diff mbox

Gimple loop splitting v2

Message ID CA+=Sn1nmqsGAOf0JFPNRPRs2KwNTihAFzck9mgyCEHzzrUEHog@mail.gmail.com
State New
Headers show

Commit Message

Andrew Pinski July 25, 2016, 8:57 p.m. UTC
On Wed, Dec 2, 2015 at 5:23 AM, Michael Matz <matz@suse.de> wrote:
> Hi,
>
> On Tue, 1 Dec 2015, Jeff Law wrote:
>
>> > So, okay for trunk?
>> -ENOPATCH
>
> Sigh :)
> Here it is.


I found one problem with it.
Take:
void f(int *a, int M, int *b)
{
  for(int i = 0; i <= M; i++)
    {
       if (i < M)
        a[i] = i;
    }
}
---- CUT ---
There are two issues with the code as below.  The outer most loop's
aux is still set which causes the vectorizer not to vector the loop.
The other issue is I need to run pass_scev_cprop after pass_loop_split
to get the induction variable usage after the loop gone so the
vectorizer will work.

Something like (note this is copy and paste from a terminal):
-----  CUT -----

Thanks,
Andrew


>
>
> Ciao,
> Michael.
>         * common.opt (-fsplit-loops): New flag.
>         * passes.def (pass_loop_split): Add.
>         * opts.c (default_options_table): Add OPT_fsplit_loops entry at -O3.
>         (enable_fdo_optimizations): Add loop splitting.
>         * timevar.def (TV_LOOP_SPLIT): Add.
>         * tree-pass.h (make_pass_loop_split): Declare.
>         * tree-ssa-loop-manip.h (rewrite_into_loop_closed_ssa_1): Declare.
>         * tree-ssa-loop-unswitch.c: Include tree-ssa-loop-manip.h,
>         * tree-ssa-loop-split.c: New file.
>         * Makefile.in (OBJS): Add tree-ssa-loop-split.o.
>         * doc/invoke.texi (fsplit-loops): Document.
>         * doc/passes.texi (Loop optimization): Add paragraph about loop
>         splitting.
>
> testsuite/
>         * gcc.dg/loop-split.c: New test.
>
> Index: common.opt
> ===================================================================
> --- common.opt  (revision 231115)
> +++ common.opt  (working copy)
> @@ -2453,6 +2457,10 @@ funswitch-loops
>  Common Report Var(flag_unswitch_loops) Optimization
>  Perform loop unswitching.
>
> +fsplit-loops
> +Common Report Var(flag_split_loops) Optimization
> +Perform loop splitting.
> +
>  funwind-tables
>  Common Report Var(flag_unwind_tables) Optimization
>  Just generate unwind tables for exception handling.
> Index: passes.def
> ===================================================================
> --- passes.def  (revision 231115)
> +++ passes.def  (working copy)
> @@ -252,6 +252,7 @@ along with GCC; see the file COPYING3.
>           NEXT_PASS (pass_dce);
>           NEXT_PASS (pass_tree_unswitch);
>           NEXT_PASS (pass_scev_cprop);
> +         NEXT_PASS (pass_loop_split);
>           NEXT_PASS (pass_record_bounds);
>           NEXT_PASS (pass_loop_distribution);
>           NEXT_PASS (pass_copy_prop);
> Index: opts.c
> ===================================================================
> --- opts.c      (revision 231115)
> +++ opts.c      (working copy)
> @@ -532,6 +532,7 @@ static const struct default_options defa
>         regardless of them being declared inline.  */
>      { OPT_LEVELS_3_PLUS_AND_SIZE, OPT_finline_functions, NULL, 1 },
>      { OPT_LEVELS_1_PLUS_NOT_DEBUG, OPT_finline_functions_called_once, NULL, 1 },
> +    { OPT_LEVELS_3_PLUS, OPT_fsplit_loops, NULL, 1 },
>      { OPT_LEVELS_3_PLUS, OPT_funswitch_loops, NULL, 1 },
>      { OPT_LEVELS_3_PLUS, OPT_fgcse_after_reload, NULL, 1 },
>      { OPT_LEVELS_3_PLUS, OPT_ftree_loop_vectorize, NULL, 1 },
> @@ -1411,6 +1412,8 @@ enable_fdo_optimizations (struct gcc_opt
>      opts->x_flag_ipa_cp_alignment = value;
>    if (!opts_set->x_flag_predictive_commoning)
>      opts->x_flag_predictive_commoning = value;
> +  if (!opts_set->x_flag_split_loops)
> +    opts->x_flag_split_loops = value;
>    if (!opts_set->x_flag_unswitch_loops)
>      opts->x_flag_unswitch_loops = value;
>    if (!opts_set->x_flag_gcse_after_reload)
> Index: timevar.def
> ===================================================================
> --- timevar.def (revision 231115)
> +++ timevar.def (working copy)
> @@ -182,6 +182,7 @@ DEFTIMEVAR (TV_LIM                   , "
>  DEFTIMEVAR (TV_TREE_LOOP_IVCANON     , "tree canonical iv")
>  DEFTIMEVAR (TV_SCEV_CONST            , "scev constant prop")
>  DEFTIMEVAR (TV_TREE_LOOP_UNSWITCH    , "tree loop unswitching")
