From patchwork Mon Jan 18 06:10:46 2016 Content-Type: text/plain; charset="utf-8" MIME-Version: 1.0 Content-Transfer-Encoding: 7bit X-Patchwork-Submitter: Alexandre Courbot X-Patchwork-Id: 569448 X-Patchwork-Delegate: gnurou@gmail.com Return-Path: X-Original-To: incoming@patchwork.ozlabs.org Delivered-To: patchwork-incoming@bilbo.ozlabs.org Received: from vger.kernel.org (vger.kernel.org [209.132.180.67]) by ozlabs.org (Postfix) with ESMTP id C29B5140AD9 for ; Mon, 18 Jan 2016 17:11:45 +1100 (AEDT) Received: (majordomo@vger.kernel.org) by vger.kernel.org via listexpand id S1751628AbcARGLe (ORCPT ); Mon, 18 Jan 2016 01:11:34 -0500 Received: from hqemgate14.nvidia.com ([216.228.121.143]:17867 "EHLO hqemgate14.nvidia.com" rhost-flags-OK-OK-OK-OK) by vger.kernel.org with ESMTP id S1751802AbcARGL3 (ORCPT ); Mon, 18 Jan 2016 01:11:29 -0500 Received: from hqnvupgp07.nvidia.com (Not Verified[216.228.121.13]) by hqemgate14.nvidia.com id ; Sun, 17 Jan 2016 22:11:24 -0800 Received: from hqemhub02.nvidia.com ([172.20.12.94]) by hqnvupgp07.nvidia.com (PGP Universal service); Sun, 17 Jan 2016 22:13:06 -0800 X-PGP-Universal: processed; by hqnvupgp07.nvidia.com on Sun, 17 Jan 2016 22:13:06 -0800 Received: from percival.nvidia.com (172.20.144.16) by hqemhub02.nvidia.com (172.20.150.31) with Microsoft SMTP Server (TLS) id 8.3.406.0; Sun, 17 Jan 2016 22:11:28 -0800 From: Alexandre Courbot To: Ben Skeggs CC: nouveau@lists.freedesktop.org, linux-tegra@vger.kernel.org, gnurou@gmail.com, Alexandre Courbot Subject: [PATCH v2 4/5] secboot/gm200: add secure-boot support Date: Mon, 18 Jan 2016 15:10:46 +0900 Message-ID: <1453097447-12152-5-git-send-email-acourbot@nvidia.com> X-Mailer: git-send-email 2.7.0 In-Reply-To: <1453097447-12152-1-git-send-email-acourbot@nvidia.com> References: <1453097447-12152-1-git-send-email-acourbot@nvidia.com> X-NVConfidentiality: public MIME-Version: 1.0 Sender: linux-tegra-owner@vger.kernel.org Precedence: bulk List-ID: X-Mailing-List: linux-tegra@vger.kernel.org This patch adds secure-boot for the dGPU set of GM20X chips, using the PMU as the high-secure falcon. This work is based on Deepak Goyal's initial port of Secure Boot to Nouveau. Signed-off-by: Alexandre Courbot --- drm/nouveau/include/nvkm/subdev/secboot.h | 2 + drm/nouveau/nvkm/engine/device/base.c | 2 + drm/nouveau/nvkm/engine/gr/gm204.c | 8 +- drm/nouveau/nvkm/subdev/secboot/Kbuild | 1 + drm/nouveau/nvkm/subdev/secboot/gm200.c | 1308 +++++++++++++++++++++++++++++ drm/nouveau/nvkm/subdev/secboot/priv.h | 141 ++++ 6 files changed, 1455 insertions(+), 7 deletions(-) create mode 100644 drm/nouveau/nvkm/subdev/secboot/gm200.c diff --git a/drm/nouveau/include/nvkm/subdev/secboot.h b/drm/nouveau/include/nvkm/subdev/secboot.h index 0691db24be47..da3895f955ce 100644 --- a/drm/nouveau/include/nvkm/subdev/secboot.h +++ b/drm/nouveau/include/nvkm/subdev/secboot.h @@ -53,4 +53,6 @@ struct nvkm_secboot { bool nvkm_secboot_is_managed(struct nvkm_device *, enum nvkm_secboot_falcon); int nvkm_secboot_reset(struct nvkm_secboot *, u32 falcons_mask); +int gm200_secboot_new(struct nvkm_device *, int, struct nvkm_secboot **); + #endif diff --git a/drm/nouveau/nvkm/engine/device/base.c b/drm/nouveau/nvkm/engine/device/base.c index 95fc9a69d322..770d3ec130a3 100644 --- a/drm/nouveau/nvkm/engine/device/base.c +++ b/drm/nouveau/nvkm/engine/device/base.c @@ -1991,6 +1991,7 @@ nv124_chipset = { .fifo = gm204_fifo_new, .gr = gm204_gr_new, .sw = gf100_sw_new, + .secboot = gm200_secboot_new, }; static const struct nvkm_device_chip @@ -2022,6 +2023,7 @@ nv126_chipset = { .fifo = gm204_fifo_new, .gr = gm206_gr_new, .sw = gf100_sw_new, + .secboot = gm200_secboot_new, }; static const struct nvkm_device_chip diff --git a/drm/nouveau/nvkm/engine/gr/gm204.c b/drm/nouveau/nvkm/engine/gr/gm204.c index 90381dde451a..69a3218bf49c 100644 --- a/drm/nouveau/nvkm/engine/gr/gm204.c +++ b/drm/nouveau/nvkm/engine/gr/gm204.c @@ -229,12 +229,6 @@ gm204_gr_data[] = { * PGRAPH engine/subdev functions ******************************************************************************/ -static int -gm204_gr_init_ctxctl(struct gf100_gr *gr) -{ - return 0; -} - int gm204_gr_init(struct gf100_gr *gr) { @@ -348,7 +342,7 @@ gm204_gr_init(struct gf100_gr *gr) gf100_gr_zbc_init(gr); - return gm204_gr_init_ctxctl(gr); + return gf100_gr_init_ctxctl(gr); } static const struct gf100_gr_func diff --git a/drm/nouveau/nvkm/subdev/secboot/Kbuild b/drm/nouveau/nvkm/subdev/secboot/Kbuild index e757096b2ff0..c1abf59410d1 100644 --- a/drm/nouveau/nvkm/subdev/secboot/Kbuild +++ b/drm/nouveau/nvkm/subdev/secboot/Kbuild @@ -1 +1,2 @@ nvkm-y += nvkm/subdev/secboot/base.o +nvkm-y += nvkm/subdev/secboot/gm200.o diff --git a/drm/nouveau/nvkm/subdev/secboot/gm200.c b/drm/nouveau/nvkm/subdev/secboot/gm200.c new file mode 100644 index 000000000000..26ebf4d06ed1 --- /dev/null +++ b/drm/nouveau/nvkm/subdev/secboot/gm200.c @@ -0,0 +1,1308 @@ +/* + * Copyright (c) 2016, NVIDIA CORPORATION. All rights reserved. + * + * Permission is hereby granted, free of charge, to any person obtaining a + * copy of this software and associated documentation files (the "Software"), + * to deal in the Software without restriction, including without limitation + * the rights to use, copy, modify, merge, publish, distribute, sublicense, + * and/or sell copies of the Software, and to permit persons to whom the + * Software is furnished to do so, subject to the following conditions: + * + * The above copyright notice and this permission notice shall be included in + * all copies or substantial portions of the Software. + * + * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR + * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, + * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL + * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER + * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING + * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER + * DEALINGS IN THE SOFTWARE. + */ + +/* + * Secure boot is the process by which NVIDIA-signed firmware is loaded into + * some of the falcons of a GPU. For production devices this is the only way + * for