); + } + } +} + +/** + * Performs common cleanup for non-periodic transfers after a Transfer + * Complete interrupt. This function should be called after any endpoint type + * specific handling is finished to release the host channel. + */ +static void complete_non_periodic_xfer(struct dwc_hcd *hcd, struct dwc_hc *hc, + ulong regs, struct dwc_qtd *qtd, + enum dwc_halt_status halt_status, + int *must_free) +{ + u32 hcint; + + qtd->error_count = 0; + hcint = dwc_reg_read(regs, DWC_HCINT); + if (DWC_HCINT_NYET_RESP_REC_RD(hcint)) { + u32 hcint_clear = 0; + + hcint_clear = DWC_HCINT_NYET_RESP_REC_RW(hcint_clear, 1); + /* + * Got a NYET on the last transaction of the transfer. This + * means that the endpoint should be in the PING state at the + * beginning of the next transfer. + */ + hc->qh->ping_state = 1; + dwc_reg_write(regs, DWC_HCINT, hcint_clear); + } + + /* + * Always halt and release the host channel to make it available for + * more transfers. There may still be more phases for a control + * transfer or more data packets for a bulk transfer at this point, + * but the host channel is still halted. A channel will be reassigned + * to the transfer when the non-periodic schedule is processed after + * the channel is released. This allows transactions to be queued + * properly via dwc_otg_hcd_queue_transactions, which also enables the + * Tx FIFO Empty interrupt if necessary. + * + * IN transfers in Slave mode require an explicit disable to + * halt the channel. (In DMA mode, this call simply releases + * the channel.) + * + * The channel is automatically disabled by the core for OUT + * transfers in Slave mode. + */ + if (hc->ep_is_in) + halt_channel(hcd, hc, qtd, halt_status, must_free); + else + release_channel(hcd, hc, qtd, halt_status, must_free); +} + +/** + * Performs common cleanup for periodic transfers after a Transfer Complete + * interrupt. This function should be called after any endpoint type specific + * handling is finished to release the host channel. + */ +static void complete_periodic_xfer(struct dwc_hcd *hcd, struct dwc_hc *hc, + ulong regs, struct dwc_qtd *qtd, + enum dwc_halt_status halt_status, + int *must_free) +{ + u32 hctsiz = 0; + + hctsiz = dwc_reg_read(regs, DWC_HCTSIZ); + qtd->error_count = 0; + + /* + * For OUT transfers and 0 packet count, the Core halts the channel, + * otherwise, Flush any outstanding requests from the Tx queue. + */ + if (!hc->ep_is_in || (DWC_HCTSIZ_PKT_CNT_RD(hctsiz) == 0)) + release_channel(hcd, hc, qtd, halt_status, must_free); + else + halt_channel(hcd, hc, qtd, halt_status, must_free); +} + +/** + * Handles a host channel Transfer Complete interrupt. This handler may be + * called in either DMA mode or Slave mode. + */ +static int handle_hc_xfercomp_intr(struct dwc_hcd *hcd, struct dwc_hc *hc, + ulong regs, struct dwc_qtd *qtd, + int *must_free) +{ + int urb_xfer_done; + enum dwc_halt_status halt_status = DWC_OTG_HC_XFER_COMPLETE; + struct urb *urb = qtd->urb; + int pipe_type = usb_pipetype(urb->pipe); + int status = -EINPROGRESS; + u32 hcintmsk = 0; + + /* Handle xfer complete on CSPLIT. */ + if (hc->qh->do_split) + qtd->complete_split = 0; + + /* Update the QTD and URB states. */ + switch (pipe_type) { + case PIPE_CONTROL: + switch (qtd->control_phase) { + case DWC_OTG_CONTROL_SETUP: + if (urb->transfer_buffer_length > 0) + qtd->control_phase = DWC_OTG_CONTROL_DATA; + else + qtd->control_phase = DWC_OTG_CONTROL_STATUS; + halt_status = DWC_OTG_HC_XFER_COMPLETE; + break; + case DWC_OTG_CONTROL_DATA: + urb_xfer_done = update_urb_state_xfer_comp(hc, regs, + urb, qtd, + &status); + if (urb_xfer_done) + qtd->control_phase = DWC_OTG_CONTROL_STATUS; + else + save_data_toggle(hc, regs, qtd); + halt_status = DWC_OTG_HC_XFER_COMPLETE; + break; + case DWC_OTG_CONTROL_STATUS: + if (status == -EINPROGRESS) + status = 0; + dwc_otg_hcd_complete_urb(hcd, urb, status); + halt_status = DWC_OTG_HC_XFER_URB_COMPLETE; + break; + } + complete_non_periodic_xfer(hcd, hc, regs, qtd, + halt_status, must_free); + break; + case PIPE_BULK: + urb_xfer_done = update_urb_state_xfer_comp(hc, regs, urb, qtd, + &status); + if (urb_xfer_done) { + dwc_otg_hcd_complete_urb(hcd, urb, status); + halt_status = DWC_OTG_HC_XFER_URB_COMPLETE; + } else { + halt_status = DWC_OTG_HC_XFER_COMPLETE; + } + + save_data_toggle(hc, regs, qtd); + complete_non_periodic_xfer(hcd, hc, regs, qtd, + halt_status, must_free); + break; + case PIPE_INTERRUPT: + update_urb_state_xfer_comp(hc, regs, urb, qtd, &status); + /* + * Interrupt URB is done on the first transfer complete + * interrupt. + */ + dwc_otg_hcd_complete_urb(hcd, urb, status); + save_data_toggle(hc, regs, qtd); + complete_periodic_xfer(hcd, hc, regs, qtd, + DWC_OTG_HC_XFER_URB_COMPLETE, must_free); + break; + case PIPE_ISOCHRONOUS: + if (qtd->isoc_split_pos == DWC_HCSPLIT_XACTPOS_ALL) { + halt_status = update_isoc_urb_state(hcd, hc, regs, qtd, + DWC_OTG_HC_XFER_COMPLETE); + } + complete_periodic_xfer(hcd, hc, regs, qtd, + halt_status, must_free); + break; + } + + /* disable xfercompl */ + hcintmsk = DWC_HCINTMSK_TXFER_CMPL_RW(hcintmsk, 1); + dwc_reg_modify(regs, DWC_HCINTMSK, hcintmsk, 0); + + return 1; +} + +/** + * Handles a host channel STALL interrupt. This handler may be called in + * either DMA mode or Slave mode. + */ +static int handle_hc_stall_intr(struct dwc_hcd *hcd, struct dwc_hc *hc, + u32 regs, struct dwc_qtd *qtd, int *must_free) +{ + struct urb *urb = qtd->urb; + int pipe_type = usb_pipetype(urb->pipe); + u32 hcintmsk = 0; + + if (pipe_type == PIPE_CONTROL) + dwc_otg_hcd_complete_urb(hcd, qtd->urb, -EPIPE); + + if (pipe_type == PIPE_BULK || pipe_type == PIPE_INTERRUPT) { + dwc_otg_hcd_complete_urb(hcd, qtd->urb, -EPIPE); + /* + * USB protocol requires resetting the data toggle for bulk + * and interrupt endpoints when a CLEAR_FEATURE(ENDPOINT_HALT) + * setup command is issued to the endpoint. Anticipate the + * CLEAR_FEATURE command since a STALL has occurred and reset + * the data toggle now. + */ + hc->qh->data_toggle = 0; + } + + halt_channel(hcd, hc, qtd, DWC_OTG_HC_XFER_STALL, must_free); + /* disable stall */ + hcintmsk = DWC_HCINTMSK_STALL_RESP_REC_RW(hcintmsk, 1); + dwc_reg_modify(regs, DWC_HCINTMSK, hcintmsk, 0); + + return 1; +} + +/** + * Updates the state of the URB when a transfer has been stopped due to an + * abnormal condition before the transfer completes. Modifies the + * actual_length field of the URB to reflect the number of bytes that have + * actually been transferred via the host channel. + */ +static void update_urb_state_xfer_intr(struct dwc_hc *hc, + u32 regs, struct urb *urb, + struct dwc_qtd *qtd, + enum dwc_halt_status sts) +{ + u32 xfr_len = get_actual_xfer_length(hc, regs, qtd, sts, NULL); + urb->actual_length += xfr_len; +} + +/** + * Handles a