From patchwork Sun May 27 21:54:39 2018 Content-Type: text/plain; charset="utf-8" MIME-Version: 1.0 Content-Transfer-Encoding: 7bit X-Patchwork-Submitter: Stefan Agner X-Patchwork-Id: 921229 Return-Path: X-Original-To: incoming@patchwork.ozlabs.org Delivered-To: patchwork-incoming@bilbo.ozlabs.org Authentication-Results: ozlabs.org; spf=none (mailfrom) smtp.mailfrom=vger.kernel.org (client-ip=209.132.180.67; helo=vger.kernel.org; envelope-from=linux-tegra-owner@vger.kernel.org; receiver=) Authentication-Results: ozlabs.org; dmarc=none (p=none dis=none) header.from=agner.ch Authentication-Results: ozlabs.org; dkim=fail reason="signature verification failed" (1024-bit key; secure) header.d=agner.ch header.i=@agner.ch header.b="Ju2mIpig"; dkim-atps=neutral Received: from vger.kernel.org (vger.kernel.org [209.132.180.67]) by ozlabs.org (Postfix) with ESMTP id 40vDMR2DZZz9s0y for ; Mon, 28 May 2018 07:56:03 +1000 (AEST) Received: (majordomo@vger.kernel.org) by vger.kernel.org via listexpand id S1752075AbeE0Vzg (ORCPT ); Sun, 27 May 2018 17:55:36 -0400 Received: from mail.kmu-office.ch ([178.209.48.109]:45090 "EHLO mail.kmu-office.ch" rhost-flags-OK-OK-OK-OK) by vger.kernel.org with ESMTP id S1752016AbeE0Vyw (ORCPT ); Sun, 27 May 2018 17:54:52 -0400 Received: from trochilidae.lan (unknown [37.17.239.3]) by mail.kmu-office.ch (Postfix) with ESMTPSA id AB7B65C19DD; Sun, 27 May 2018 23:54:49 +0200 (CEST) DKIM-Signature: v=1; a=rsa-sha256; c=relaxed/relaxed; d=agner.ch; s=dkim; t=1527458090; h=from:from:reply-to:subject:subject:date:date:message-id:message-id: to:to:cc:cc:mime-version:content-type:content-transfer-encoding: in-reply-to:references; bh=WxeGriqC8bd1ROTDrvBg0AF1Y0bPOHG/vIxSZcUGr9Y=; b=Ju2mIpigC7MFCu7+2O/iFxiuteSEPnr3dtTe+lfJZo7l6w+IDmLXGghOiUsvAmLggYU1+R HassI57+QfZzUEG0m8UW4IYnHafRWr1EOJPCQWBl0t9FZHCIySREJOg2qPennf0bGpOV3q UwezZiMIFOLuK1rB44cJcCicKIANp7s= From: Stefan Agner To: boris.brezillon@bootlin.com, dwmw2@infradead.org, computersforpeace@gmail.com, marek.vasut@gmail.com, robh+dt@kernel.org, mark.rutland@arm.com, thierry.reding@gmail.com, mturquette@baylibre.com, sboyd@kernel.org Cc: dev@lynxeye.de, miquel.raynal@bootlin.com, richard@nod.at, marcel@ziswiler.com, krzk@kernel.org, digetx@gmail.com, benjamin.lindqvist@endian.se, jonathanh@nvidia.com, pdeschrijver@nvidia.com, pgaikwad@nvidia.com, mirza.krak@gmail.com, linux-mtd@lists.infradead.org, linux-tegra@vger.kernel.org, devicetree@vger.kernel.org, linux-kernel@vger.kernel.org, linux-clk@vger.kernel.org, Stefan Agner Subject: [PATCH v2 3/6] mtd: rawnand: add NVIDIA Tegra NAND Flash controller driver Date: Sun, 27 May 2018 23:54:39 +0200 Message-Id: <20180527215442.14760-4-stefan@agner.ch> X-Mailer: git-send-email 2.17.0 X-Spamd-Result: default: False [-2.10 / 15.00]; TO_MATCH_ENVRCPT_ALL(0.00)[]; RCPT_COUNT_TWELVE(0.00)[26]; BAYES_HAM(-3.00)[100.00%]; TAGGED_RCPT(0.00)[dt]; MIME_GOOD(-0.10)[text/plain]; FROM_HAS_DN(0.00)[]; FROM_EQ_ENVFROM(0.00)[]; DKIM_SIGNED(0.00)[]; TO_DN_SOME(0.00)[]; RCVD_COUNT_ZERO(0.00)[0]; MID_CONTAINS_FROM(1.00)[]; ASN(0.00)[asn:13030, ipnet:37.17.238.0/23, country:CH]; RCVD_TLS_ALL(0.00)[]; ARC_NA(0.00)[] Sender: linux-tegra-owner@vger.kernel.org Precedence: bulk List-ID: X-Mailing-List: linux-tegra@vger.kernel.org Add support for the NAND flash controller found on NVIDIA Tegra 2 SoCs. This implementation does not make use of the command queue feature. Regular operations/data transfers are done in PIO mode. Page read/writes with hardware ECC make use of the DMA for data transfer. Signed-off-by: Lucas Stach Signed-off-by: Stefan Agner --- MAINTAINERS | 7 + drivers/mtd/nand/raw/Kconfig | 6 + drivers/mtd/nand/raw/Makefile | 1 + drivers/mtd/nand/raw/tegra_nand.c | 999 ++++++++++++++++++++++++++++++ 4 files changed, 1013 insertions(+) create mode 100644 drivers/mtd/nand/raw/tegra_nand.c diff --git a/MAINTAINERS b/MAINTAINERS index 58b9861ccf99..8cbbb7111742 100644 --- a/MAINTAINERS +++ b/MAINTAINERS @@ -13844,6 +13844,13 @@ M: Laxman Dewangan S: Supported F: drivers/input/keyboard/tegra-kbc.c +TEGRA NAND DRIVER +M: Stefan Agner +M: Lucas Stach +S: Maintained +F: Documentation/devicetree/bindings/mtd/nvidia,tegra20-nand.txt +F: drivers/mtd/nand/raw/tegra_nand.c + TEGRA PWM DRIVER M: Thierry Reding S: Supported diff --git a/drivers/mtd/nand/raw/Kconfig b/drivers/mtd/nand/raw/Kconfig index 19a2b283fbbe..012c63c6ab47 100644 --- a/drivers/mtd/nand/raw/Kconfig +++ b/drivers/mtd/nand/raw/Kconfig @@ -534,4 +534,10 @@ config MTD_NAND_MTK Enables support for NAND controller on MTK SoCs. This controller is found on mt27xx, mt81xx, mt65xx SoCs. +config MTD_NAND_TEGRA + tristate "Support for NAND on NVIDIA Tegra" + depends on ARCH_TEGRA || COMPILE_TEST + help + Enables support for NAND flash on NVIDIA Tegra SoC based boards. + endif # MTD_NAND diff --git a/drivers/mtd/nand/raw/Makefile b/drivers/mtd/nand/raw/Makefile index 165b7ef9e9a1..d5a5f9832b88 100644 --- a/drivers/mtd/nand/raw/Makefile +++ b/drivers/mtd/nand/raw/Makefile @@ -56,6 +56,7 @@ obj-$(CONFIG_MTD_NAND_HISI504) += hisi504_nand.o obj-$(CONFIG_MTD_NAND_BRCMNAND) += brcmnand/ obj-$(CONFIG_MTD_NAND_QCOM) += qcom_nandc.o obj-$(CONFIG_MTD_NAND_MTK) += mtk_ecc.o mtk_nand.o +obj-$(CONFIG_MTD_NAND_TEGRA) += tegra_nand.o nand-objs := nand_base.o nand_bbt.o nand_timings.o nand_ids.o nand-objs += nand_amd.o diff --git a/drivers/mtd/nand/raw/tegra_nand.c b/drivers/mtd/nand/raw/tegra_nand.c new file mode 100644 index 000000000000..1a0833d97472 --- /dev/null +++ b/drivers/mtd/nand/raw/tegra_nand.c @@ -0,0 +1,999 @@ +// SPDX-License-Identifier: GPL-2.0 +/* + * Copyright (C) 2018 Stefan Agner + * Copyright (C) 2014-2015 Lucas Stach + * Copyright (C) 2012 Avionic Design GmbH + */ + +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include + +#define CMD 0x00 +#define CMD_GO (1 << 31) +#define CMD_CLE (1 << 30) +#define CMD_ALE (1 << 29) +#define CMD_PIO (1 << 28) +#define CMD_TX (1 << 27) +#define CMD_RX (1 << 26) +#define CMD_SEC_CMD (1 << 25) +#define CMD_AFT_DAT (1 << 24) +#define CMD_TRANS_SIZE(x) (((x - 1) & 0xf) << 20) +#define CMD_A_VALID (1 << 19) +#define CMD_B_VALID (1 << 18) +#define CMD_RD_STATUS_CHK (1 << 17) +#define CMD_RBSY_CHK (1 << 16) +#define CMD_CE(x) (1 << (8 + ((x) & 0x7))) +#define CMD_CLE_SIZE(x) (((x - 1) & 0x3) << 4) +#define CMD_ALE_SIZE(x) (((x - 1) & 0xf) << 0) + +#define STATUS 0x04 + +#define ISR 0x08 +#define ISR_CORRFAIL_ERR (1 << 24) +#define ISR_UND (1 << 7) +#define ISR_OVR (1 << 6) +#define ISR_CMD_DONE (1 << 5) +#define ISR_ECC_ERR (1 << 4) + +#define IER 0x0c +#define IER_ERR_TRIG_VAL(x) (((x) & 0xf) << 16) +#define IER_UND (1 << 7) +#define IER_OVR (1 << 6) +#define IER_CMD_DONE (1 << 5) +#define IER_ECC_ERR (1 << 4) +#define IER_GIE (1 << 0) + +#define CFG 0x10 +#define CFG_HW_ECC (1 << 31) +#define CFG_ECC_SEL (1 << 30) +#define CFG_ERR_COR (1 << 29) +#define CFG_PIPE_EN (1 << 28) +#define CFG_TVAL_4 (0 << 24) +#define CFG_TVAL_6 (1 << 24) +#define CFG_TVAL_8 (2 << 24) +#define CFG_SKIP_SPARE (1 << 23) +#define CFG_BUS_WIDTH_8 (0 << 21) +#define CFG_BUS_WIDTH_16 (1 << 21) +#define CFG_COM_BSY (1 << 20) +#define CFG_PS_256 (0 << 16) +#define CFG_PS_512 (1 << 16) +#define CFG_PS_1024 (2 << 16) +#define CFG_PS_2048 (3 << 16) +#define CFG_PS_4096 (4 << 16) +#define CFG_SKIP_SPARE_SIZE_4 (0 << 14) +#define CFG_SKIP_SPARE_SIZE_8 (1 << 14) +#define CFG_SKIP_SPARE_SIZE_12 (2 << 14) +#define CFG_SKIP_SPARE_SIZE_16 (3 << 14) +#define CFG_TAG_BYTE_SIZE(x) ((x) & 0xff) + +#define TIMING_1 0x14 +#define TIMING_TRP_RESP(x) (((x) & 0xf) << 28) +#define TIMING_TWB(x) (((x) & 0xf) << 24) +#define TIMING_TCR_TAR_TRR(x) (((x) & 0xf) << 20) +#define TIMING_TWHR(x) (((x) & 0xf) << 16) +#define TIMING_TCS(x) (((x) & 0x3) << 14) +#define TIMING_TWH(x) (((x) & 0x3) << 12) +#define TIMING_TWP(x) (((x) & 0xf) << 8) +#define TIMING_TRH(x) (((x) & 0xf) << 4) +#define TIMING_TRP(x) (((x) & 0xf) << 0) + +#define RESP 0x18 + +#define TIMING_2 0x1c +#define TIMING_TADL(x) ((x) & 0xf) + +#define CMD_1 0x20 +#define CMD_2 0x24 +#define ADDR_1 0x28 +#define ADDR_2 0x2c + +#define DMA_CTRL 0x30 +#define DMA_CTRL_GO (1 << 31) +#define DMA_CTRL_IN (0 << 30) +#define DMA_CTRL_OUT (1 << 30) +#define DMA_CTRL_PERF_EN (1 << 29) +#define DMA_CTRL_IE_DONE (1 << 28) +#define DMA_CTRL_REUSE (1 << 27) +#define DMA_CTRL_BURST_1 (2 << 24) +#define DMA_CTRL_BURST_4 (3 << 24) +#define DMA_CTRL_BURST_8 (4 << 24) +#define DMA_CTRL_BURST_16 (5 << 24) +#define DMA_CTRL_IS_DONE (1 << 20) +#define DMA_CTRL_EN_A (1 << 2) +#define DMA_CTRL_EN_B (1 << 1) + +#define DMA_CFG_A 0x34 +#define DMA_CFG_B 0x38 + +#define FIFO_CTRL 0x3c +#define FIFO_CTRL_CLR_ALL (1 << 3) + +#define DATA_PTR 0x40 +#define TAG_PTR 0x44 +#define ECC_PTR 0x48 + +#define DEC_STATUS 0x4c +#define DEC_STATUS_A_ECC_FAIL (1 << 1) +#define DEC_STATUS_ERR_COUNT_MASK 0x00ff0000 +#define DEC_STATUS_ERR_COUNT_SHIFT 16 + +#define HWSTATUS_CMD 0x50 +#define HWSTATUS_MASK 0x54 +#define HWSTATUS_RDSTATUS_MASK(x) (((x) & 0xff) << 24) +#define HWSTATUS_RDSTATUS_VALUE(x) (((x) & 0xff) << 16) +#define HWSTATUS_RBSY_MASK(x) (((x) & 0xff) << 8) +#define HWSTATUS_RBSY_VALUE(x) (((x) & 0xff) << 0) + +#define BCH_CONFIG 0xcc +#define BCH_ENABLE (1 << 0) +#define BCH_TVAL_4 (0 << 4) +#define BCH_TVAL_8 (1 << 4) +#define BCH_TVAL_14 (2 << 4) +#define BCH_TVAL_16 (3 << 4) + +#define DEC_STAT_RESULT 0xd0 +#define DEC_STAT_BUF 0xd4 +#define DEC_STAT_BUF_FAIL_SEC_FLAG_MASK 0xff000000 +#define DEC_STAT_BUF_FAIL_SEC_FLAG_SHIFT 24 +#define DEC_STAT_BUF_CORR_SEC_FLAG_MASK 0x00ff0000 +#define DEC_STAT_BUF_CORR_SEC_FLAG_SHIFT 16 +#define DEC_STAT_BUF_MAX_CORR_CNT_MASK 0x00001f00 +#define DEC_STAT_BUF_MAX_CORR_CNT_SHIFT 8 + +#define SKIP_SPARE_BYTES 4 +#define BITS_PER_STEP_RS 18 +#define BITS_PER_STEP_BCH 13 + +struct tegra_nand_controller { + struct nand_hw_control controller; + void __iomem *regs; + struct clk *clk; + struct device *dev; + struct completion command_complete; + struct completion dma_complete; + bool last_read_error; + int cur_chip; + struct nand_chip *chip; +}; + +struct tegra_nand_chip { + struct nand_chip chip; + struct gpio_desc *wp_gpio; +}; + +static inline struct tegra_nand_controller *to_tegra_ctrl( + struct nand_hw_control *hw_ctrl) +{ + return container_of(hw_ctrl, struct tegra_nand_controller, controller); +} + +static int tegra_nand_ooblayout_rs_ecc(struct mtd_info *mtd, int section, + struct mtd_oob_region *oobregion) +{ + struct nand_chip *chip = mtd_to_nand(mtd); + int bytes_per_step = (BITS_PER_STEP_RS * chip->ecc.strength) / 8; + + if (section > 0) + return -ERANGE; + + oobregion->offset = SKIP_SPARE_BYTES; + oobregion->length = round_up(bytes_per_step * chip->ecc.steps, 4); + + return 0; +} + +static int tegra_nand_ooblayout_rs_free(struct mtd_info *mtd, int section, + struct mtd_oob_region *oobregion) +{ + struct nand_chip *chip = mtd_to_nand(mtd); + int bytes_per_step = DIV_ROUND_UP(BITS_PER_STEP_RS * chip->ecc.strength, 8); + + if (section > 0) + return -ERANGE; + + oobregion->offset = SKIP_SPARE_BYTES + + round_up(bytes_per_step * chip->ecc.steps, 4); + oobregion->length = mtd->oobsize - oobregion->offset; + + return 0; +} + +static const struct mtd_ooblayout_ops tegra_nand_oob_rs_ops = { + .ecc = tegra_nand_ooblayout_rs_ecc, + .free = tegra_nand_ooblayout_rs_free, +}; + +static int tegra_nand_ooblayout_bch_ecc(struct mtd_info *mtd, int section, + struct mtd_oob_region *oobregion) +{ + struct nand_chip *chip = mtd_to_nand(mtd); + int bytes_per_step = DIV_ROUND_UP(BITS_PER_STEP_BCH * chip->ecc.strength, 8); + + if (section > 0) + return -ERANGE; + + oobregion->offset = SKIP_SPARE_BYTES; + oobregion->length = round_up(bytes_per_step * chip->ecc.steps, 4); + + return 0; +} + +static int tegra_nand_ooblayout_bch_free(struct mtd_info *mtd, int section, + struct mtd_oob_region *oobregion) +{ + struct nand_chip *chip = mtd_to_nand(mtd); + int bytes_per_step = (BITS_PER_STEP_BCH * chip->ecc.strength) / 8; + + if (section > 0) + return -ERANGE; + + oobregion->offset = SKIP_SPARE_BYTES + + round_up(bytes_per_step * chip->ecc.steps, 4); + oobregion->length = mtd->oobsize - oobregion->offset; + + return 0; +} + +/* + * Layout with tag bytes is + * + * -------------------------------------------------------------------------- + * | main area | skip bytes | tag bytes | parity | .. | + * -------------------------------------------------------------------------- + * + * If not tag bytes are written, parity moves right after skip bytes! + */ +static const struct mtd_ooblayout_ops tegra_nand_oob_bch_ops = { + .ecc = tegra_nand_ooblayout_bch_ecc, + .free = tegra_nand_ooblayout_bch_free, +}; + +static irqreturn_t tegra_nand_irq(int irq, void *data) +{ + struct tegra_nand_controller *ctrl = data; + u32 isr, dma; + + isr = readl_relaxed(ctrl->regs + ISR); + dma = readl_relaxed(ctrl->regs + DMA_CTRL); + dev_dbg(ctrl->dev, "isr %08x\n", isr); + + if (!isr && !(dma & DMA_CTRL_IS_DONE)) + return IRQ_NONE; + + if (isr & ISR_CORRFAIL_ERR) + ctrl->last_read_error = true; + + if (isr & ISR_CMD_DONE) + complete(&ctrl->command_complete); + + if (isr & ISR_UND) + dev_dbg(ctrl->dev, "FIFO underrun\n"); + + if (isr & ISR_OVR) + dev_dbg(ctrl->dev, "FIFO overrun\n"); + + /* handle DMA interrupts */ + if (dma & DMA_CTRL_IS_DONE) { + writel(dma, ctrl->regs + DMA_CTRL); + complete(&ctrl->dma_complete); + } + + /* clear interrupts */ + writel(isr, ctrl->regs + ISR); + + return IRQ_HANDLED; +} + +static int tegra_nand_cmd(struct nand_chip *chip, + const struct nand_subop *subop) +{ + const struct nand_op_instr *instr; + const struct nand_op_instr *instr_data_in = NULL; + struct tegra_nand_controller *ctrl = to_tegra_ctrl(chip->controller); + unsigned int op_id = -1, trfr_in_sz = 0, trfr_out_sz = 0, offset = 0; + bool first_cmd = true; + u32 cmd = 0; + u32 value; + + for (op_id = 0; op_id < subop->ninstrs; op_id++) { + unsigned int naddrs, i; + const u8 *addrs; + u32 addr1 = 0, addr2 = 0; + + instr = &subop->instrs[op_id]; + + switch (instr->type) { + case NAND_OP_CMD_INSTR: + if (first_cmd) { + cmd |= CMD_CLE; + writel(instr->ctx.cmd.opcode, ctrl->regs + CMD_1); + } else { + cmd |= CMD_SEC_CMD; + writel(instr->ctx.cmd.opcode, ctrl->regs + CMD_2); + } + first_cmd = false; + break; + case NAND_OP_ADDR_INSTR: + offset = nand_subop_get_addr_start_off(subop, op_id); + naddrs = nand_subop_get_num_addr_cyc(subop, op_id); + addrs = &instr->ctx.addr.addrs[offset]; + + cmd |= CMD_ALE | CMD_ALE_SIZE(naddrs); + for (i = 0; i < min_t(unsigned int, 4, naddrs); i++) + addr1 |= *addrs++ << (8 * i); + naddrs -= i; + for (i = 0; i < min_t(unsigned int, 4, naddrs); i++) + addr2 |= *addrs++ << (8 * i); + writel(addr1, ctrl->regs + ADDR_1); + writel(addr2, ctrl->regs + ADDR_2); + break; + + case NAND_OP_DATA_IN_INSTR: + trfr_in_sz = nand_subop_get_data_len(subop, op_id); + offset = nand_subop_get_data_start_off(subop, op_id); + + cmd |= CMD_TRANS_SIZE(trfr_in_sz) | CMD_PIO | CMD_RX | CMD_A_VALID; + + instr_data_in = instr; + break; + + case NAND_OP_DATA_OUT_INSTR: + trfr_out_sz = nand_subop_get_data_len(subop, op_id); + offset = nand_subop_get_data_start_off(subop, op_id); + trfr_out_sz = min_t(size_t, trfr_out_sz, 4); + + cmd |= CMD_TRANS_SIZE(trfr_out_sz) | CMD_PIO | CMD_TX | CMD_A_VALID; + + memcpy(&value, instr->ctx.data.buf.out + offset, trfr_out_sz); + writel(value, ctrl->regs + RESP); + + break; + case NAND_OP_WAITRDY_INSTR: + cmd |= CMD_RBSY_CHK; + break; + + } + } + + + cmd |= CMD_GO | CMD_CE(ctrl->cur_chip); + writel(cmd, ctrl->regs + CMD); + wait_for_completion(&ctrl->command_complete); + + if (instr_data_in) { + u32 value; + size_t n = min_t(size_t, trfr_in_sz, 4); + + value = readl(ctrl->regs + RESP); + memcpy(instr_data_in->ctx.data.buf.in + offset, &value, n); + } + + return 0; +} + +static const struct nand_op_parser tegra_nand_op_parser = NAND_OP_PARSER( + NAND_OP_PARSER_PATTERN(tegra_nand_cmd, + NAND_OP_PARSER_PAT_CMD_ELEM(true), + NAND_OP_PARSER_PAT_ADDR_ELEM(true, 8), + NAND_OP_PARSER_PAT_CMD_ELEM(true), + NAND_OP_PARSER_PAT_WAITRDY_ELEM(true)), + NAND_OP_PARSER_PATTERN(tegra_nand_cmd, + NAND_OP_PARSER_PAT_DATA_OUT_ELEM(false, 