the firmware to access useful (but sensitive) registers. + * + * A Falcon microprocessor supporting advanced security modes can run in one of + * three modes: + * + * - Non-secure (NS). In this mode, functionality is similar to Falcon + * architectures before security modes were introduced (pre-Maxwell), but + * capability is restricted. In particular, certain registers may be + * inaccessible for reads and/or writes, and physical memory access may be + * disabled (on certain Falcon instances). This is the only possible mode that + * can be used if you don't have microcode cryptographically signed by NVIDIA. + * + * - Heavy Secure (HS). In this mode, the microprocessor is a black box - it's + * not possible to read or write any Falcon internal state or Falcon registers + * from outside the Falcon (for example, from the host system). The only way + * to enable this mode is by loading microcode that has been signed by NVIDIA. + * (The loading process involves tagging the IMEM block as secure, writing the + * signature into a Falcon register, and starting execution. The hardware will + * validate the signature, and if valid, grant HS privileges.) + * + * - Light Secure (LS). In this mode, the microprocessor has more privileges + * than NS but fewer than HS. Some of the microprocessor state is visible to + * host software to ease debugging. The only way to enable this mode is by HS + * microcode enabling LS mode. Some privileges available to HS mode are not + * available here. LS mode is introduced in GM20x. + * + * Secure boot consists in temporarily switchin a HS-capable falcon (typically + * PMU) into HS mode in order to validate the LS firmware of managed falcons, + * load it, and switch managed falcons into LS mode. Once secure boot completes, + * no falcon remains in HS mode. + * + * Secure boot requires a write-protected memory region (WPR) which can only be + * written by the secure falcon. On dGPU, the driver sets up the WPR region in + * video memory. On Tegra, it is set up by the bootloader and its location and + * size written into memory controller registers. + * + * The secure boot process takes place as follows: + * + * 1) A LS blob is constructed that contains all the LS firmwares we want to + * load, along with their signatures and bootloaders. + * + * 2) A HS blob (also called ACR) is created that contains the signed HS + * firmware in charge of loading the LS firmwares into their respective + * falcons. + * + * 3) The HS blob is loaded (via its own bootloader) and executed on the + * HS-capable falcon. It authenticates itself, switches the secure falcon to + * HS mode and setup the WPR region around the LS blob (dGPU) or copies the + * LS blob into the WPR region (Tegra). + * + * 4) The LS blob is now secure from all external tampering. The HS falcon + * checks the signatures of the LS firmwares and, if valid, switches the + * managed falcons to LS mode and makes them ready to run the LS firmware. + * + * 5) The managed falcons remain in LS mode and can be started. + * + */ + +#include "priv.h" + +#include +#include +#include + +enum { + FALCON_DMAIDX_UCODE = 0, + FALCON_DMAIDX_VIRT = 1, + FALCON_DMAIDX_PHYS_VID = 2, + FALCON_DMAIDX_PHYS_SYS_COH = 3, + FALCON_DMAIDX_PHYS_SYS_NCOH = 4, +}; + +/* + * + * LS blob structures + * + */ + +/** + * struct lsf_ucode_desc - LS falcon signatures + * @prd_keys: signature to use when the GPU is in production mode + * @dgb_keys: signature to use when the GPU is in debug mode + * @b_prd_present: whether the production key is present + * @b_dgb_present: whether the debug key is present + * @falcon_id: ID of the falcon the ucode applies to + * + * Directly loaded from a signature file. + */ +struct lsf_ucode_desc { + u8 prd_keys[2][16]; + u8 dbg_keys[2][16]; + u32 b_prd_present; + u32 b_dbg_present; + u32 falcon_id; +}; + +/** + * struct lsf_lsb_header - LS firmware header + * @signature: signature to verify the firmware against + * @ucode_off: offset of the ucode blob in the WPR region. The ucode + * blob contains the bootloader, code and data of the + * LS falcon + * @ucode_size: size of the ucode blob, including bootloader + * @data_size: size of the ucode blob data + * @bl_code_size: size of the bootloader code + * @bl_imem_off: offset in imem of the bootloader + * @bl_data_off: offset of the bootloader data in WPR region + * @bl_data_size: size of the bootloader data + * @app_code_off: offset of the app code relative to ucode_off + * @app_code_size: size of the app code + * @app_data_off: offset of the app data relative to ucode_off + * @app_data_size: size of the app data + * @flags: flags for the secure bootloader + * + * This structure is written into the WPR region for each managed falcon. Each + * instance is referenced by the lsb_offset member of the corresponding + * lsf_wpr_header. + */ +struct lsf_lsb_header { + struct lsf_ucode_desc signature; + u32 ucode_off; + u32 ucode_size; + u32 data_size; + u32 bl_code_size; + u32 bl_imem_off; + u32 bl_data_off; + u32 bl_data_size; + u32 app_code_off; + u32 app_code_size; + u32 app_data_off; + u32 app_data_size; + u32 flags; +#define LSF_FLAG_LOAD_CODE_AT_0 1 +#define LSF_FLAG_DMACTL_REQ_CTX 4 +#define LSF_FLAG_FORCE_PRIV_LOAD 8 +}; + +/** + * struct lsf_wpr_header - LS blob WPR Header + * @falcon_id: LS falcon ID + * @lsb_offset: offset of the lsb_lsf_header in the WPR region + * @bootstrap_owner: secure falcon reponsible for bootstrapping the LS falcon + * @lazy_bootstrap: skip bootstrapping by ACR + * @status: bootstrapping status + * + * An array of these is written at the beginning of the WPR region, one for + * each managed falcon. The array is terminated by an instance which falcon_id + * is LSF_FALCON_ID_INVALID. + */ +struct lsf_wpr_header { + u32 falcon_id; + u32 lsb_offset; + u32 bootstrap_owner; + u32 lazy_bootstrap; + u32 status; +#define LSF_IMAGE_STATUS_NONE 0 +#define LSF_IMAGE_STATUS_COPY 1 +#define LSF_IMAGE_STATUS_VALIDATION_CODE_FAILED 2 +#define LSF_IMAGE_STATUS_VALIDATION_DATA_FAILED 3 +#define LSF_IMAGE_STATUS_VALIDATION_DONE 4 +#define LSF_IMAGE_STATUS_VALIDATION_SKIPPED 5 +#define LSF_IMAGE_STATUS_BOOTSTRAP_READY 