> +DEFTIMEVAR (TV_LOOP_SPLIT            , "loop splitting")
>  DEFTIMEVAR (TV_COMPLETE_UNROLL       , "complete unrolling")
>  DEFTIMEVAR (TV_TREE_PARALLELIZE_LOOPS, "tree parallelize loops")
>  DEFTIMEVAR (TV_TREE_VECTORIZATION    , "tree vectorization")
> Index: tree-pass.h
> ===================================================================
> --- tree-pass.h (revision 231115)
> +++ tree-pass.h (working copy)
> @@ -370,6 +370,7 @@ extern gimple_opt_pass *make_pass_tree_n
>  extern gimple_opt_pass *make_pass_tree_loop_init (gcc::context *ctxt);
>  extern gimple_opt_pass *make_pass_lim (gcc::context *ctxt);
>  extern gimple_opt_pass *make_pass_tree_unswitch (gcc::context *ctxt);
> +extern gimple_opt_pass *make_pass_loop_split (gcc::context *ctxt);
>  extern gimple_opt_pass *make_pass_predcom (gcc::context *ctxt);
>  extern gimple_opt_pass *make_pass_iv_canon (gcc::context *ctxt);
>  extern gimple_opt_pass *make_pass_scev_cprop (gcc::context *ctxt);
> Index: tree-ssa-loop-manip.h
> ===================================================================
> --- tree-ssa-loop-manip.h       (revision 231115)
> +++ tree-ssa-loop-manip.h       (working copy)
> @@ -24,6 +24,8 @@ typedef void (*transform_callback)(struc
>
>  extern void create_iv (tree, tree, tree, struct loop *, gimple_stmt_iterator *,
>                        bool, tree *, tree *);
> +extern void rewrite_into_loop_closed_ssa_1 (bitmap, unsigned, int,
> +                                           struct loop *);
>  extern void rewrite_into_loop_closed_ssa (bitmap, unsigned);
>  extern void rewrite_virtuals_into_loop_closed_ssa (struct loop *);
>  extern void verify_loop_closed_ssa (bool);
> Index: Makefile.in
> ===================================================================
> --- Makefile.in (revision 231115)
> +++ Makefile.in (working copy)
> @@ -1474,6 +1474,7 @@ OBJS = \
>         tree-ssa-loop-manip.o \
>         tree-ssa-loop-niter.o \
>         tree-ssa-loop-prefetch.o \
> +       tree-ssa-loop-split.o \
>         tree-ssa-loop-unswitch.o \
>         tree-ssa-loop.o \
>         tree-ssa-math-opts.o \
> Index: tree-ssa-loop-split.c
> ===================================================================
> --- tree-ssa-loop-split.c       (revision 0)
> +++ tree-ssa-loop-split.c       (working copy)
> @@ -0,0 +1,686 @@
> +/* Loop splitting.
> +   Copyright (C) 2015 Free Software Foundation, Inc.
> +
> +This file is part of GCC.
> +
> +GCC is free software; you can redistribute it and/or modify it
> +under the terms of the GNU General Public License as published by the
> +Free Software Foundation; either version 3, or (at your option) any
> +later version.
> +
> +GCC is distributed in the hope that it will be useful, but WITHOUT
> +ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
> +FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
> +for more details.
> +
> +You should have received a copy of the GNU General Public License
> +along with GCC; see the file COPYING3.  If not see
> +<http://www.gnu.org/licenses/>.  */
> +
> +#include "config.h"
> +#include "system.h"
> +#include "coretypes.h"
> +#include "backend.h"
> +#include "tree.h"
> +#include "gimple.h"
> +#include "tree-pass.h"
> +#include "ssa.h"
> +#include "fold-const.h"
> +#include "tree-cfg.h"
> +#include "tree-ssa.h"
> +#include "tree-ssa-loop-niter.h"
> +#include "tree-ssa-loop.h"
> +#include "tree-ssa-loop-manip.h"
> +#include "tree-into-ssa.h"
> +#include "cfgloop.h"
> +#include "tree-scalar-evolution.h"
> +#include "gimple-iterator.h"
> +#include "gimple-pretty-print.h"
> +#include "cfghooks.h"
> +#include "gimple-fold.h"
> +#include "gimplify-me.h"
> +
> +/* This file implements loop splitting, i.e. transformation of loops like
> +
> +   for (i = 0; i < 100; i++)
> +     {
> +       if (i < 50)
> +         A;
> +       else
> +         B;
> +     }
> +
> +   into:
> +
> +   for (i = 0; i < 50; i++)
> +     {
> +       A;
> +     }
> +   for (; i < 100; i++)
> +     {
> +       B;
> +     }
> +
> +   */
> +
> +/* Return true when BB inside LOOP is a potential iteration space
> +   split point, i.e. ends with a condition like "IV < comp", which
> +   is true on one side of the iteration space and false on the other,