host channel NAK interrupt. This handler may be called in either + * DMA mode or Slave mode. + */ +static int handle_hc_nak_intr(struct dwc_hcd *hcd, struct dwc_hc *hc, + u32 regs, struct dwc_qtd *qtd, int *must_free) +{ + u32 hcintmsk = 0; + + /* + * Handle NAK for IN/OUT SSPLIT/CSPLIT transfers, bulk, control, and + * interrupt. Re-start the SSPLIT transfer. + */ + if (hc->do_split) { + if (hc->complete_split) + qtd->error_count = 0; + + qtd->complete_split = 0; + halt_channel(hcd, hc, qtd, DWC_OTG_HC_XFER_NAK, must_free); + goto handle_nak_done; + } + switch (usb_pipetype(qtd->urb->pipe)) { + case PIPE_CONTROL: + case PIPE_BULK: + if (hcd->core_if->dma_enable && hc->ep_is_in) { + /* + * NAK interrupts are enabled on bulk/control IN + * transfers in DMA mode for the sole purpose of + * resetting the error count after a transaction error + * occurs. The core will continue transferring data. + */ + qtd->error_count = 0; + goto handle_nak_done; + } + + /* + * NAK interrupts normally occur during OUT transfers in DMA + * or Slave mode. For IN transfers, more requests will be + * queued as request queue space is available. + */ + qtd->error_count = 0; + if (!hc->qh->ping_state) { + update_urb_state_xfer_intr(hc, regs, qtd->urb, qtd, + DWC_OTG_HC_XFER_NAK); + + save_data_toggle(hc, regs, qtd); + if (qtd->urb->dev->speed == USB_SPEED_HIGH) + hc->qh->ping_state = 1; + } + + /* + * Halt the channel so the transfer can be re-started from + * the appropriate point or the PING protocol will + * start/continue. + */ + halt_channel(hcd, hc, qtd, DWC_OTG_HC_XFER_NAK, must_free); + break; + case PIPE_INTERRUPT: + qtd->error_count = 0; + halt_channel(hcd, hc, qtd, DWC_OTG_HC_XFER_NAK, must_free); + break; + case PIPE_ISOCHRONOUS: + /* Should never get called for isochronous transfers. */ + BUG(); + break; + } + +handle_nak_done: + /* disable nak */ + hcintmsk = DWC_HCINTMSK_NAK_RESP_REC_RW(hcintmsk, 1); + dwc_reg_modify(regs, DWC_HCINTMSK, hcintmsk, 0); + + return 1; +} + +/** + * Helper function for handle_hc_ack_intr(). Sets the split values for an ACK + * on SSPLIT for ISOC OUT. + */ +static void set_isoc_out_vals(struct dwc_hc *hc, struct dwc_qtd *qtd) +{ + struct usb_iso_packet_descriptor *frame_desc; + + switch (hc->xact_pos) { + case DWC_HCSPLIT_XACTPOS_ALL: + break; + case DWC_HCSPLIT_XACTPOS_END: + qtd->isoc_split_pos = DWC_HCSPLIT_XACTPOS_ALL; + qtd->isoc_split_offset = 0; + break; + case DWC_HCSPLIT_XACTPOS_BEGIN: + case DWC_HCSPLIT_XACTPOS_MID: + /* + * For BEGIN or MID, calculate the length for the next + * microframe to determine the correct SSPLIT token, either MID + * or END. + */ + frame_desc = &qtd->urb->iso_frame_desc[qtd->isoc_frame_index]; + qtd->isoc_split_offset += 188; + + if ((frame_desc->length - qtd->isoc_split_offset) <= 188) + qtd->isoc_split_pos = DWC_HCSPLIT_XACTPOS_END; + else + qtd->isoc_split_pos = DWC_HCSPLIT_XACTPOS_MID; + + break; + } +} + +/** + * Handles a host channel ACK interrupt. This interrupt is enabled when + * performing the PING protocol in Slave mode, when errors occur during + * either Slave mode or DMA mode, and during Start Split transactions. + */ +static int handle_hc_ack_intr(struct dwc_hcd *hcd, struct dwc_hc *hc, + u32 regs, struct dwc_qtd *qtd, int *must_free) +{ + u32 hcintmsk = 0; + + if (hc->do_split) { + /* Handle ACK on SSPLIT. ACK should not occur in CSPLIT. */ + if (!hc->ep_is_in && hc->data_pid_start != DWC_OTG_HC_PID_SETUP) + qtd->ssplit_out_xfer_count = hc->xfer_len; + + /* Don't need complete for isochronous out transfers. */ + if (!