6 +}; + + +/** + * struct ls_ucode_desc - descriptor of firmware image + * @descriptor_size: size of this descriptor + * @image_size: size of the whole image + * @bootloader_start_offset: start offset of the bootloader in ucode image + * @bootloader_size: size of the bootloader + * @bootloader_imem_offset: start off set of the bootloader in IMEM + * @bootloader_entry_point: entry point of the bootloader in IMEM + * @app_start_offset: start offset of the LS firmware + * @app_size: size of the LS firmware's code and data + * @app_imem_offset: offset of the app in IMEM + * @app_imem_entry: entry point of the app in IMEM + * @app_dmem_offset: offset of the data in DMEM + * @app_resident_code_offset: offset of app code from app_start_offset + * @app_resident_code_size: size of the code + * @app_resident_data_offset: offset of data from app_start_offset + * @app_resident_data_size: size of data + * + * A firmware image contains the code, data, and bootloader of a given LS + * falcon in a single blob. This structure describes where everything is. + * + * This can be generated from a (bootloader, code, data) set if they have + * been loaded separately, or come directly from a file. For the later case, + * we need to keep the fields that are unused by the code. + */ +struct ls_ucode_desc { + u32 descriptor_size; + u32 image_size; + u32 tools_version; + u32 app_version; + char date[64]; + u32 bootloader_start_offset; + u32 bootloader_size; + u32 bootloader_imem_offset; + u32 bootloader_entry_point; + u32 app_start_offset; + u32 app_size; + u32 app_imem_offset; + u32 app_imem_entry; + u32 app_dmem_offset; + u32 app_resident_code_offset; + u32 app_resident_code_size; + u32 app_resident_data_offset; + u32 app_resident_data_size; + u32 nb_overlays; + struct {u32 start; u32 size; } load_ovl[32]; + u32 compressed; +}; + +/** + * struct ls_ucode_img - temporary storage for loaded LS firmwares + * @node: to link within lsf_ucode_mgr + * @falcon_id: ID of the falcon this LS firmware is for + * @ucode_desc: loaded or generated map of ucode_data + * @ucode_header: header of the firmware + * @ucode_data: firmware payload (code and data) + * @ucode_size: size in bytes of data in ucode_data + * @wpr_header: WPR header to be written to the LS blob + * @lsb_header: LSB header to be written to the LS blob + * + * Preparing the WPR LS blob requires information about all the LS firmwares + * (size, etc) to be known. This structure contains all the data of one LS + * firmware. + */ +struct ls_ucode_img { + struct list_head node; + enum nvkm_secboot_falcon falcon_id; + + struct ls_ucode_desc ucode_desc; + u32 *ucode_header; + u8 *ucode_data; + u32 ucode_size; + + struct lsf_wpr_header wpr_header; + struct lsf_lsb_header lsb_header; +}; + +/** + * struct lsf_ucode_mgr - manager for all LS falcon firmwares + * @count: number of managed LS falcons + * @wpr_size: size of the required WPR region in bytes + * @img_list: linked list of lsf_ucode_img + */ +struct ls_ucode_mgr { + u16 count; + u32 wpr_size; + struct list_head img_list; +}; + +/* + * + * HS blob structures + * + */ + +/** + * struct hs_bin_hdr - header of HS firmware and bootloader files + * @bin_magic: always 0x10de + * @bin_ver: version of the bin format + * @bin_size: entire image size including this header + * @header_offset: offset of the firmware/bootloader header in the file + * @data_offset: offset of the firmware/bootloader payload in the file + * @data_size: size of the payload + * + * This header is located at the beginning of the HS firmware and HS bootloader + * files, to describe where the headers and data can be found. + */ +struct hsf_bin_hdr { + u32 bin_magic; + u32 bin_ver; + u32 bin_size; + u32 header_offset; + u32 data_offset; + u32 data_size; +}; + +/** + * struct hsf_bl_desc - HS firmware bootloader descriptor + * @bl_start_tag: starting tag of bootloader + * @bl_desc_dmem_load_off: DMEM offset of flcn_bl_dmem_desc + * @bl_code_off: offset of code section + * @bl_code_size: size of code section + * @bl_data_off: offset of data section + * @bl_data_size: size of data section + * + * This structure is embedded in the HS bootloader firmware file at + * hs_bin_hdr.header_offset to describe the IMEM and DMEM layout expected by the + * HS bootloader. + */ +struct hsf_bl_desc { + u32 bl_start_tag; + u32 bl_desc_dmem_load_off; + u32 bl_code_off; + u32 bl_code_size; + u32 bl_data_off; + u32 bl_data_size; +}; + +/** + * struct hsf_fw_header - HS firmware descriptor + * @sig_dbg_offset: offset of the debug signature + * @sig_dbg_size: size of the debug signature + * @sig_prod_offset: offset of the production signature + * @sig_prod_size: size of the production signature + * @patch_loc: offset of the offset (sic) of where the signature is + * @patch_sig: offset of the offset (sic) to add to sig_*_offset + * @hdr_offset: offset of the load header (see struct hs_load_header) + * @hdr_size: size of above header + * + * This structure is embedded in the HS firmware image at + * hs_bin_hdr.header_offset. + */ +struct hsf_fw_header { + u32 sig_dbg_offset; + u32 sig_dbg_size; + u32 sig_prod_offset; + u32 sig_prod_size; + u32 patch_loc; + u32 patch_sig; + u32 hdr_offset; + u32 hdr_size; +}; + +/** + * struct hsf_load_header - HS firmware loading header + * + * Data to be copied as-is into the struct flcn_bl_dmem_desc for the HS firmware + */ +struct hsf_load_header { + u32 non_sec_code_off; + u32 non_sec_code_size; + u32 data_dma_base; + u32 data_size; + u32 reserved; + u32 sec_code_off; + u32 sec_code_size; +}; + +/** + * Convenience function to duplicate a firmware file in memory and check that + * it has the required minimum size. + */ +static void * +gm200_secboot_load_firmware(struct nvkm_device *device, const char *name, + size_t min_size) +{ + const struct firmware *fw; + void *blob; + int ret; + + ret = nvkm_firmware_get(device, name, &fw); + if (ret) + return ERR_PTR(ret); + if (fw->size < min_size) { + nvkm_firmware_put(fw); + return ERR_PTR(-EINVAL); + } + blob = kmemdup(fw->data, fw->size, GFP_KERNEL); + nvkm_firmware_put(fw); + if (!blob) + return ERR_PTR(-ENOMEM); + + return