> +   and the split point can be computed.  If so, also return the border
> +   point in *BORDER and the comparison induction variable in IV.  */
> +
> +static tree
> +split_at_bb_p (struct loop *loop, basic_block bb, tree *border, affine_iv *iv)
> +{
> +  gimple *last;
> +  gcond *stmt;
> +  affine_iv iv2;
> +
> +  /* BB must end in a simple conditional jump.  */
> +  last = last_stmt (bb);
> +  if (!last || gimple_code (last) != GIMPLE_COND)
> +    return NULL_TREE;
> +  stmt = as_a <gcond *> (last);
> +
> +  enum tree_code code = gimple_cond_code (stmt);
> +
> +  /* Only handle relational comparisons, for equality and non-equality
> +     we'd have to split the loop into two loops and a middle statement.  */
> +  switch (code)
> +    {
> +      case LT_EXPR:
> +      case LE_EXPR:
> +      case GT_EXPR:
> +      case GE_EXPR:
> +       break;
> +      default:
> +       return NULL_TREE;
> +    }
> +
> +  if (loop_exits_from_bb_p (loop, bb))
> +    return NULL_TREE;
> +
> +  tree op0 = gimple_cond_lhs (stmt);
> +  tree op1 = gimple_cond_rhs (stmt);
> +
> +  if (!simple_iv (loop, loop, op0, iv, false))
> +    return NULL_TREE;
> +  if (!simple_iv (loop, loop, op1, &iv2, false))
> +    return NULL_TREE;
> +
> +  /* Make it so, that the first argument of the condition is
> +     the looping one (only swap.  */
> +  if (!integer_zerop (iv2.step))
> +    {
> +      std::swap (op0, op1);
> +      std::swap (*iv, iv2);
> +      code = swap_tree_comparison (code);
> +      gimple_cond_set_condition (stmt, code, op0, op1);
> +      update_stmt (stmt);
> +    }
> +  else if (integer_zerop (iv->step))
> +    return NULL_TREE;
> +  if (!integer_zerop (iv2.step))
> +    return NULL_TREE;
> +
> +  if (dump_file && (dump_flags & TDF_DETAILS))
> +    {
> +      fprintf (dump_file, "Found potential split point: ");
> +      print_gimple_stmt (dump_file, stmt, 0, TDF_SLIM);
> +      fprintf (dump_file, " { ");
> +      print_generic_expr (dump_file, iv->base, TDF_SLIM);
> +      fprintf (dump_file, " + I*");
> +      print_generic_expr (dump_file, iv->step, TDF_SLIM);
> +      fprintf (dump_file, " } %s ", get_tree_code_name (code));
> +      print_generic_expr (dump_file, iv2.base, TDF_SLIM);
> +      fprintf (dump_file, "\n");
> +    }
> +
> +  *border = iv2.base;
> +  return op0;
> +}
> +
> +/* Given a GUARD conditional stmt inside LOOP, which we want to make always
> +   true or false depending on INITIAL_TRUE, and adjusted values NEXTVAL
> +   (a post-increment IV) and NEWBOUND (the comparator) adjust the loop
> +   exit test statement to loop back only if the GUARD statement will
> +   also be true/false in the next iteration.  */
> +
> +static void
> +patch_loop_exit (struct loop *loop, gcond *guard, tree nextval, tree newbound,
> +                bool initial_true)
> +{
> +  edge exit = single_exit (loop);
> +  gcond *stmt = as_a <gcond *> (last_stmt (exit->src));
> +  gimple_cond_set_condition (stmt, gimple_cond_code (guard),
> +                            nextval, newbound);
> +  update_stmt (stmt);
> +
> +  edge stay = single_pred_edge (loop->latch);
> +
> +  exit->flags &= ~(EDGE_TRUE_VALUE | EDGE_FALSE_VALUE);
> +  stay->flags &= ~(EDGE_TRUE_VALUE | EDGE_FALSE_VALUE);
> +
> +  if (initial_true)
> +    {
> +      exit->flags |= EDGE_FALSE_VALUE;
> +      stay->flags |= EDGE_TRUE_VALUE;
> +    }
> +  else
> +    {
> +      exit->flags |= EDGE_TRUE_VALUE;
> +      stay->flags |= EDGE_FALSE_VALUE;
> +    }
> +}
> +
> +/* Give an induction variable GUARD_IV, and its affine descriptor IV,
> +   find the loop phi node in LOOP defining it directly, or create
> +   such phi node.  Return that phi node.  */
> +
> +static gphi *
> +find_or_create_guard_phi (struct loop *loop, tree guard_iv, affine_iv * /*iv*/)
> +{
> +  gimple *def = SSA_NAME_DEF_STMT (guard_iv);
> +  gphi *phi;
> +  if ((phi = dyn_cast <gphi *> (def))
> +      && gimple_bb (phi) == loop->header)
> +    return phi;
> +
> +  /* XXX Create the PHI instead.  */
> +  return NULL;
> +}
> +
> +/* This function updates the SSA form after connect_loops made a new
> +   edge NEW_E leading from LOOP1 exit to LOOP2 (via in intermediate
> +   conditional).  I.e. the second loop can now be entered either
> +   via the original entry or via NEW_E, so the entry values of LOOP2