(hc->ep_type == DWC_OTG_EP_TYPE_ISOC && !hc->ep_is_in)) + qtd->complete_split = 1; + + if (hc->ep_type == DWC_OTG_EP_TYPE_ISOC && !hc->ep_is_in) + set_isoc_out_vals(hc, qtd); + else + halt_channel(hcd, hc, qtd, DWC_OTG_HC_XFER_ACK, + must_free); + } else { + qtd->error_count = 0; + if (hc->qh->ping_state) { + hc->qh->ping_state = 0; + + /* + * Halt the channel so the transfer can be re-started + * from the appropriate point. This only happens in + * Slave mode. In DMA mode, the ping_state is cleared + * when the transfer is started because the core + * automatically executes the PING, then the transfer. + */ + halt_channel(hcd, hc, qtd, DWC_OTG_HC_XFER_ACK, + must_free); + } + } + + /* + * If the ACK occurred when _not_ in the PING state, let the channel + * continue transferring data after clearing the error count. + */ + /* disable ack */ + hcintmsk = DWC_HCINTMSK_ACK_RESP_REC_RW(hcintmsk, 1); + dwc_reg_modify(regs, DWC_HCINTMSK, hcintmsk, 0); + + return 1; +} + +/** + * Handles a host channel NYET interrupt. This interrupt should only occur on + * Bulk and Control OUT endpoints and for complete split transactions. If a + * NYET occurs at the same time as a Transfer Complete interrupt, it is + * handled in the xfercomp interrupt handler, not here. This handler may be + * called in either DMA mode or Slave mode. + */ +static int handle_hc_nyet_intr(struct dwc_hcd *hcd, struct dwc_hc *hc, + u32 regs, struct dwc_qtd *qtd, int *must_free) +{ + u32 hcintmsk = 0; + u32 hcint_clear = 0; + + /* + * NYET on CSPLIT + * re-do the CSPLIT immediately on non-periodic + */ + if (hc->do_split && hc->complete_split) { + if (hc->ep_type == DWC_OTG_EP_TYPE_INTR || + hc->ep_type == DWC_OTG_EP_TYPE_ISOC) { + int frnum = + dwc_otg_hcd_get_frame_number(dwc_otg_hcd_to_hcd + (hcd)); + if (dwc_full_frame_num(frnum) != + dwc_full_frame_num(hc->qh->sched_frame)) { + qtd->complete_split = 0; + halt_channel(hcd, hc, qtd, + DWC_OTG_HC_XFER_XACT_ERR, + must_free); + goto handle_nyet_done; + } + } + halt_channel(hcd, hc, qtd, DWC_OTG_HC_XFER_NYET, must_free); + goto handle_nyet_done; + } + hc->qh->ping_state = 1; + qtd->error_count = 0; + update_urb_state_xfer_intr(hc, regs, qtd->urb, qtd, + DWC_OTG_HC_XFER_NYET); + save_data_toggle(hc, regs, qtd); + /* + * Halt the channel and re-start the transfer so the PING + * protocol will start. + */ + halt_channel(hcd, hc, qtd, DWC_OTG_HC_XFER_NYET, must_free); + +handle_nyet_done: + /* disable nyet */ + hcintmsk = DWC_HCINTMSK_NYET_RESP_REC_RW(hcintmsk, 1); + dwc_reg_modify(regs, DWC_HCINTMSK, hcintmsk, 0); + /* clear nyet */ + hcint_clear = DWC_HCINT_NYET_RESP_REC_RW(hcint_clear, 1); + dwc_reg_write(regs, DWC_HCINT, hcint_clear); + return 1; +} + +/** + * Handles a host channel babble interrupt. This handler may be called in + * either DMA mode or Slave mode. + */ +static int handle_hc_babble_intr(struct dwc_hcd *hcd, struct dwc_hc *hc, + u32 regs, struct dwc_qtd *qtd, int *must_free) +{ + u32 hcintmsk = 0; + + if (hc->ep_type != DWC_OTG_EP_TYPE_ISOC) { + dwc_otg_hcd_complete_urb(hcd, qtd->urb, -EOVERFLOW); + halt_channel(hcd, hc, qtd, DWC_OTG_HC_XFER_BABBLE_ERR, + must_free); + } else { + enum dwc_halt_status halt_status; + halt_status = update_isoc_urb_state(hcd, hc, regs, qtd, + DWC_OTG_HC_XFER_BABBLE_ERR); + halt_channel(hcd, hc, qtd, halt_status, must_free); + } + /* disable bblerr */ + hcintmsk = DWC_HCINTMSK_BBL_ERR_RW(hcintmsk, 1); + dwc_reg_modify(regs, DWC_HCINTMSK, hcintmsk, 0); + return 1; +} + +/** + * Handles a host channel AHB error interrupt. This handler is only called in + * DMA mode. + */ +static int handle_hc_ahberr_intr(struct dwc_hcd *hcd, struct dwc_hc *hc, + u32 regs, struct dwc_qtd *qtd) +{ + u32 hcchar; + u32 hcsplt; + u32 hctsiz = 0; + u32 hcdma; + struct urb *urb = qtd->urb; + u32 hcintmsk = 0; + + hcchar = dwc_reg_read(regs, DWC_HCCHAR); + hcsplt = dwc_reg_read(regs, DWC_HCSPLT); + hctsiz = dwc_reg_read(regs, DWC_HCTSIZ); + hcdma = dwc_reg_read(regs, DWC_HCDMA); + + pr_err("AHB ERROR, Channel %d\n", hc->hc_num); + pr_err(" hcchar 0x%08x, hcsplt 0x%08x\n", hcchar, hcsplt); + pr_err(" hctsiz 0x%08x, hcdma 0x%08x\n", hctsiz, hcdma); + + pr_err(" Device address: %d\n", usb_pipedevice(urb->pipe)); + pr_err(" Endpoint: %d, %s\n", usb_pipeendpoint(urb->pipe), + (usb_pipein(urb->pipe) ? "IN" : "OUT")); + + pr_err(" Endpoint type: %s\n", pipetype_str(urb->pipe)); + pr_err(" Speed: %s\n", dev_speed_str(urb->dev->speed)); + pr_err(" Max packet size: %d\n", + usb_maxpacket(urb->dev, urb->pipe, usb_pipeout(urb->pipe))); + pr_err(" Data buffer length: %d\n", urb->transfer_buffer_length); + pr_err(" Transfer buffer: %p, Transfer DMA: %p\n", + urb->transfer_buffer, (void *)(u32) urb->transfer_dma); + pr_err(" Setup buffer: %p, Setup DMA: %p\n", + urb->setup_packet, (void *)(u32) urb->setup_dma); + pr_err(" Interval: %d\n", urb->interval); + + dwc_otg_hcd_complete_urb(hcd, urb, -EIO); + + /* + * Force a channel halt. Don't call halt_channel because that won't + * write to the HCCHARn register in DMA mode to force the halt. + */ + dwc_otg_hc_halt(hcd->core_if, hc, DWC_OTG_HC_XFER_AHB_ERR); + /* disable ahberr */ + hcintmsk = DWC_HCINTMSK_AHB_ERR_RW(hcintmsk, 1); + dwc_reg_modify(regs, DWC_HCINTMSK, hcintmsk, 0); + + return 1; +} + +/** + * Handles a host channel transaction error interrupt. This handler may be + * called in either DMA mode or Slave mode. + */ +static int handle_hc_xacterr_intr(struct dwc_hcd *hcd, struct dwc_hc *hc, + u32 regs, struct dwc_qtd *qtd, int *must_free) +{ + enum dwc_halt_status status = DWC_OTG_HC_XFER_XACT_ERR; + u32 hcintmsk = 0; + + switch (usb_pipetype(qtd->urb->pipe)) { + case PIPE_CONTROL: + case PIPE_BULK: + qtd->error_count++; + if (!hc->qh->ping_state) { + update_urb_state_xfer_intr(hc, regs, qtd->urb, qtd, + status); + save_data_toggle(hc, regs, qtd); + + if (!hc->ep_is_in && qtd->urb->dev->speed == + USB_SPEED_HIGH) + hc->qh->ping_state = 1; + } + /* + * Halt the channel so the transfer can be re-started from + * the appropriate point or the PING protocol will start. + */ + halt_channel(hcd, hc, qtd, status, must_free); + break; + case PIPE_INTERRUPT: + qtd->error_count++; + if (hc->do_split && hc->complete_split) + qtd->complete_split = 0; + + halt_channel(hcd, hc, qtd, status, must_free); + break; + case PIPE_ISOCHRONOUS: + status = update_isoc_urb_state(hcd, hc, regs, qtd, status); + halt_channel(hcd, hc, qtd, status, must_free); + break; + } + /* Disable xacterr */ + hcintmsk = DWC_HCINTMSK_TRANS_ERR_RW(hcintmsk, 1); + dwc_reg_modify(regs, DWC_HCINTMSK, hcintmsk, 0); + + return 1; +} + +/** + * Handles a host channel frame overrun