blob; +} + + +/* + * Low-secure blob creation + */ + +#define BL_DESC_BLK_SIZE 256 +/** + * Build a ucode image and descriptor from provided bootloader, code and data. + * + * @bl: bootloader image, including 16-bytes descriptor + * @code: LS firmware code segment + * @data: LS firmware data segment + * @desc: ucode descriptor to be written + * + * Return: allocated ucode image with corresponding descriptor information. desc + * is also updated to contain the right offsets within returned image. + */ +static void * +ls_ucode_img_build(const struct firmware *bl, const struct firmware *code, + const struct firmware *data, struct ls_ucode_desc *desc) +{ + struct { + u32 start_offset; + u32 size; + u32 imem_offset; + u32 entry_point; + } *bl_desc; + u32 *bl_image; + u32 pos = 0; + u8 *image; + + bl_desc = (void *)bl->data; + bl_image = (void *)(bl_desc + 1); + + desc->bootloader_start_offset = pos; + desc->bootloader_size = ALIGN(bl_desc->size, sizeof(u32)); + desc->bootloader_imem_offset = bl_desc->imem_offset; + desc->bootloader_entry_point = bl_desc->entry_point; + + pos = ALIGN(pos + desc->bootloader_size, BL_DESC_BLK_SIZE); + desc->app_start_offset = pos; + desc->app_size = ALIGN(code->size, BL_DESC_BLK_SIZE) + + ALIGN(data->size, BL_DESC_BLK_SIZE); + desc->app_imem_offset = 0; + desc->app_imem_entry = 0; + desc->app_dmem_offset = 0; + desc->app_resident_code_offset = 0; + desc->app_resident_code_size = ALIGN(code->size, BL_DESC_BLK_SIZE); + + pos = ALIGN(pos + desc->app_resident_code_size, BL_DESC_BLK_SIZE); + desc->app_resident_data_offset = pos - desc->app_start_offset; + desc->app_resident_data_size = ALIGN(data->size, BL_DESC_BLK_SIZE); + + desc->image_size = ALIGN(bl_desc->size, BL_DESC_BLK_SIZE) + + desc->app_size; + + image = kzalloc(desc->image_size, GFP_KERNEL); + if (!image) + return ERR_PTR(-ENOMEM); + + memcpy(image + desc->bootloader_start_offset, bl_image, bl_desc->size); + memcpy(image + desc->app_start_offset, code->data, code->size); + memcpy(image + desc->app_start_offset + desc->app_resident_data_offset, + data->data, data->size); + + return image; +} + +/** + * ls_ucode_img_load_generic() - load and prepare a LS ucode image + * + * Load the LS microcode, bootloader and signature and pack them into a single + * blob. Also generate the corresponding ucode descriptor. + */ +static int +ls_ucode_img_load_generic(struct nvkm_device *device, + struct ls_ucode_img *img, const char *falcon_name, + const u32 falcon_id) +{ + const struct firmware *bl, *code, *data; + struct lsf_ucode_desc *lsf_desc; + char f[64]; + int ret; + + img->ucode_header = NULL; + + snprintf(f, sizeof(f), "%s_bl", falcon_name); + ret = nvkm_firmware_get(device, f, &bl); + if (ret) + goto error; + + snprintf(f, sizeof(f), "%s_inst", falcon_name); + ret = nvkm_firmware_get(device, f, &code); + if (ret) + goto free_bl; + + snprintf(f, sizeof(f), "%s_data", falcon_name); + ret = nvkm_firmware_get(device, f, &data); + if (ret) + goto free_inst; + + img->ucode_data = ls_ucode_img_build(bl, code, data, + &img->ucode_desc); + if (IS_ERR(img->ucode_data)) { + ret = PTR_ERR(img->ucode_data); + goto free_data; + } + img->ucode_size = img->ucode_desc.image_size; + + snprintf(f, sizeof(f), "%s_sig", falcon_name); + lsf_desc = gm200_secboot_load_firmware(device, f, sizeof(*lsf_desc)); + if (IS_ERR(lsf_desc)) { + ret = PTR_ERR(lsf_desc); + goto free_image; + } + /* not needed? the signature should already have the right value */ + lsf_desc->falcon_id = falcon_id; + memcpy(&img->lsb_header.signature, lsf_desc, sizeof(*lsf_desc)); + img->falcon_id = lsf_desc->falcon_id; + kfree(lsf_desc); + + /* success path - only free requested firmware files */ + goto free_data; + +free_image: + kfree(img->ucode_data); +free_data: + nvkm_firmware_put(data); +free_inst: + nvkm_firmware_put(code); +free_bl: + nvkm_firmware_put(bl); +error: + return ret; +} + +static int +ls_ucode_img_load_fecs(struct nvkm_device *device, struct ls_ucode_img *img) +{ + return ls_ucode_img_load_generic(device, img, "fecs", + NVKM_SECBOOT_FALCON_FECS); +} + +static int +ls_ucode_img_load_gpccs(struct nvkm_device *device, struct ls_ucode_img *img) +{ + return ls_ucode_img_load_generic(device, img, "gpccs", + NVKM_SECBOOT_FALCON_GPCCS); +} + +/** + * ls_ucode_img_populate_bl_desc() - populate a DMEM BL descriptor for LS image + * @img: ucode image to generate against + * @desc: descriptor to populate + * @sb: secure boot state to use for base addresses + * + * Populate the DMEM BL descriptor with the information contained in a + * ls_ucode_desc. + * + */ +static void +ls_ucode_img_populate_bl_desc(struct ls_ucode_img *img, u64 wpr_addr, + struct gm200_flcn_bl_desc *desc) +{ + struct ls_ucode_desc *pdesc = &img->ucode_desc; + u64 addr_base; + + addr_base = wpr_addr + img->lsb_header.ucode_off + + pdesc->app_start_offset; + + memset(desc, 0, sizeof(*desc)); + desc->ctx_dma = FALCON_DMAIDX_UCODE; + desc->code_dma_base.lo = lower_32_bits( + (addr_base + pdesc->app_resident_code_offset)); + desc->code_dma_base.hi = upper_32_bits( + (addr_base + pdesc->app_resident_code_offset)); + desc->non_sec_code_size = pdesc->app_resident_code_size; + desc->data_dma_base.lo = lower_32_bits( + (addr_base + pdesc->app_resident_data_offset)); + desc->data_dma_base.hi = upper_32_bits( + (addr_base + pdesc->app_resident_data_offset)); + desc->data_size = pdesc->app_resident_data_size; + desc->code_entry_point = pdesc->app_imem_entry; +} + +typedef int (*lsf_load_func)(struct nvkm_device *, struct ls_ucode_img *); + +/** + * ls_ucode_img_load() - create a lsf_ucode_img and load it + */ +static struct ls_ucode_img * +ls_ucode_img_load(struct nvkm_device *device, lsf_load_func load_func) +{ + struct ls_ucode_img *img; + int ret; + + img = kzalloc(sizeof(*img), GFP_KERNEL); + if (!img) + return ERR_PTR(-ENOMEM); + + ret = load_func(device, img); + if (ret) { + kfree(img); + return ERR_PTR(ret); + } + + return img; +} + +static const lsf_load_func lsf_load_funcs[] = { + [NVKM_SECBOOT_FALCON_END] = NULL, /* reserve enough space */ + [NVKM_SECBOOT_FALCON_FECS] = ls_ucode_img_load_fecs, + [NVKM_SECBOOT_FALCON_GPCCS] = ls_ucode_img_load_gpccs, +}; + +#define