> +   phi nodes are either the original ones or those at the exit
> +   of LOOP1.  Insert new phi nodes in LOOP2 pre-header reflecting
> +   this.  */
> +
> +static void
> +connect_loop_phis (struct loop *loop1, struct loop *loop2, edge new_e)
> +{
> +  basic_block rest = loop_preheader_edge (loop2)->src;
> +  gcc_assert (new_e->dest == rest);
> +  edge skip_first = EDGE_PRED (rest, EDGE_PRED (rest, 0) == new_e);
> +
> +  edge firste = loop_preheader_edge (loop1);
> +  edge seconde = loop_preheader_edge (loop2);
> +  edge firstn = loop_latch_edge (loop1);
> +  gphi_iterator psi_first, psi_second;
> +  for (psi_first = gsi_start_phis (loop1->header),
> +       psi_second = gsi_start_phis (loop2->header);
> +       !gsi_end_p (psi_first);
> +       gsi_next (&psi_first), gsi_next (&psi_second))
> +    {
> +      tree init, next, new_init;
> +      use_operand_p op;
> +      gphi *phi_first = psi_first.phi ();
> +      gphi *phi_second = psi_second.phi ();
> +
> +      init = PHI_ARG_DEF_FROM_EDGE (phi_first, firste);
> +      next = PHI_ARG_DEF_FROM_EDGE (phi_first, firstn);
> +      op = PHI_ARG_DEF_PTR_FROM_EDGE (phi_second, seconde);
> +      gcc_assert (operand_equal_for_phi_arg_p (init, USE_FROM_PTR (op)));
> +
> +      /* Prefer using original variable as a base for the new ssa name.
> +        This is necessary for virtual ops, and useful in order to avoid
> +        losing debug info for real ops.  */
> +      if (TREE_CODE (next) == SSA_NAME
> +         && useless_type_conversion_p (TREE_TYPE (next),
> +                                       TREE_TYPE (init)))
> +       new_init = copy_ssa_name (next);
> +      else if (TREE_CODE (init) == SSA_NAME
> +              && useless_type_conversion_p (TREE_TYPE (init),
> +                                            TREE_TYPE (next)))
> +       new_init = copy_ssa_name (init);
> +      else if (useless_type_conversion_p (TREE_TYPE (next),
> +                                         TREE_TYPE (init)))
> +       new_init = make_temp_ssa_name (TREE_TYPE (next), NULL,
> +                                      "unrinittmp");
> +      else
> +       new_init = make_temp_ssa_name (TREE_TYPE (init), NULL,
> +                                      "unrinittmp");
> +
> +      gphi * newphi = create_phi_node (new_init, rest);
> +      add_phi_arg (newphi, init, skip_first, UNKNOWN_LOCATION);
> +      add_phi_arg (newphi, next, new_e, UNKNOWN_LOCATION);
> +      SET_USE (op, new_init);
> +    }
> +}
> +
> +/* The two loops LOOP1 and LOOP2 were just created by loop versioning,
> +   they are still equivalent and placed in two arms of a diamond, like so:
> +
> +               .------if (cond)------.
> +               v                     v
> +             pre1                   pre2
> +              |                      |
> +        .--->h1                     h2<----.
> +        |     |                      |     |
> +        |    ex1---.            .---ex2    |
> +        |    /     |            |     \    |
> +        '---l1     X            |     l2---'
> +                   |            |
> +                   |            |
> +                   '--->join<---'
> +
> +   This function transforms the program such that LOOP1 is conditionally
> +   falling through to LOOP2, or skipping it.  This is done by splitting
> +   the ex1->join edge at X in the diagram above, and inserting a condition
> +   whose one arm goes to pre2, resulting in this situation:
> +
> +               .------if (cond)------.
> +               v                     v
> +             pre1       .---------->pre2
> +              |         |            |
> +        .--->h1         |           h2<----.
> +        |     |         |            |     |
> +        |    ex1---.    |       .---ex2    |
> +        |    /     v    |       |     \    |
> +        '---l1   skip---'       |     l2---'
> +                   |            |
> +                   |            |
> +                   '--->join<---'
> +
> +
> +   The condition used is the exit condition of LOOP1, which effectively means
> +   that when the first loop exits (for whatever reason) but the real original
> +   exit expression is still false the second loop will be entered.
> +   The function returns the new edge cond->pre2.