4)), + NAND_OP_PARSER_PATTERN(tegra_nand_cmd, + NAND_OP_PARSER_PAT_CMD_ELEM(true), + NAND_OP_PARSER_PAT_ADDR_ELEM(true, 8), + NAND_OP_PARSER_PAT_CMD_ELEM(true), + NAND_OP_PARSER_PAT_WAITRDY_ELEM(true), + NAND_OP_PARSER_PAT_DATA_IN_ELEM(true, 4)), + ); + +static int tegra_nand_exec_op(struct nand_chip *chip, + const struct nand_operation *op, + bool check_only) +{ + return nand_op_parser_exec_op(chip, &tegra_nand_op_parser, op, + check_only); +} +static void tegra_nand_select_chip(struct mtd_info *mtd, int chip_nr) +{ + struct nand_chip *chip = mtd_to_nand(mtd); + struct tegra_nand_controller *ctrl = to_tegra_ctrl(chip->controller); + + ctrl->cur_chip = chip_nr; +} + +static u32 tegra_nand_fill_address(struct tegra_nand_controller *ctrl, + struct nand_chip *chip, int page) +{ + /* Lower 16-bits are column, always 0 */ + writel(page << 16, ctrl->regs + ADDR_1); + + if (chip->options & NAND_ROW_ADDR_3) { + writel(page >> 16, ctrl->regs + ADDR_2); + return 5; + } + + return 4; +} + +static void tegra_nand_hw_ecc(struct tegra_nand_controller *ctrl, + struct nand_chip *chip, bool enable) +{ + u32 value; + + switch (chip->ecc.algo) { + case NAND_ECC_RS: + value = readl(ctrl->regs + CFG); + if (enable) + value |= CFG_HW_ECC | CFG_ERR_COR; + else + value &= ~(CFG_HW_ECC | CFG_ERR_COR); + writel(value, ctrl->regs + CFG); + break; + case NAND_ECC_BCH: + value = readl(ctrl->regs + BCH_CONFIG); + if (enable) + value |= BCH_ENABLE; + else + value &= ~BCH_ENABLE; + writel(value, ctrl->regs + BCH_CONFIG); + break; + default: + dev_err(ctrl->dev, "Unsupported hardware ECC algorithm\n"); + break; + } +} + +static int tegra_nand_read_page(struct mtd_info *mtd, struct nand_chip *chip, + uint8_t *buf, int oob_required, int page) +{ + struct tegra_nand_controller *ctrl = to_tegra_ctrl(chip->controller); + dma_addr_t dma_addr; + u32 value, addrs; + int ret, dma_len; + + writel(NAND_CMD_READ0, ctrl->regs + CMD_1); + writel(NAND_CMD_READSTART, ctrl->regs + CMD_2); + + addrs = tegra_nand_fill_address(ctrl, chip, page); + + dma_len = mtd->writesize + (oob_required ? mtd->oobsize : 0); + dma_addr = dma_map_single(ctrl->dev, buf, dma_len, DMA_FROM_DEVICE); + ret = dma_mapping_error(ctrl->dev, dma_addr); + if (ret) { + dev_err(ctrl->dev, "dma mapping error\n"); + return -EINVAL; + } + + writel(mtd->writesize - 1, ctrl->regs + DMA_CFG_A); + writel(dma_addr, ctrl->regs + DATA_PTR); + + if (oob_required) { + struct mtd_oob_region oobregion; + dma_addr_t dma_addr_oob = dma_addr + mtd->writesize; + + mtd_ooblayout_free(mtd, 0, &oobregion); + + writel(oobregion.length - 1, ctrl->regs + DMA_CFG_B); + writel(dma_addr_oob + oobregion.offset, ctrl->regs + TAG_PTR); + } else { + writel(0, ctrl->regs + DMA_CFG_B); + writel(0, ctrl->regs + TAG_PTR); + } + + value = DMA_CTRL_GO | DMA_CTRL_IN | DMA_CTRL_PERF_EN | + DMA_CTRL_REUSE | DMA_CTRL_IE_DONE | DMA_CTRL_IS_DONE | + DMA_CTRL_BURST_16 | DMA_CTRL_EN_A; + if (oob_required) + value |= DMA_CTRL_EN_B; + writel(value, ctrl->regs + DMA_CTRL); + + value = CMD_CLE | CMD_ALE | CMD_ALE_SIZE(addrs) | CMD_SEC_CMD | + CMD_RBSY_CHK | CMD_GO | CMD_RX | CMD_TRANS_SIZE(9) | + CMD_A_VALID | CMD_CE(ctrl->cur_chip); + if (oob_required) + value |= CMD_B_VALID; + writel(value, ctrl->regs + CMD); + + wait_for_completion(&ctrl->command_complete); + wait_for_completion(&ctrl->dma_complete); + + dma_unmap_single(ctrl->dev, dma_addr, dma_len, DMA_FROM_DEVICE); + + return 0; +} + +static int tegra_nand_read_page_hwecc(struct mtd_info *mtd, + struct nand_chip *chip, + uint8_t *buf, int oob_required, int page) +{ + struct tegra_nand_controller *ctrl = to_tegra_ctrl(chip->controller); + u32 value; + int ret; + + tegra_nand_hw_ecc(ctrl, chip, true); + ret = tegra_nand_read_page(mtd, chip, buf, oob_required, page); + tegra_nand_hw_ecc(ctrl, chip, false); + if (ret) + return ret; + + /* If no correctable or un-correctable errors occured we can return 0 */ + if (!ctrl->last_read_error) + return 0; + + /* + * Correctable or un-correctable errors did occure. NAND dec status + * contains information for all ECC