LSF_LSB_HEADER_ALIGN 256 +#define LSF_BL_DATA_ALIGN 256 +#define LSF_BL_DATA_SIZE_ALIGN 256 +#define LSF_BL_CODE_SIZE_ALIGN 256 +#define LSF_UCODE_DATA_ALIGN 4096 + +/** + * ls_ucode_img_fill_headers - fill the WPR and LSB headers of an image + * @gsb: secure boot device used + * @img: image to generate for + * @offset: offset in the WPR region where this image starts + * + * Allocate space in the WPR area from offset and write the WPR and LSB headers + * accordingly. + * + * Return: offset at the end of this image. + */ +static u32 +ls_ucode_img_fill_headers(struct gm200_secboot *gsb, struct ls_ucode_img *img, + u32 offset) +{ + struct lsf_wpr_header *whdr = &img->wpr_header; + struct lsf_lsb_header *lhdr = &img->lsb_header; + struct ls_ucode_desc *desc = &img->ucode_desc; + + if (img->ucode_header) { + nvdev_fatal(gsb->base.subdev.device, + "images withough loader are not supported yet!\n"); + return offset; + } + + /* Fill WPR header */ + whdr->falcon_id = img->falcon_id; + whdr->bootstrap_owner = gsb->base.func->boot_falcon; + whdr->status = LSF_IMAGE_STATUS_COPY; + + /* Align, save off, and include an LSB header size */ + offset = ALIGN(offset, LSF_LSB_HEADER_ALIGN); + whdr->lsb_offset = offset; + offset += sizeof(struct lsf_lsb_header); + + /* + * Align, save off, and include the original (static) ucode + * image size + */ + offset = ALIGN(offset, LSF_UCODE_DATA_ALIGN); + lhdr->ucode_off = offset; + offset += img->ucode_size; + + /* + * For falcons that use a boot loader (BL), we append a loader + * desc structure on the end of the ucode image and consider + * this the boot loader data. The host will then copy the loader + * desc args to this space within the WPR region (before locking + * down) and the HS bin will then copy them to DMEM 0 for the + * loader. + */ + lhdr->bl_code_size = ALIGN(desc->bootloader_size, + LSF_BL_CODE_SIZE_ALIGN); + lhdr->ucode_size = ALIGN(desc->app_resident_data_offset, + LSF_BL_CODE_SIZE_ALIGN) + lhdr->bl_code_size; + lhdr->data_size = ALIGN(desc->app_size, LSF_BL_CODE_SIZE_ALIGN) + + lhdr->bl_code_size - lhdr->ucode_size; + /* + * Though the BL is located at 0th offset of the image, the VA + * is different to make sure that it doesn't collide the actual + * OS VA range + */ + lhdr->bl_imem_off = desc->bootloader_imem_offset; + lhdr->app_code_off = desc->app_start_offset + + desc->app_resident_code_offset; + lhdr->app_code_size = desc->app_resident_code_size; + lhdr->app_data_off = desc->app_start_offset + + desc->app_resident_data_offset; + lhdr->app_data_size = desc->app_resident_data_size; + + lhdr->flags = 0; + if (img->falcon_id == gsb->base.func->boot_falcon) + lhdr->flags = LSF_FLAG_DMACTL_REQ_CTX; + + /* GPCCS will be loaded using PRI */ + if (img->falcon_id == NVKM_SECBOOT_FALCON_GPCCS) + lhdr->flags |= LSF_FLAG_FORCE_PRIV_LOAD; + + /* Align (size bloat) and save off BL descriptor size */ + lhdr->bl_data_size = ALIGN(sizeof(struct gm200_flcn_bl_desc), + LSF_BL_DATA_SIZE_ALIGN); + /* + * Align, save off, and include the additional BL data + */ + offset = ALIGN(offset, LSF_BL_DATA_ALIGN); + lhdr->bl_data_off = offset; + offset += lhdr->bl_data_size; + + return offset; +} + +static void +ls_ucode_mgr_init(struct ls_ucode_mgr *mgr) +{ + memset(mgr, 0, sizeof(*mgr)); + INIT_LIST_HEAD(&mgr->img_list); +} + +static void +ls_ucode_mgr_cleanup(struct ls_ucode_mgr *mgr) +{ + struct ls_ucode_img *img, *t; + + list_for_each_entry_safe(img, t, &mgr->img_list, node) { + kfree(img->ucode_data); + kfree(img->ucode_header); + kfree(img); + } +} + +static void +ls_ucode_mgr_add_img(struct ls_ucode_mgr *mgr, struct ls_ucode_img *img) +{ + mgr->count++; + list_add_tail(&img->node, &mgr->img_list); +} + +/** + * ls_ucode_mgr_fill_headers - fill WPR and LSB headers of all managed images + */ +static void +ls_ucode_mgr_fill_headers(struct gm200_secboot *gsb, struct ls_ucode_mgr *mgr) +{ + struct ls_ucode_img *img; + u32 offset; + + /* + * Start with an array of WPR headers at the base of the WPR. + * The expectation here is that the secure falcon will do a single DMA + * read of this array and cache it internally so it's ok to pack these. + * Also, we add 1 to the falcon count to indicate the end of the array. + */ + offset = sizeof(struct lsf_wpr_header) * (mgr->count + 1); + + /* + * Walk the managed falcons, accounting for the LSB structs + * as well as the ucode images. + */ + list_for_each_entry(img, &mgr->img_list, node) { + offset = ls_ucode_img_fill_headers(gsb, img, offset); + } + + mgr->wpr_size = offset; +} + +/** + * ls_ucode_mgr_write_wpr - write the WPR blob contents + */ +static int +ls_ucode_mgr_write_wpr(struct gm200_secboot *gsb, struct ls_ucode_mgr *mgr, + struct nvkm_gpuobj *wpr_blob) +{ + struct ls_ucode_img *img; + u32 pos = 0; + + nvkm_kmap(wpr_blob); + + list_for_each_entry(img, &mgr->img_list, node) { + nvkm_gpuobj_memcpy_to(wpr_blob, pos, &img->wpr_header, + sizeof(img->wpr_header)); + + nvkm_gpuobj_memcpy_to(wpr_blob, img->wpr_header.lsb_offset, + &img->lsb_header, sizeof(img->lsb_header)); + + /* Generate and write BL descriptor */ + if (!img->ucode_header) { + u8 desc[gsb->bl_desc_size]; + struct gm200_flcn_bl_desc gdesc; + + ls_ucode_img_populate_bl_desc(img, gsb->wpr_addr, + &gdesc); + gsb->fixup_bl_desc(&gdesc, &desc); + nvkm_gpuobj_memcpy_to(wpr_blob, + img->lsb_header.bl_data_off, + &desc, gsb->bl_desc_size); + } + + /* Copy ucode */ + nvkm_gpuobj_memcpy_to(wpr_blob, img->lsb_header.ucode_off, + img->ucode_data, img->ucode_size); + + pos += sizeof(img->wpr_header); + } + + nvkm_wo32(wpr_blob, pos, NVKM_SECBOOT_FALCON_INVALID); + + nvkm_done(wpr_blob); + + return 0; +} + +/* Both size and address of WPR need to be 128K-aligned */ +#define WPR_ALIGNMENT 0x20000 +/** + * gm200_secboot_prepare_ls_blob() - prepare the LS blob + * + * For each securely managed falcon, load the FW, signatures and bootloaders and + * prepare a ucode blob. Then, compute the offsets in the WPR region for each + * blob, and finally write the headers and ucode blobs into a GPU object that + * will be copied into the WPR region by the HS firmware. + */ +static