> +
> +   This doesn't update the SSA form, see connect_loop_phis for that.  */
> +
> +static edge
> +connect_loops (struct loop *loop1, struct loop *loop2)
> +{
> +  edge exit = single_exit (loop1);
> +  basic_block skip_bb = split_edge (exit);
> +  gcond *skip_stmt;
> +  gimple_stmt_iterator gsi;
> +  edge new_e, skip_e;
> +
> +  gimple *stmt = last_stmt (exit->src);
> +  skip_stmt = gimple_build_cond (gimple_cond_code (stmt),
> +                                gimple_cond_lhs (stmt),
> +                                gimple_cond_rhs (stmt),
> +                                NULL_TREE, NULL_TREE);
> +  gsi = gsi_last_bb (skip_bb);
> +  gsi_insert_after (&gsi, skip_stmt, GSI_NEW_STMT);
> +
> +  skip_e = EDGE_SUCC (skip_bb, 0);
> +  skip_e->flags &= ~EDGE_FALLTHRU;
> +  new_e = make_edge (skip_bb, loop_preheader_edge (loop2)->src, 0);
> +  if (exit->flags & EDGE_TRUE_VALUE)
> +    {
> +      skip_e->flags |= EDGE_TRUE_VALUE;
> +      new_e->flags |= EDGE_FALSE_VALUE;
> +    }
> +  else
> +    {
> +      skip_e->flags |= EDGE_FALSE_VALUE;
> +      new_e->flags |= EDGE_TRUE_VALUE;
> +    }
> +
> +  new_e->count = skip_bb->count;
> +  new_e->probability = PROB_LIKELY;
> +  new_e->count = apply_probability (skip_e->count, PROB_LIKELY);
> +  skip_e->count -= new_e->count;
> +  skip_e->probability = inverse_probability (PROB_LIKELY);
> +
> +  return new_e;
> +}
> +
> +/* This returns the new bound for iterations given the original iteration
> +   space in NITER, an arbitrary new bound BORDER, assumed to be some
> +   comparison value with a different IV, the initial value GUARD_INIT of
> +   that other IV, and the comparison code GUARD_CODE that compares
> +   that other IV with BORDER.  We return an SSA name, and place any
> +   necessary statements for that computation into *STMTS.
> +
> +   For example for such a loop:
> +
> +     for (i = beg, j = guard_init; i < end; i++, j++)
> +       if (j < border)  // this is supposed to be true/false
> +         ...
> +
> +   we want to return a new bound (on j) that makes the loop iterate
> +   as long as the condition j < border stays true.  We also don't want
> +   to iterate more often than the original loop, so we have to introduce
> +   some cut-off as well (via min/max), effectively resulting in:
> +
> +     newend = min (end+guard_init-beg, border)
> +     for (i = beg; j = guard_init; j < newend; i++, j++)
> +       if (j < c)
> +         ...
> +
> +   Depending on the direction of the IVs and if the exit tests
> +   are strict or non-strict we need to use MIN or MAX,
> +   and add or subtract 1.  This routine computes newend above.  */
> +
> +static tree
> +compute_new_first_bound (gimple_seq *stmts, struct tree_niter_desc *niter,
> +                        tree border,
> +                        enum tree_code guard_code, tree guard_init)
> +{
> +  /* The niter structure contains the after-increment IV, we need
> +     the loop-enter base, so subtract STEP once.  */
> +  tree controlbase = force_gimple_operand (niter->control.base,
> +                                          stmts, true, NULL_TREE);
> +  tree controlstep = niter->control.step;
> +  tree enddiff;
> +  if (POINTER_TYPE_P (TREE_TYPE (controlbase)))
> +    {
> +      controlstep = gimple_build (stmts, NEGATE_EXPR,
> +                                 TREE_TYPE (controlstep), controlstep);
> +      enddiff = gimple_build (stmts, POINTER_PLUS_EXPR,
> +                             TREE_TYPE (controlbase),
> +                             controlbase, controlstep);
> +    }
> +  else
> +    enddiff = gimple_build (stmts, MINUS_EXPR,
> +                           TREE_TYPE (controlbase),
> +                           controlbase, controlstep);
> +
> +  /* Compute beg-guard_init.  */
> +  if (POINTER_TYPE_P (TREE_TYPE (enddiff)))
> +    {
> +      tree tem = gimple_convert (stmts, sizetype, guard_init);
> +      tem = gimple_build (stmts, NEGATE_EXPR, sizetype, tem);
> +      enddiff = gimple_build (stmts, POINTER_PLUS_EXPR,
> +                             TREE_TYPE (enddiff),
> +                             enddiff, tem);
> +    }
> +  else
> +    enddiff = gimple_build (stmts, MINUS_EXPR, TREE_TYPE (enddiff),
> +                           enddiff, guard_init);
> +
> +  /* Compute end-(beg-guard_init).  */
> +  gimple_seq stmts2;
> +  tree newbound = force_gimple_operand (niter->bound, &stmts2,
> +                                       true, NULL_TREE);
> +  gimple_seq_add_seq_without_update (stmts, stmts2);
> +
> +  if (POINTER_TYPE_P (TREE_TYPE (enddiff))
> +      || POINTER_TYPE_P (TREE_TYPE (newbound)))
> +    {
> +      enddiff = gimple_convert (stmts, sizetype, enddiff);
> +      enddiff = gimple_build (stmts, NEGATE_EXPR, sizetype, enddiff);
> +      newbound = gimple_build (stmts, POINTER_PLUS_EXPR,
> +                              TREE_TYPE (newbound),
> +                              newbound, enddiff);
> +    }
> +  else
> +    newbound = gimple_build (stmts, MINUS_EXPR, TREE_TYPE (enddiff),
> +                            newbound, enddiff);
> +
> +  /* Depending on the direction of the IVs the new bound for the first
> +     loop is the minimum or maximum of old bound and border.