interrupt. This handler may be called + * in either DMA mode or Slave mode. + */ +static int handle_hc_frmovrun_intr(struct dwc_hcd *hcd, struct dwc_hc *hc, + u32 regs, struct dwc_qtd *qtd, + int *must_free) +{ + enum dwc_halt_status status = DWC_OTG_HC_XFER_FRAME_OVERRUN; + u32 hcintmsk = 0; + + switch (usb_pipetype(qtd->urb->pipe)) { + case PIPE_CONTROL: + case PIPE_BULK: + break; + case PIPE_INTERRUPT: + halt_channel(hcd, hc, qtd, status, must_free); + break; + case PIPE_ISOCHRONOUS: + status = update_isoc_urb_state(hcd, hc, regs, qtd, status); + halt_channel(hcd, hc, qtd, status, must_free); + break; + } + /* Disable frmovrun */ + hcintmsk = DWC_HCINTMSK_FRAME_OVERN_ERR_RW(hcintmsk, 1); + dwc_reg_modify(regs, DWC_HCINTMSK, hcintmsk, 0); + + return 1; +} + +/** + * Handles a host channel data toggle error interrupt. This handler may be + * called in either DMA mode or Slave mode. + */ +static int handle_hc_datatglerr_intr(struct dwc_hcd *hcd, struct dwc_hc *hc, + u32 regs, struct dwc_qtd *qtd) +{ + u32 hcintmsk = 0; + + if (hc->ep_is_in) + qtd->error_count = 0; + else + pr_err("Data Toggle Error on OUT transfer, channel " + "%d\n", hc->hc_num); + + /* disable datatglerr */ + hcintmsk = DWC_HCINTMSK_DATA_TOG_ERR_RW(hcintmsk, 1); + dwc_reg_modify(regs, DWC_HCINTMSK, hcintmsk, 0); + + return 1; +} + +/** + * Handles a host Channel Halted interrupt in DMA mode. This handler + * determines the reason the channel halted and proceeds accordingly. + */ +static void handle_hc_chhltd_intr_dma(struct dwc_hcd *hcd, struct dwc_hc *hc, + ulong regs, struct dwc_qtd *qtd, + int *must_free) +{ + u32 hcint; + u32 hcintmsk = 0; + + if (hc->halt_status == DWC_OTG_HC_XFER_URB_DEQUEUE || + hc->halt_status == DWC_OTG_HC_XFER_AHB_ERR) { + /* + * Just release the channel. A dequeue can happen on a + * transfer timeout. In the case of an AHB Error, the channel + * was forced to halt because there's no way to gracefully + * recover. + */ + release_channel(hcd, hc, qtd, hc->halt_status, must_free); + return; + } + + /* Read the HCINTn register to determine the cause for the halt. */ + hcint = dwc_reg_read(regs, DWC_HCINT); + hcintmsk = dwc_reg_read(regs, DWC_HCINTMSK); + if (DWC_HCINT_TXFER_CMPL_RD(hcint)) { + /* + * This is here because of a possible hardware bug. Spec + * says that on SPLIT-ISOC OUT transfers in DMA mode that a HALT + * interrupt w/ACK bit set should occur, but I only see the + * XFERCOMP bit, even with it masked out. This is a workaround + * for that behavior. Should fix this when hardware is fixed. + */ + if (hc->ep_type == DWC_OTG_EP_TYPE_ISOC && !hc->ep_is_in) + handle_hc_ack_intr(hcd, hc, regs, qtd, must_free); + + handle_hc_xfercomp_intr(hcd, hc, regs, qtd, must_free); + } else if (DWC_HCINT_STALL_RESP_REC_RD(hcint)) { + handle_hc_stall_intr(hcd, hc, regs, qtd, must_free); + } else if (DWC_HCINT_TRANS_ERR_RD(hcint)) { + /* + * Must handle xacterr before nak or ack. Could get a xacterr + * at the same time as either of these on a BULK/CONTROL OUT + * that started with a PING. The xacterr takes precedence. + */ + handle_hc_xacterr_intr(hcd, hc, regs, qtd, must_free); + } else if (DWC_HCINT_NYET_RESP_REC_RD(hcint)) { + /* + * Must handle nyet before nak or ack. Could get a nyet at the + * same time as either of those on a BULK/CONTROL OUT that + * started with a PING. The nyet takes precedence. + */ + handle_hc_nyet_intr(hcd, hc, regs, qtd, must_free); + } else