int +gm200_secboot_prepare_ls_blob(struct gm200_secboot *gsb) +{ + struct nvkm_device *device = gsb->base.subdev.device; + struct ls_ucode_mgr mgr; + int falcon_id; + int ret; + + ls_ucode_mgr_init(&mgr); + + /* Load all LS blobs */ + for_each_set_bit(falcon_id, &gsb->base.func->managed_falcons, + NVKM_SECBOOT_FALCON_END) { + struct ls_ucode_img *img; + + img = ls_ucode_img_load(device, lsf_load_funcs[falcon_id]); + + if (IS_ERR(img)) { + ret = PTR_ERR(img); + goto cleanup; + } + ls_ucode_mgr_add_img(&mgr, img); + } + + /* + * Fill the WPR and LSF headers with the right offsets and compute + * required WPR size + */ + ls_ucode_mgr_fill_headers(gsb, &mgr); + mgr.wpr_size = ALIGN(mgr.wpr_size, WPR_ALIGNMENT); + + /* Allocate GPU object that will contain the WPR region */ + ret = nvkm_gpuobj_new(device, mgr.wpr_size, WPR_ALIGNMENT, false, NULL, + &gsb->ls_blob); + if (ret) + goto cleanup; + + nvdev_debug(device, "%d managed LS falcons, WPR size is %d bytes\n", + mgr.count, mgr.wpr_size); + + /* If WPR address and size are not fixed, set them to fit the LS blob */ + if (!gsb->wpr_size) { + gsb->wpr_addr = gsb->ls_blob->addr; + gsb->wpr_size = gsb->ls_blob->size; + } + + /* Write LS blob */ + ret = ls_ucode_mgr_write_wpr(gsb, &mgr, gsb->ls_blob); + +cleanup: + ls_ucode_mgr_cleanup(&mgr); + + return ret; +} + +/* + * High-secure blob creation + */ + +/** + * gm200_secboot_hsf_patch_signature() - patch HS blob with correct signature + */ +static void +gm200_secboot_hsf_patch_signature(struct gm200_secboot *gsb, void *acr_image) +{ + struct nvkm_secboot *sb = &gsb->base; + struct hsf_bin_hdr *hsbin_hdr = acr_image; + struct hsf_fw_header *fw_hdr = acr_image + hsbin_hdr->header_offset; + void *hs_data = acr_image + hsbin_hdr->data_offset; + u32 patch_loc; + u32 patch_sig; + void *sig; + u32 sig_size; + + patch_loc = *(u32 *)(acr_image + fw_hdr->patch_loc); + patch_sig = *(u32 *)(acr_image + fw_hdr->patch_sig); + + /* Falcon in debug or production mode? */ + if ((nvkm_rd32(sb->subdev.device, sb->base + 0xc08) >> 20) & 0x1) { + sig = acr_image + fw_hdr->sig_dbg_offset; + sig_size = fw_hdr->sig_dbg_size; + } else { + sig = acr_image + fw_hdr->sig_prod_offset; + sig_size = fw_hdr->sig_prod_size; + } + + /* Patch signature */ + memcpy(hs_data + patch_loc, sig + patch_sig, sig_size); +} + +static void +gm200_secboot_fixup_hs_desc(struct gm200_secboot *gsb, + struct hsflcn_acr_desc *desc) +{ + desc->ucode_blob_base = gsb->ls_blob->addr; + desc->ucode_blob_size = gsb->ls_blob->size; + + desc->wpr_offset = 0; + + /* WPR region information for the HS binary to set up */ + desc->wpr_region_id = 1; + desc->regions.no_regions = 1; + desc->regions.region_props[0].region_id = 1; + desc->regions.region_props[0].start_addr = gsb->wpr_addr >> 8; + desc->regions.region_props[0].end_addr = + (gsb->wpr_addr + gsb->wpr_size) >> 8; +} + +/** + * gm200_secboot_populate_hsf_bl_desc() - populate BL descriptor for HS image + */ +static void +gm200_secboot_populate_hsf_bl_desc(void *acr_image, + struct gm200_flcn_bl_desc *bl_desc) +{ + struct hsf_bin_hdr *hsbin_hdr = acr_image; + struct hsf_fw_header *fw_hdr = acr_image + hsbin_hdr->header_offset; + struct hsf_load_header *load_hdr = acr_image + fw_hdr->hdr_offset; + + /* + * Descriptor for the bootloader that will load the ACR image into + * IMEM/DMEM memory. + */ + fw_hdr = acr_image + hsbin_hdr->header_offset; + load_hdr = acr_image + fw_hdr->hdr_offset; + memset(bl_desc, 0, sizeof(*bl_desc)); + bl_desc->ctx_dma = FALCON_DMAIDX_VIRT; + bl_desc->non_sec_code_off = load_hdr->non_sec_code_off; + bl_desc->non_sec_code_size = load_hdr->non_sec_code_size; + bl_desc->sec_code_off = load_hdr->sec_code_off; + bl_desc->sec_code_size = load_hdr->sec_code_size; + bl_desc->code_entry_point = 0; + /* + * We need to set code_dma_base to the virtual address of the acr_blob, + * and add this address to data_dma_base before writing it into DMEM + */ + bl_desc->code_dma_base.lo = 0; + bl_desc->data_dma_base.lo = load_hdr->data_dma_base; + bl_desc->data_size = load_hdr->data_size; +} + +static int +gm200_secboot_prepare_hs_blob(struct gm200_secboot *gsb) +{ + struct nvkm_device *device = gsb->base.subdev.device; + void *acr_image; + struct hsf_bin_hdr *hsbin_hdr; + struct hsf_fw_header *fw_hdr; + struct hsf_load_header *load_hdr; + struct hsflcn_acr_desc *desc; + u32 img_size; + int ret; + + acr_image = gm200_secboot_load_firmware(device, "acr_ucode_load", 0); + if (IS_ERR(acr_image)) + return PTR_ERR(acr_image); + hsbin_hdr = acr_image; + + /* Patch signature */ + gm200_secboot_hsf_patch_signature(gsb, acr_image); + + /* Patch descriptor */ + fw_hdr = acr_image + hsbin_hdr->header_offset; + load_hdr = acr_image + fw_hdr->hdr_offset; + desc = acr_image + hsbin_hdr->data_offset + load_hdr->data_dma_base; + gsb->fixup_hs_desc(gsb, desc); + + /* Generate HS BL descriptor */ + gm200_secboot_populate_hsf_bl_desc(acr_image, &gsb->acr_bl_desc); + + /* Create ACR blob and copy HS data to it */ + img_size = ALIGN(hsbin_hdr->data_size, 256); + ret = nvkm_gpuobj_new(device, img_size, 0x1000, false, NULL, + &gsb->acr_blob); + if (ret) + goto cleanup; + + nvkm_kmap(gsb->acr_blob); + nvkm_gpuobj_memcpy_to(gsb->acr_blob, 0, + acr_image + hsbin_hdr->data_offset, img_size); + nvkm_done(gsb->acr_blob); + +cleanup: + kfree(acr_image); + + return ret; +} + +/* + * High-secure bootloader blob creation + */ + +static int +gm200_secboot_prepare_hsbl_blob(struct gm200_secboot *gsb) +{ + struct nvkm_device *device = gsb->base.subdev.device; + + gsb->hsbl_blob = gm200_secboot_load_firmware(device, "acr_bl", 0); + if (IS_ERR(gsb->hsbl_blob)) { + int ret = PTR_ERR(gsb->hsbl_blob); + + gsb->hsbl_blob = NULL; + return ret; + } + + return 0; +} + +int +gm200_secboot_prepare_blobs(struct nvkm_secboot *sb) +{ + struct gm200_secboot *gsb = gm200_secboot(sb); + int ret; + + /* Load and prepare the managed falcon's firmwares */ + ret = gm200_secboot_prepare_ls_blob(gsb); + if (ret) + return ret; + + /* Load the HS firmware for the performing falcon */ + ret = gm200_secboot_prepare_hs_blob(gsb); + if (ret) + return ret; + + /* Load the HS firmware bootloader */ + ret = gm200_secboot_prepare_hsbl_blob(gsb); + if (ret) + return ret; + + return 0; +} + + + +/* + * Secure Boot Execution + */ + +/** + * gm200_secboot_load_hs_bl() - load HS bootloader into DMEM and IMEM + */ +static void +gm200_secboot_load_hs_bl(struct nvkm_secboot *sb, void *data, u32 data_size) +{ + struct nvkm_device *device = sb->subdev.device; + struct gm200_secboot *gsb = gm200_secboot(sb); + struct hsf_bin_hdr *hdr = gsb->hsbl_blob; + struct hsf_bl_desc *hsbl_desc = gsb->hsbl_blob + hdr->header_offset; + void *hsbl_code = gsb->hsbl_blob + hdr->data_offset; + u32 code_size = ALIGN(hsbl_desc->bl_code_size, 256); + u32 blk; + u32 tag; + int i; + + /* + * Copy HS bootloader interface structure where the HS descriptor + * expects it to be + */ + nvkm_wr32(device, sb->base + 0x1c0, + (hsbl_desc->bl_desc_dmem_load_off | (0x1 << 24))); + for (i = 0; i < data_size / 4; i++) + nvkm_wr32(device, sb->base + 0x1c4, ((u32 *)data)[i]); + + /* Copy HS bootloader code to end of IMEM */ + blk = (nvkm_rd32(device, sb->base + 0x108) & 0x1ff) - (code_size >> 8); + tag = hsbl_desc->bl_start_tag; + nvkm_wr32(device, sb->base + 0x180, ((blk & 0xff) << 8) | (0x1 << 24)); + for (i = 0; i < code_size / 4; i++) { + /* write new tag every 256B */ + if ((i & 0x3f) == 0) { + nvkm_wr32(device, sb->base + 0x188, tag & 0xffff); + tag++; + } + nvkm_wr32(device, sb->base + 0x184, ((u32 *)hsbl_code)[i]); + } + nvkm_wr32(device, sb->base + 0x188, 0); +} + +/** + * gm200_secboot_setup_falcon() - set up the secure falcon for secure boot + */ +static int +gm200_secboot_setup_falcon(struct nvkm_secboot *sb) +{ + struct nvkm_device *device = sb->subdev.device; + struct gm200_secboot *gsb = gm200_secboot(sb); + struct hsf_bin_hdr *hdr = gsb->hsbl_blob; + struct hsf_bl_desc *hsbl_desc = gsb->hsbl_blob + hdr->header_offset; + /* virtual start address for boot vector */ + u32 virt_addr = hsbl_desc->bl_start_tag << 8; + const u32 reg_base = sb->base + 0xe00; + u32 inst_loc; + int ret; + + ret = nvkm_secboot_falcon_reset(sb); + if (ret) + return ret; + + /* setup apertures - virtual */ + nvkm_wr32(device, reg_base + 4 * (FALCON_DMAIDX_UCODE), 0x4); + nvkm_wr32(device, reg_base + 4 * (FALCON_DMAIDX_VIRT), 0x0); + /* setup apertures - physical */ + nvkm_wr32(device, reg_base + 4 * (FALCON_DMAIDX_PHYS_VID), 0x4); + nvkm_wr32(device, reg_base + 4 * (FALCON_DMAIDX_PHYS_SYS_COH), + 0x4 | 0x1); + nvkm_wr32(device, reg_base + 4 * (FALCON_DMAIDX_PHYS_SYS_NCOH), + 0x4 | 0x2); + + /* Set context */ + if (device->fb->ram) + inst_loc = 0x0; /* FB */ + else + inst_loc = 0x3; /* Non-coherent sysmem */ + + nvkm_mask(device, sb->base + 0x048, 0x1, 0x1); + nvkm_wr32(device, sb->base + 0x480, + ((gsb->inst->addr >> 12) & 0xfffffff) | + (inst_loc << 28) | (1 << 30)); + + /* Set boot vector to code's starting virtual address */ + nvkm_wr32(device, sb->base + 0x104, virt_addr); + + return 0; +} + +/* + * gm200_secboot_run() - execute secure boot from the prepared state + * + * Load the HS bootloader and ask the falcon to run it. This will in turn + * load the HS firmware and run it, so once the falcon stops all the managed + * falcons should have their LS firmware loaded and be ready to run. + */ +int +gm200_secboot_run(struct nvkm_secboot *sb) +{ + struct gm200_secboot *gsb = gm200_secboot(sb); + struct gm200_flcn_bl_desc *desc = &gsb->acr_bl_desc; + struct nvkm_vma *vma = &gsb->acr_blob_vma; + u64 vma_addr; + u8 bl_desc[gsb->bl_desc_size]; + int ret; + + /* Map the HS firmware so the HS bootloader can see it */ + ret = nvkm_gpuobj_map(gsb->acr_blob, gsb->vm, NV_MEM_ACCESS_RW, + &gsb->acr_blob_vma); + if (ret) + return ret; + + /* Add the mapping address to the DMA bases */ + vma_addr = flcn64_to_u64(desc->code_dma_base) + vma->offset; + desc->code_dma_base.lo = lower_32_bits(vma_addr); + desc->code_dma_base.hi = upper_32_bits(vma_addr); + vma_addr = flcn64_to_u64(desc->data_dma_base) + vma->offset; + desc->data_dma_base.lo = lower_32_bits(vma_addr); + desc->data_dma_base.hi = upper_32_bits(vma_addr); + + /* Fixup the BL header */ + gsb->fixup_bl_desc(&gsb->acr_bl_desc, &bl_desc); + + /* Reset the falcon and make it ready to run the HS bootloader */ + ret = gm200_secboot_setup_falcon(sb); + if (ret) + goto done; + + /* Load the HS bootloader into the falcon's IMEM/DMEM */ + gm200_secboot_load_hs_bl(sb, &bl_desc, gsb->bl_desc_size); + + /* Start the HS bootloader */ + ret = nvkm_secboot_falcon_run(sb); + if (ret) + goto done; + +done: + /* Restore the original DMA addresses */ + vma_addr = flcn64_to_u64(desc->code_dma_base) - vma->offset; + desc->code_dma_base.lo = lower_32_bits(vma_addr); + desc->code_dma_base.hi = upper_32_bits(vma_addr); + vma_addr = flcn64_to_u64(desc->data_dma_base) - vma->offset; + desc->data_dma_base.lo = lower_32_bits(vma_addr); + desc->data_dma_base.hi = upper_32_bits(vma_addr); + + /* We don't need the ACR firmware anymore */ + nvkm_gpuobj_unmap(&gsb->acr_blob_vma); + + return ret; +} + + + +int +gm200_secboot_init(struct nvkm_secboot *sb) +{ + struct gm200_secboot *gsb = gm200_secboot(sb); + struct nvkm_device *device = sb->subdev.device; + struct nvkm_vm *vm; + const u64 vm_area_len = 600 * 1024; + int ret; + + /* Allocate instance block and VM */ + ret = nvkm_gpuobj_new(device, 0x1000, 0, true, NULL, &gsb->inst); + if (ret) + return ret; + + ret = nvkm_gpuobj_new(device, 0x8000, 0, true, NULL, &gsb->pgd); + if (ret) + return ret; + + ret = nvkm_vm_new(device, 0, vm_area_len, 0, NULL, &vm); + if (ret) + return ret; + + atomic_inc(&vm->engref[NVKM_SUBDEV_PMU]); + + ret = nvkm_vm_ref(vm, &gsb->vm, gsb->pgd); + nvkm_vm_ref(NULL, &vm, NULL); + if (ret) + return ret; + + nvkm_kmap(gsb->inst); + nvkm_wo32(gsb->inst, 0x200, lower_32_bits(gsb->pgd->addr)); + nvkm_wo32(gsb->inst, 0x204, upper_32_bits(gsb->pgd->addr)); + nvkm_wo32(gsb->inst, 0x208, lower_32_bits(vm_area_len - 1)); + nvkm_wo32(gsb->inst, 0x20c, upper_32_bits(vm_area_len - 1)); + nvkm_done(gsb->inst); + + return 0; +} + +void * +gm200_secboot_dtor(struct nvkm_secboot *sb) +{ + struct gm200_secboot *gsb = gm200_secboot(sb); + + kfree(gsb->hsbl_blob); + nvkm_gpuobj_del(&gsb->acr_blob); + nvkm_gpuobj_del(&gsb->ls_blob); + + nvkm_vm_ref(NULL, &gsb->vm, gsb->pgd); + nvkm_gpuobj_del(&gsb->pgd); + nvkm_gpuobj_del(&gsb->inst); + + return gsb; +} + + +static const struct nvkm_secboot_func +gm200_secboot = { + .dtor = gm200_secboot_dtor, + .init = gm200_secboot_init, + .prepare_blobs = gm200_secboot_prepare_blobs, + .run = gm200_secboot_run, + .managed_falcons = BIT(NVKM_SECBOOT_FALCON_FECS) | + BIT(NVKM_SECBOOT_FALCON_GPCCS), + .boot_falcon = NVKM_SECBOOT_FALCON_PMU, +}; + +/** + * gm200_fixup_bl_desc - just copy the BL descriptor + * + * Use the GM200 descriptor format by default. + */ +static void +gm200_fixup_bl_desc(const struct gm200_flcn_bl_desc *desc, void *ret) +{ + memcpy(ret, desc, sizeof(*desc)); +} + +int +gm200_secboot_new(struct nvkm_device *device, int index, + struct nvkm_secboot **psb) +{ + int ret; + struct gm200_secboot *gsb; + + gsb = kzalloc(sizeof(*gsb), GFP_KERNEL); + if (!gsb) { + psb = NULL; + return -ENOMEM; + } + *psb = &gsb->base; + + ret = nvkm_secboot_ctor(&gm200_secboot, device, index, &gsb->base); + if (ret) + return ret; + + gsb->bl_desc_size = sizeof(struct gm200_flcn_bl_desc); + gsb->fixup_bl_desc = gm200_fixup_bl_desc; + gsb->fixup_hs_desc = gm200_secboot_fixup_hs_desc; + + return 0; +} diff --git a/drm/nouveau/nvkm/subdev/secboot/priv.h b/drm/nouveau/nvkm/subdev/secboot/priv.h index 990d490ee0e8..72d79aee7fc3 100644 --- a/drm/nouveau/nvkm/subdev/secboot/priv.h +++ b/drm/nouveau/nvkm/subdev/secboot/priv.h @@ -43,4 +43,145 @@ int nvkm_secboot_ctor(const struct nvkm_secboot_func *, struct nvkm_device *, int nvkm_secboot_falcon_reset(struct nvkm_secboot *); int nvkm_secboot_falcon_run(struct nvkm_secboot *); +struct flcn_u64 { + u32 lo; + u32 hi; +}; +static inline u64 flcn64_to_u64(const struct flcn_u64 f) +{ + return ((u64)f.hi) << 32 | f.lo; +} + +/** + * struct gm200_flcn_bl_desc - DMEM bootloader descriptor + * @signature: 16B signature for secure code. 0s if no secure code + * @ctx_dma: DMA context to be used by BL while loading code/data + * @code_dma_base: 256B-aligned Physical FB Address where code is located + * (falcon's $xcbase register) + * @non_sec_code_off: offset from code_dma_base where the non-secure code is + * located. The offset must be multiple of 256 to help perf + * @non_sec_code_size: the size of the nonSecure code part. + * @sec_code_off: offset from code_dma_base where the secure code is + * located. The offset must be multiple of 256 to help perf + * @sec_code_size: offset from code_dma_base where the secure code is + * located. The offset must be multiple of 256 to help perf + * @code_entry_point: code entry point which will be invoked by BL after + * code is loaded. + * @data_dma_base: 256B aligned Physical FB Address where data is located. + * (falcon's $xdbase register) + * @data_size: size of data block. Should be multiple of 256B + * + * Structure used by the bootloader to load the rest of the code. This has + * to be filled by host and copied into DMEM at offset provided in the + * hsflcn_bl_desc.bl_desc_dmem_load_off. + */ +struct gm200_flcn_bl_desc { + u32 reserved[4]; + u32 signature[4]; + u32 ctx_dma; + struct flcn_u64 code_dma_base; + u32 non_sec_code_off; + u32 non_sec_code_size; + u32 sec_code_off; + u32 sec_code_size; + u32 code_entry_point; + struct flcn_u64 data_dma_base; + u32 data_size; +}; + +/** + * struct hsflcn_acr_desc - data section of the HS firmware + * + * This header is to be copied at the beginning of DMEM by the HS bootloader. + * + * @signature: signature of ACR ucode + * @wpr_region_id: region ID holding the WPR header and its details + * @wpr_offset: offset from the WPR region holding the wpr header + * @regions: region descriptors + * @nonwpr_ucode_blob_size: size of LS blob + * @nonwpr_ucode_blob_start: FB location of LS blob is + */ +struct hsflcn_acr_desc { + union { + u8 reserved_dmem[0x200]; + u32 signatures[4]; + } ucode_reserved_space; + u32 wpr_region_id; + u32 wpr_offset; + u32 mmu_mem_range; +#define FLCN_ACR_MAX_REGIONS 2 + struct { + u32 no_regions; + struct { + u32 start_addr; + u32 end_addr; + u32 region_id; + u32 read_mask; + u32 write_mask; + u32 client_mask; + } region_props[FLCN_ACR_MAX_REGIONS]; + } regions; + u32 ucode_blob_size; + u64 ucode_blob_base __aligned(8); + struct { + u32 vpr_enabled; + u32 vpr_start; + u32 vpr_end; + u32 hdcp_policies; + } vpr_desc; +}; + +/** + * Contains the whole secure boot state, allowing it to be performed as needed + * @wpr_addr: physical address of the WPR region + * @wpr_size: size in bytes of the WPR region + * @ls_blob: LS blob of all the LS firmwares, signatures, bootloaders + * @ls_blob_size: size of the LS blob + * @ls_blob_nb_regions: number of LS firmwares that will be loaded + * @acr_blob: HS blob + * @acr_blob_vma: mapping of the HS blob into the secure falcon's VM + * @acr_bl_desc: bootloader descriptor of the HS blob + * @hsbl_blob: HS blob bootloader + * @inst: instance block for HS falcon + * @pgd: page directory for the HS falcon + * @vm: address space used by the HS falcon + * @bl_desc_size: size of the BL descriptor used by this chip. + * @fixup_bl_desc: hook that generates the proper BL descriptor format from + * the generic GM200 format into a data array of size + * bl_desc_size + */ +struct gm200_secboot { + struct nvkm_secboot base; + + u64 wpr_addr; + u32 wpr_size; + struct nvkm_vma acr_blob_vma; + + /* LS FWs, to be loaded by the HS ACR */ + struct nvkm_gpuobj *ls_blob; + + /* HS FW */ + struct nvkm_gpuobj *acr_blob; + + /* HS bootloader */ + void *hsbl_blob; + + struct gm200_flcn_bl_desc acr_bl_desc; + + /* Instance block & address space */ + struct nvkm_gpuobj *inst; + struct nvkm_gpuobj *pgd; + struct nvkm_vm *vm; + + u32 bl_desc_size; + void (*fixup_bl_desc)(const struct gm200_flcn_bl_desc *, void *); + void (*fixup_hs_desc)(struct gm200_secboot *, struct hsflcn_acr_desc *); +}; +#define gm200_secboot(sb) container_of(sb, struct gm200_secboot, base) + +int gm200_secboot_init(struct nvkm_secboot *); +void *gm200_secboot_dtor(struct nvkm_secboot *); +int gm200_secboot_prepare_blobs(struct nvkm_secboot *); +int gm200_secboot_run(struct nvkm_secboot *); + #endif