> +     Also, if the guard condition isn't strictly less or greater,
> +     we need to adjust the bound.  */
> +  int addbound = 0;
> +  enum tree_code minmax;
> +  if (niter->cmp == LT_EXPR)
> +    {
> +      /* GT and LE are the same, inverted.  */
> +      if (guard_code == GT_EXPR || guard_code == LE_EXPR)
> +       addbound = -1;
> +      minmax = MIN_EXPR;
> +    }
> +  else
> +    {
> +      gcc_assert (niter->cmp == GT_EXPR);
> +      if (guard_code == GE_EXPR || guard_code == LT_EXPR)
> +       addbound = 1;
> +      minmax = MAX_EXPR;
> +    }
> +
> +  if (addbound)
> +    {
> +      tree type2 = TREE_TYPE (newbound);
> +      if (POINTER_TYPE_P (type2))
> +       type2 = sizetype;
> +      newbound = gimple_build (stmts,
> +                              POINTER_TYPE_P (TREE_TYPE (newbound))
> +                              ? POINTER_PLUS_EXPR : PLUS_EXPR,
> +                              TREE_TYPE (newbound),
> +                              newbound,
> +                              build_int_cst (type2, addbound));
> +    }
> +
> +  tree newend = gimple_build (stmts, minmax, TREE_TYPE (border),
> +                             border, newbound);
> +  return newend;
> +}
> +
> +/* Checks if LOOP contains an conditional block whose condition
> +   depends on which side in the iteration space it is, and if so
> +   splits the iteration space into two loops.  Returns true if the
> +   loop was split.  NITER must contain the iteration descriptor for the
> +   single exit of LOOP.  */
> +
> +static bool
> +split_loop (struct loop *loop1, struct tree_niter_desc *niter)
> +{
> +  basic_block *bbs;
> +  unsigned i;
> +  bool changed = false;
> +  tree guard_iv;
> +  tree border;
> +  affine_iv iv;
> +
> +  bbs = get_loop_body (loop1);
> +
> +  /* Find a splitting opportunity.  */
> +  for (i = 0; i < loop1->num_nodes; i++)
> +    if ((guard_iv = split_at_bb_p (loop1, bbs[i], &border, &iv)))
> +      {
> +       /* Handling opposite steps is not implemented yet.  Neither
> +          is handling different step sizes.  */
> +       if ((tree_int_cst_sign_bit (iv.step)
> +            != tree_int_cst_sign_bit (niter->control.step))
> +           || !tree_int_cst_equal (iv.step, niter->control.step))
> +         continue;
> +
> +       /* Find a loop PHI node that defines guard_iv directly,
> +          or create one doing that.  */
> +       gphi *phi = find_or_create_guard_phi (loop1, guard_iv, &iv);
> +       if (!phi)
> +         continue;
> +       gcond *guard_stmt = as_a<gcond *> (last_stmt (bbs[i]));
> +       tree guard_init = PHI_ARG_DEF_FROM_EDGE (phi,
> +                                                loop_preheader_edge (loop1));
> +       enum tree_code guard_code = gimple_cond_code (guard_stmt);
> +
> +       /* Loop splitting is implemented by versioning the loop, placing
> +          the new loop after the old loop, make the first loop iterate
> +          as long as the conditional stays true (or false) and let the
> +          second (new) loop handle the rest of the iterations.
> +
> +          First we need to determine if the condition will start being true
> +          or false in the first loop.  */
> +       bool initial_true;
> +       switch (guard_code)
> +         {
> +           case LT_EXPR:
> +           case LE_EXPR:
> +             initial_true = !tree_int_cst_sign_bit (iv.step);
> +             break;
> +           case GT_EXPR:
> +           case GE_EXPR:
> +             initial_true = tree_int_cst_sign_bit (iv.step);
> +             break;
> +           default:
> +             gcc_unreachable ();
> +         }
> +
> +       /* Build a condition that will skip the first loop when the
> +          guard condition won't ever be true (or false).  */
> +       gimple_seq stmts2;
> +       border = force_gimple_operand (border, &stmts2, true, NULL_TREE);
> +       if (stmts2)
> +         gsi_insert_seq_on_edge_immediate (loop_preheader_edge (loop1),
> +                                           stmts2);
> +       tree cond = build2 (guard_code, boolean_type_node, guard_init, border);
> +       if (!initial_true)
> +         cond = fold_build1 (TRUTH_NOT_EXPR, boolean_type_node, cond);
> +
> +       /* Now version the loop, placing loop2 after loop1 connecting
> +          them, and fix up SSA form for that.  */
> +       initialize_original_copy_tables ();
> +       basic_block cond_bb;
> +       struct loop *loop2 = loop_version (loop1, cond, &cond_bb,
> +                                          REG_BR_PROB_BASE, REG_BR_PROB_BASE,
> +                                          REG_BR_PROB_BASE, true);
> +       gcc_assert (loop2);
> +       update_ssa (TODO_update_ssa);
> +
> +       edge new_e = connect_loops (loop1, loop2);
> +       connect_loop_phis (loop1, loop2, new_e);
> +
> +       /* The iterations of the second loop is now already
> +          exactly those that the first loop didn't do, but the
> +          iteration space of the first loop is still the original one.