selections + */ + ctrl->last_read_error = false; + value = readl(ctrl->regs + DEC_STAT_BUF); + + if (value & DEC_STAT_BUF_FAIL_SEC_FLAG_MASK) { + /* + * The ECC isn't smart enough to figure out if a page is + * completely erased and flags an error in this case. So we + * check the read data here to figure out if it's a legitimate + * error or a false positive. + */ + int i, ret; + int flips_threshold = chip->ecc.strength / 2; + int max_bitflips = 0; + + for (i = 0; i < chip->ecc.steps; i++) { + u8 *data = buf + (chip->ecc.size * i); + + ret = nand_check_erased_ecc_chunk(data, chip->ecc.size, + NULL, 0, + NULL, 0, + flips_threshold); + if (ret < 0) + mtd->ecc_stats.failed++; + else + max_bitflips = max(ret, max_bitflips); + } + + return max_bitflips; + } else { + int max_corr_cnt, corr_sec_flag; + + corr_sec_flag = (value & DEC_STAT_BUF_CORR_SEC_FLAG_MASK) >> + DEC_STAT_BUF_CORR_SEC_FLAG_SHIFT; + max_corr_cnt = (value & DEC_STAT_BUF_MAX_CORR_CNT_MASK) >> + DEC_STAT_BUF_MAX_CORR_CNT_SHIFT; + + /* + * The value returned in the register is the maximum of + * bitflips encountered in any of the ECC regions. As there is + * no way to get the number of bitflips in a specific regions + * we are not able to deliver correct stats but instead + * overestimate the number of corrected bitflips by assuming + * that all regions where errors have been corrected + * encountered the maximum number of bitflips. + */ + mtd->ecc_stats.corrected += max_corr_cnt * hweight8(corr_sec_flag); + + return max_corr_cnt; + } + +} + +static int tegra_nand_write_page(struct mtd_info *mtd, struct nand_chip *chip, + const uint8_t *buf, int oob_required, int page) +{ + struct tegra_nand_controller *ctrl = to_tegra_ctrl(chip->controller); + dma_addr_t dma_addr; + u32 value, addrs; + int ret, dma_len; + + writel(NAND_CMD_SEQIN, ctrl->regs + CMD_1); + writel(NAND_CMD_PAGEPROG, ctrl->regs + CMD_2); + + addrs = tegra_nand_fill_address(ctrl, chip, page); + + dma_len = mtd->writesize + (oob_required ? mtd->oobsize : 0); + dma_addr = dma_map_single(ctrl->dev, (void *)buf, dma_len, DMA_TO_DEVICE); + ret = dma_mapping_error(ctrl->dev, dma_addr); + if (ret) { + dev_err(ctrl->dev, "dma mapping error\n"); + return -EINVAL; + } + + writel(mtd->writesize - 1, ctrl->regs + DMA_CFG_A); + writel(dma_addr, ctrl->regs + DATA_PTR); + + if (oob_required) { + struct mtd_oob_region oobregion; + dma_addr_t dma_addr_oob = dma_addr + mtd->writesize; + + mtd_ooblayout_free(mtd, 0, &oobregion); + + writel(oobregion.length - 1, ctrl->regs + DMA_CFG_B); + writel(dma_addr_oob + oobregion.offset, ctrl->regs + TAG_PTR); + } else { + writel(0, ctrl->regs + DMA_CFG_B); + writel(0, ctrl->regs + TAG_PTR); + } + + value = DMA_CTRL_GO | DMA_CTRL_OUT | DMA_CTRL_PERF_EN | + DMA_CTRL_IE_DONE | DMA_CTRL_IS_DONE | + DMA_CTRL_BURST_16 | DMA_CTRL_EN_A; + if (oob_required) + value |= DMA_CTRL_EN_B; + writel(value, ctrl->regs + DMA_CTRL); + + value = CMD_CLE | CMD_ALE | CMD_ALE_SIZE(addrs) | CMD_SEC_CMD | + CMD_AFT_DAT | CMD_RBSY_CHK | CMD_GO | CMD_TX | CMD_A_VALID | + CMD_TRANS_SIZE(9) | CMD_CE(ctrl->cur_chip); + if (oob_required) + value |= CMD_B_VALID; + writel(value, ctrl->regs + CMD); + + wait_for_completion(&ctrl->command_complete); + wait_for_completion(&ctrl->dma_complete); + + + dma_unmap_single(ctrl->dev, dma_addr, dma_len, DMA_TO_DEVICE); + + return 0; +} + +static int tegra_nand_write_page_hwecc(struct mtd_info *mtd, + struct nand_chip *chip, + const uint8_t *buf, int oob_required, + int page) +{ + struct tegra_nand_controller *ctrl = to_tegra_ctrl(chip->controller); + int ret; + + tegra_nand_hw_ecc(ctrl, chip, true); + ret = tegra_nand_write_page(mtd, chip, buf, oob_required, page); + tegra_nand_hw_ecc(ctrl, chip, false); + + return ret; +} + +static void tegra_nand_setup_timing(struct tegra_nand_controller *ctrl, + const struct nand_sdr_timings *timings) +{ + /* + * The period (and all other timings in this function) is in ps, + * so need to take care here to avoid integer overflows. + */ + unsigned int rate = clk_get_rate(ctrl->clk) / 