if (DWC_HCINT_BBL_ERR_RD(hcint)) { + handle_hc_babble_intr(hcd, hc, regs, qtd, must_free); + } else if (DWC_HCINT_FRAME_OVERN_ERR_RD(hcint)) { + handle_hc_frmovrun_intr(hcd, hc, regs, qtd, must_free); + } else if (DWC_HCINT_DATA_TOG_ERR_RD(hcint)) { + handle_hc_datatglerr_intr(hcd, hc, regs, qtd); + hc->qh->data_toggle = 0; + halt_channel(hcd, hc, qtd, hc->halt_status, must_free); + } else if (DWC_HCINT_NAK_RESP_REC_RD(hcint) && + !DWC_HCINTMSK_NAK_RESP_REC_RD(hcintmsk)) { + /* + * If nak is not masked, it's because a non-split IN transfer + * is in an error state. In that case, the nak is handled by + * the nak interrupt handler, not here. Handle nak here for + * BULK/CONTROL OUT transfers, which halt on a NAK to allow + * rewinding the buffer pointer. + */ + handle_hc_nak_intr(hcd, hc, regs, qtd, must_free); + } else if (DWC_HCINT_ACK_RESP_REC_RD(hcint) && + !DWC_HCINTMSK_ACK_RESP_REC_RD(hcintmsk)) { + /* + * If ack is not masked, it's because a non-split IN transfer + * is in an error state. In that case, the ack is handled by + * the ack interrupt handler, not here. Handle ack here for + * split transfers. Start splits halt on ACK. + */ + handle_hc_ack_intr(hcd, hc, regs, qtd, must_free); + } else { + if (hc->ep_type == DWC_OTG_EP_TYPE_INTR || + hc->ep_type == DWC_OTG_EP_TYPE_ISOC) { + /* + * A periodic transfer halted with no other channel + * interrupts set. Assume it was halted by the core + * because it could not be completed in its scheduled + * (micro)frame. + */ + halt_channel(hcd, hc, qtd, + DWC_OTG_HC_XFER_PERIODIC_INCOMPLETE, + must_free); + } else { + pr_err("%s: Channel %d, DMA Mode -- ChHltd " + "set, but reason for halting is unknown, " + "hcint 0x%08x, intsts 0x%08x\n", + __func__, hc->hc_num, hcint, + dwc_reg_read(gintsts_reg(hcd), 0)); + } + } +} + +/** + * Handles a host channel Channel Halted interrupt. + * + * In slave mode, this handler is called only when the driver specifically + * requests a halt. This occurs during handling other host channel interrupts + * (e.g. nak, xacterr, stall, nyet, etc.). + * + * In DMA mode, this is the interrupt that occurs when the core has finished + * processing a transfer on a channel. Other host channel interrupts (except + * ahberr) are disabled in DMA mode. + */ +static int handle_hc_chhltd_intr(struct dwc_hcd *hcd, struct dwc_hc *hc, + ulong regs, struct dwc_qtd *qtd, int *must_free) +{ + if (hcd->core_if->dma_enable) + handle_hc_chhltd_intr_dma(hcd, hc, regs, qtd, must_free); + else + release_channel(hcd, hc, qtd, hc->halt_status, must_free); + + return 1; +} + +/* Handles interrupt for a specific Host Channel */ +static int dwc_otg_hcd_handle_hc_n_intr(struct dwc_hcd *hcd, u32 num) +{ + int must_free = 0; + int retval = 0; + u32 hcint; + u32 hcintmsk = 0; + struct dwc_hc *hc; + ulong hc_regs; + struct dwc_qtd *qtd; + + hc = hcd->hc_ptr_array[num]; + hc_regs = hcd->core_if->host_if->hc_regs[num]; + qtd = list_entry(hc->qh->qtd_list.next, struct dwc_qtd, qtd_list_entry); + + hcint = dwc_reg_read(hc_regs, DWC_HCINT); + hcintmsk = dwc_reg_read(hc_regs, DWC_HCINTMSK); + + hcint = hcint & hcintmsk; + if (!hcd->core_if->dma_enable && DWC_HCINT_CHAN_HALTED_RD(hcint) + && hcint != 0x2) + hcint = DWC_HCINT_CHAN_HALTED_RW(hcint, 0); + + if (DWC_HCINT_TXFER_CMPL_RD(hcint)) { + retval |= handle_hc_xfercomp_intr(hcd, hc, hc_regs, + qtd, &must_free); + /* + * If