> +          Compute the new bound for the guarding IV and patch the
> +          loop exit to use it instead of original IV and bound.  */
> +       gimple_seq stmts = NULL;
> +       tree newend = compute_new_first_bound (&stmts, niter, border,
> +                                              guard_code, guard_init);
> +       if (stmts)
> +         gsi_insert_seq_on_edge_immediate (loop_preheader_edge (loop1),
> +                                           stmts);
> +       tree guard_next = PHI_ARG_DEF_FROM_EDGE (phi, loop_latch_edge (loop1));
> +       patch_loop_exit (loop1, guard_stmt, guard_next, newend, initial_true);
> +
> +       /* Finally patch out the two copies of the condition to be always
> +          true/false (or opposite).  */
> +       gcond *force_true = as_a<gcond *> (last_stmt (bbs[i]));
> +       gcond *force_false = as_a<gcond *> (last_stmt (get_bb_copy (bbs[i])));
> +       if (!initial_true)
> +         std::swap (force_true, force_false);
> +       gimple_cond_make_true (force_true);
> +       gimple_cond_make_false (force_false);
> +       update_stmt (force_true);
> +       update_stmt (force_false);
> +
> +       free_original_copy_tables ();
> +
> +       /* We destroyed LCSSA form above.  Eventually we might be able
> +          to fix it on the fly, for now simply punt and use the helper.  */
> +       rewrite_into_loop_closed_ssa_1 (NULL, 0, SSA_OP_USE, loop1);
> +
> +       changed = true;
> +       if (dump_file && (dump_flags & TDF_DETAILS))
> +         fprintf (dump_file, ";; Loop split.\n");
> +
> +       /* Only deal with the first opportunity.  */
> +       break;
> +      }
> +
> +  free (bbs);
> +  return changed;
> +}
> +
> +/* Main entry point.  Perform loop splitting on all suitable loops.  */
> +
> +static unsigned int
> +tree_ssa_split_loops (void)
> +{
> +  struct loop *loop;
> +  bool changed = false;
> +
> +  gcc_assert (scev_initialized_p ());
> +  FOR_EACH_LOOP (loop, 0)
> +    loop->aux = NULL;
> +
> +  /* Go through all loops starting from innermost.  */
> +  FOR_EACH_LOOP (loop, LI_FROM_INNERMOST)
> +    {
> +      struct tree_niter_desc niter;
> +      if (loop->aux)
> +       {
> +         /* If any of our inner loops was split, don't split us,
> +            and mark our containing loop as having had splits as well.  */
> +         loop_outer (loop)->aux = loop;
> +         continue;
> +       }
> +
> +      if (single_exit (loop)
> +         /* ??? We could handle non-empty latches when we split
> +            the latch edge (not the exit edge), and put the new
> +            exit condition in the new block.  OTOH this executes some
> +            code unconditionally that might have been skipped by the
> +            original exit before.  */
> +         && empty_block_p (loop->latch)
> +         && !optimize_loop_for_size_p (loop)
> +         && number_of_iterations_exit (loop, single_exit (loop), &niter,
> +                                       false, true)
> +         && niter.cmp != ERROR_MARK
> +         /* We can't yet handle loops controlled by a != predicate.  */
> +         && niter.cmp != NE_EXPR)
> +       {
> +         if (split_loop (loop, &niter))
> +           {
> +             /* Mark our containing loop as having had some split inner
> +                loops.  */
> +             loop_outer (loop)->aux = loop;
> +             changed = true;
> +           }
> +       }
> +    }
> +
> +  FOR_EACH_LOOP (loop, 0)
> +    loop->aux = NULL;
> +
> +  if (changed)
> +    return TODO_cleanup_cfg;
> +  return 0;
> +}
> +
> +/* Loop splitting pass.  */
> +
> +namespace {
> +
> +const pass_data pass_data_loop_split =
> +{
> +  GIMPLE_PASS, /* type */
> +  "lsplit", /* name */
> +  OPTGROUP_LOOP, /* optinfo_flags */
> +  TV_LOOP_SPLIT, /* tv_id */
> +  PROP_cfg, /* properties_required */
> +  0, /* properties_provided */
> +  0, /* properties_destroyed */
> +  0, /* todo_flags_start */
> +  0, /* todo_flags_finish */
> +};
> +
> +class pass_loop_split : public gimple_opt_pass
> +{
> +public:
> +  pass_loop_split (gcc::context *ctxt)
> +    : gimple_opt_pass (pass_data_loop_split, ctxt)
> +  {}
> +
> +  /* opt_pass methods: */
> +  virtual bool gate (function *) { return flag_split_loops != 0; }
> +  virtual unsigned int execute (function *);
> +
> +}; // class pass_loop_split
> +
> +unsigned int
> +pass_loop_split::execute (function *fun)
> +{
> +  if (number_of_loops (fun) <= 1)
> +    return 0;
> +
> +  return tree_ssa_split_loops ();
> +}
> +
> +} // anon namespace
> +
> +gimple_opt_pass *
> +make_pass_loop_split (gcc::context *ctxt)
> +{
> +  return new pass_loop_split (ctxt);
> +}
> Index: doc/invoke.texi
> ===================================================================
> --- doc/invoke.texi     (revision 231115)
> +++ doc/invoke.texi     (working copy)
> @@ -446,7 +446,7 @@ Objective-C and Objective-C++ Dialects}.