1000000; + unsigned int period = DIV_ROUND_UP(1000000, rate); + u32 val, reg = 0; + + val = DIV_ROUND_UP(max3(timings->tAR_min, timings->tRR_min, + timings->tRC_min), period); + if (val > 2) + val -= 3; + reg |= TIMING_TCR_TAR_TRR(val); + + val = DIV_ROUND_UP(max(max(timings->tCS_min, timings->tCH_min), + max(timings->tALS_min, timings->tALH_min)), + period); + if (val > 1) + val -= 2; + reg |= TIMING_TCS(val); + + val = DIV_ROUND_UP(max(timings->tRP_min, timings->tREA_max) + 6000, + period); + reg |= TIMING_TRP(val) | TIMING_TRP_RESP(val); + + reg |= TIMING_TWB(DIV_ROUND_UP(timings->tWB_max, period)); + reg |= TIMING_TWHR(DIV_ROUND_UP(timings->tWHR_min, period)); + reg |= TIMING_TWH(DIV_ROUND_UP(timings->tWH_min, period)); + reg |= TIMING_TWP(DIV_ROUND_UP(timings->tWP_min, period)); + reg |= TIMING_TRH(DIV_ROUND_UP(timings->tRHW_min, period)); + + writel(reg, ctrl->regs + TIMING_1); + + val = DIV_ROUND_UP(timings->tADL_min, period); + if (val > 2) + val -= 3; + reg = TIMING_TADL(val); + + writel(reg, ctrl->regs + TIMING_2); +} + +static int tegra_nand_setup_data_interface(struct mtd_info *mtd, int csline, + const struct nand_data_interface *conf) +{ + struct nand_chip *chip = mtd_to_nand(mtd); + struct tegra_nand_controller *ctrl = to_tegra_ctrl(chip->controller); + const struct nand_sdr_timings *timings; + + timings = nand_get_sdr_timings(conf); + if (IS_ERR(timings)) + return PTR_ERR(timings); + + if (csline == NAND_DATA_IFACE_CHECK_ONLY) + return 0; + + tegra_nand_setup_timing(ctrl, timings); + + return 0; +} + +static int tegra_nand_chips_init(struct device *dev, + struct tegra_nand_controller *ctrl) +{ + struct device_node *np = dev->of_node; + struct device_node *np_nand; + int nchips = of_get_child_count(np); + struct tegra_nand_chip *nand; + struct mtd_info *mtd; + struct nand_chip *chip; + unsigned long config, bch_config = 0; + int bits_per_step; + int err; + + if (nchips != 1) { + dev_err(dev, "currently only one NAND chip supported\n"); + return -EINVAL; + } + + np_nand = of_get_next_child(np, NULL); + + nand = devm_kzalloc(dev, sizeof(*nand), GFP_KERNEL); + if (!nand) { + dev_err(dev, "could not allocate chip structure\n"); + return -ENOMEM; + } + + nand->wp_gpio = devm_gpiod_get_optional(dev, "wp", GPIOD_OUT_LOW); + + if (IS_ERR(nand->wp_gpio)) { + err = PTR_ERR(nand->wp_gpio); + dev_err(dev, "failed to request WP GPIO: %d\n", err); + return err; + } + + chip = &nand->chip; + chip->controller = &ctrl->controller; + ctrl->chip = chip; + + mtd = nand_to_mtd(chip); + + mtd->dev.parent = dev; + mtd->name = "tegra_nand"; + mtd->owner = THIS_MODULE; + + nand_set_flash_node(chip, np_nand); + + chip->options = NAND_NO_SUBPAGE_WRITE | NAND_USE_BOUNCE_BUFFER; + chip->exec_op = tegra_nand_exec_op; + chip->select_chip = tegra_nand_select_chip; + chip->setup_data_interface = tegra_nand_setup_data_interface; + + err = nand_scan_ident(mtd, 1, NULL); + if (err) + return err; + + if (chip->bbt_options & NAND_BBT_USE_FLASH) + chip->bbt_options |= NAND_BBT_NO_OOB; + + chip->ecc.mode = NAND_ECC_HW; + if (!chip->ecc.size) + chip->ecc.size = 512; + if (chip->ecc.size != 512) + return -EINVAL; + + chip->ecc.read_page = tegra_nand_read_page_hwecc; + chip->ecc.write_page = tegra_nand_write_page_hwecc; + /* Not functional for unknown reason... + chip->ecc.read_page_raw = tegra_nand_read_page; + chip->ecc.write_page_raw = tegra_nand_write_page; + */ + config = readl(ctrl->regs + CFG); + config |= CFG_PIPE_EN | CFG_SKIP_SPARE | CFG_SKIP_SPARE_SIZE_4; + + if (chip->options & NAND_BUSWIDTH_16) + config |= CFG_BUS_WIDTH_16; + + switch (chip->ecc.algo) { + case NAND_ECC_RS: + bits_per_step = BITS_PER_STEP_RS * chip->ecc.strength; + mtd_set_ooblayout(mtd, &tegra_nand_oob_rs_ops); + switch (chip->ecc.strength) { + case 4: + config |= CFG_ECC_SEL | CFG_TVAL_4; + break; + case 6: + config |= CFG_ECC_SEL | CFG_TVAL_6; + break; + case 8: + config |= CFG_ECC_SEL | CFG_TVAL_8; + break; + default: + dev_err(dev, "ECC strength %d not supported\n", + chip->ecc.strength); + return -EINVAL; + } + break; + case NAND_ECC_BCH: + bits_per_step = BITS_PER_STEP_BCH * chip->ecc.strength; + mtd_set_ooblayout(mtd, &tegra_nand_oob_bch_ops); + switch (chip->ecc.strength) { + case 4: + bch_config = BCH_TVAL_4; + break; + case 8: + bch_config = BCH_TVAL_8; + break; + case 14: + bch_config = BCH_TVAL_14; + break; + case 16: + bch_config = BCH_TVAL_16; + break; + default: + dev_err(dev, "ECC strength %d not supported\n", + chip->ecc.strength); + return -EINVAL; + } + break; + default: + dev_err(dev, "ECC algorithm not supported\n"); + return -EINVAL; + } + + chip->ecc.bytes = DIV_ROUND_UP(bits_per_step, 8); + + switch (mtd->writesize) { + case 256: + config |= CFG_PS_256; + break; + case 512: + config |= CFG_PS_512; + break; + case 1024: + config |= CFG_PS_1024; + break; + case 2048: + config |= CFG_PS_2048; + break; + case 4096: + config |= CFG_PS_4096; + break; + default: + dev_err(dev, "unhandled writesize %d\n", mtd->writesize); + return -ENODEV; + } + + writel(config, ctrl->regs + CFG); + writel(bch_config, ctrl->regs + BCH_CONFIG); + + err = nand_scan_tail(mtd); + if (err) + return err; + + config |= CFG_TAG_BYTE_SIZE(mtd_ooblayout_count_freebytes(mtd) - 1); + writel(config, ctrl->regs + CFG); + + err = mtd_device_register(mtd, NULL, 0); + if (err) + return err; + + return 0; +} + +static int tegra_nand_probe(struct platform_device *pdev) +{ + struct reset_control *rst; + struct tegra_nand_controller *ctrl; + struct resource *res; + unsigned long value; + int irq, err = 0; + + ctrl = devm_kzalloc(&pdev->dev, sizeof(*ctrl), GFP_KERNEL); + if (!ctrl) + return -ENOMEM; + + ctrl->dev = &pdev->dev; + nand_hw_control_init(&ctrl->controller); + + res = platform_get_resource(pdev, IORESOURCE_MEM, 0); + ctrl->regs = devm_ioremap_resource(&pdev->dev, res); + if (IS_ERR(ctrl->regs)) + return PTR_ERR(ctrl->regs); + + rst = devm_reset_control_get(&pdev->dev, "nand"); + if (IS_ERR(rst)) + return PTR_ERR(rst); + + ctrl->clk = devm_clk_get(&pdev->dev, "nand"); + if (IS_ERR(ctrl->clk)) + return PTR_ERR(ctrl->clk); + + err = clk_prepare_enable(ctrl->clk); + if (err) + return err; + + reset_control_reset(rst); + + value = HWSTATUS_RDSTATUS_MASK(1) | HWSTATUS_RDSTATUS_VALUE(0) | + HWSTATUS_RBSY_MASK(NAND_STATUS_READY) | + HWSTATUS_RBSY_VALUE(NAND_STATUS_READY); + writel(NAND_CMD_STATUS, ctrl->regs + HWSTATUS_CMD); + writel(value, ctrl->regs + HWSTATUS_MASK); + + init_completion(&ctrl->command_complete); + init_completion(&ctrl->dma_complete); + + /* clear interrupts */ + value = readl(ctrl->regs + ISR); + writel(value, ctrl->regs + ISR); + + irq = platform_get_irq(pdev, 0); + err = devm_request_irq(&pdev->dev, irq, tegra_nand_irq, 0, + dev_name(&pdev->dev), ctrl); + if (err) + goto err_disable_clk; + + writel(DMA_CTRL_IS_DONE, ctrl->regs + DMA_CTRL); + + /* enable interrupts */ + value = IER_UND | IER_OVR | IER_CMD_DONE | IER_ECC_ERR | IER_GIE; + writel(value, ctrl->regs + IER); + + /* reset config */ + writel(0, ctrl->regs + CFG); + + err = tegra_nand_chips_init(ctrl->dev, ctrl); + if (err) + goto err_disable_clk; + + platform_set_drvdata(pdev, ctrl); + + return 0; + +err_disable_clk: + clk_disable_unprepare(ctrl->clk); + return err; +} + +static int tegra_nand_remove(struct platform_device *pdev) +{ + struct tegra_nand_controller *ctrl = platform_get_drvdata(pdev); + + nand_release(nand_to_mtd(ctrl->chip)); + + clk_disable_unprepare(ctrl->clk); + + return 0; +} + +static const struct of_device_id tegra_nand_of_match[] = { + { .compatible = "nvidia,tegra20-nand" }, + { /* sentinel */ } +}; + +static struct platform_driver tegra_nand_driver = { + .driver = { + .name = "tegra-nand", + .of_match_table = tegra_nand_of_match, + }, + .probe = tegra_nand_probe, + .remove = tegra_nand_remove, +}; +module_platform_driver(tegra_nand_driver); + +MODULE_DESCRIPTION("NVIDIA Tegra NAND driver"); +MODULE_AUTHOR("Thierry Reding "); +MODULE_AUTHOR("Lucas Stach "); +MODULE_AUTHOR("Stefan Agner "); +MODULE_LICENSE("GPL v2"); +MODULE_DEVICE_TABLE(of, tegra_nand_of_match);