NYET occurred at same time as Xfer Complete, the NYET is + * handled by the Xfer Complete interrupt handler. Don't want + * to call the NYET interrupt handler in this case. + */ + hcint = DWC_HCINT_NYET_RESP_REC_RW(hcint, 0); + } + + if (DWC_HCINT_CHAN_HALTED_RD(hcint)) + retval |= handle_hc_chhltd_intr(hcd, hc, hc_regs, + qtd, &must_free); + if (DWC_HCINT_AHB_ERR_RD(hcint)) + retval |= handle_hc_ahberr_intr(hcd, hc, hc_regs, qtd); + if (DWC_HCINT_STALL_RESP_REC_RD(hcint)) + retval |= handle_hc_stall_intr(hcd, hc, hc_regs, + qtd, &must_free); + if (DWC_HCINT_NAK_RESP_REC_RD(hcint)) + retval |= handle_hc_nak_intr(hcd, hc, hc_regs, qtd, &must_free); + if (DWC_HCINT_ACK_RESP_REC_RD(hcint)) + retval |= handle_hc_ack_intr(hcd, hc, hc_regs, qtd, &must_free); + if (DWC_HCINT_NYET_RESP_REC_RD(hcint)) + retval |= handle_hc_nyet_intr(hcd, hc, hc_regs, + qtd, &must_free); + if (DWC_HCINT_TRANS_ERR_RD(hcint)) + retval |= handle_hc_xacterr_intr(hcd, hc, hc_regs, + qtd, &must_free); + if (DWC_HCINT_BBL_ERR_RD(hcint)) + retval |= handle_hc_babble_intr(hcd, hc, hc_regs, + qtd, &must_free); + if (DWC_HCINT_FRAME_OVERN_ERR_RD(hcint)) + retval |= handle_hc_frmovrun_intr(hcd, hc, hc_regs, + qtd, &must_free); + if (DWC_HCINT_DATA_TOG_ERR_RD(hcint)) + retval |= handle_hc_datatglerr_intr(hcd, hc, hc_regs, qtd); + + if (must_free) + /* Free the qtd here now that we are done using it. */ + dwc_otg_hcd_qtd_free(qtd); + return retval; +} + +/** + * This function returns the Host All Channel Interrupt register + */ +static inline u32 dwc_otg_read_host_all_channels_intr(struct core_if + *core_if) +{ + return dwc_reg_read(core_if->host_if->host_global_regs, DWC_HAINT); +} + +/** + * This interrupt indicates that one or more host channels has a pending + * interrupt. There are multiple conditions that can cause each host channel + * interrupt. This function determines which conditions have occurred for each + * host channel interrupt and handles them appropriately. + */ +static int dwc_otg_hcd_handle_hc_intr(struct dwc_hcd *hcd) +{ + u32 i; + int retval = 0; + u32 haint; + + /* + * Clear appropriate bits in HCINTn to clear the interrupt bit in + * GINTSTS + */ + haint = dwc_otg_read_host_all_channels_intr(hcd->core_if); + for (i = 0; i < hcd->core_if->core_params->host_channels; i++) + if (DWC_HAINT_RD(haint) & (1 << i)) + retval |= dwc_otg_hcd_handle_hc_n_intr(hcd, i); + + return retval; +} + +/* This function handles interrupts for the HCD.*/ +int dwc_otg_hcd_handle_intr(struct dwc_hcd *hcd) +{ + int ret = 0; + struct core_if *core_if = hcd->core_if; + u32 gintsts; + + /* Check if HOST Mode */ + if (dwc_otg_is_host_mode(core_if)) { + spin_lock(&hcd->lock); + gintsts = dwc_otg_read_core_intr(core_if); + if (!gintsts) { + spin_unlock(&hcd->lock); + return IRQ_NONE; + } + + if (gintsts & DWC_INTMSK_STRT_OF_FRM) + ret |= dwc_otg_hcd_handle_sof_intr(hcd); + if (gintsts & DWC_INTMSK_RXFIFO_NOT_EMPT) + ret |= dwc_otg_hcd_handle_rx_status_q_level_intr(hcd); + if (gintsts & DWC_INTMSK_NP_TXFIFO_EMPT) + ret |= dwc_otg_hcd_handle_np_tx_fifo_empty_intr(hcd); + if (gintsts & DWC_INTMSK_HST_PORT) + ret |= dwc_otg_hcd_handle_port_intr(hcd); + if (gintsts & DWC_INTMSK_HST_CHAN) + ret |= dwc_otg_hcd_handle_hc_intr(hcd); + if (gintsts & DWC_INTMSK_P_TXFIFO_EMPTY) + ret |= dwc_otg_hcd_handle_perio_tx_fifo_empty_intr(hcd); + + spin_unlock(&hcd->lock); + } + return ret; +}