>  -fselective-scheduling -fselective-scheduling2 @gol
>  -fsel-sched-pipelining -fsel-sched-pipelining-outer-loops @gol
>  -fsemantic-interposition -fshrink-wrap -fsignaling-nans @gol
> --fsingle-precision-constant -fsplit-ivs-in-unroller @gol
> +-fsingle-precision-constant -fsplit-ivs-in-unroller -fsplit-loops@gol
>  -fsplit-paths @gol
>  -fsplit-wide-types -fssa-backprop -fssa-phiopt @gol
>  -fstack-protector -fstack-protector-all -fstack-protector-strong @gol
> @@ -10197,6 +10197,11 @@ Enabled with @option{-fprofile-use}.
>  Enables the loop invariant motion pass in the RTL loop optimizer.  Enabled
>  at level @option{-O1}
>
> +@item -fsplit-loops
> +@opindex fsplit-loops
> +Split a loop into two if it contains a condition that's always true
> +for one side of the iteration space and false for the other.
> +
>  @item -funswitch-loops
>  @opindex funswitch-loops
>  Move branches with loop invariant conditions out of the loop, with duplicates
> Index: doc/passes.texi
> ===================================================================
> --- doc/passes.texi     (revision 231115)
> +++ doc/passes.texi     (working copy)
> @@ -484,6 +484,12 @@ out of the loops.  To achieve this, a du
>  each possible outcome of conditional jump(s).  The pass is implemented in
>  @file{tree-ssa-loop-unswitch.c}.
>
> +Loop splitting.  If a loop contains a conditional statement that is
> +always true for one part of the iteration space and false for the other
> +this pass splits the loop into two, one dealing with one side the other
> +only with the other, thereby removing one inner-loop conditional.  The
> +pass is implemented in @file{tree-ssa-loop-split.c}.
> +
>  The optimizations also use various utility functions contained in
>  @file{tree-ssa-loop-manip.c}, @file{cfgloop.c}, @file{cfgloopanal.c} and
>  @file{cfgloopmanip.c}.
> Index: testsuite/gcc.dg/loop-split.c
> ===================================================================
> --- testsuite/gcc.dg/loop-split.c       (revision 0)
> +++ testsuite/gcc.dg/loop-split.c       (working copy)
> @@ -0,0 +1,147 @@
> +/* { dg-do run } */
> +/* { dg-options "-O2 -fsplit-loops -fdump-tree-lsplit-details" } */
> +
> +#ifdef __cplusplus
> +extern "C" int printf (const char *, ...);
> +extern "C" void abort (void);
> +#else
> +extern int printf (const char *, ...);
> +extern void abort (void);
> +#endif
> +
> +/* Define TRACE to 1 or 2 to get detailed tracing.
> +   Define SINGLE_TEST to 1 or 2 to get a simple routine with
> +   just one loop, called only one time or with multiple parameters,
> +   to make debugging easier.  */
> +#ifndef TRACE
> +#define TRACE 0
> +#endif
> +
> +#define loop(beg,step,beg2,cond1,cond2) \
> +    do \
> +      { \
> +       sum = 0; \
> +        for (i = (beg), j = (beg2); (cond1); i+=(step),j+=(step)) \
> +          { \
> +            if (cond2) { \
> +             if (TRACE > 1) printf ("a: %d %d\n", i, j); \
> +              sum += a[i]; \
> +           } else { \
> +             if (TRACE > 1) printf ("b: %d %d\n", i, j); \
> +              sum += b[i]; \
> +           } \
> +          } \
> +       if (TRACE > 0) printf ("sum: %d\n", sum); \
> +       check = check * 47 + sum; \
> +      } while (0)
> +
> +#ifndef SINGLE_TEST
> +unsigned __attribute__((noinline, noclone)) dotest (int beg, int end, int step,
> +                                              int c, int *a, int *b, int beg2)
> +{
> +  unsigned check = 0;
> +  int sum;
> +  int i, j;
> +  loop (beg, 1, beg2, i < end, j < c);
> +  loop (beg, 1, beg2, i <= end, j < c);
> +  loop (beg, 1, beg2, i < end, j <= c);
> +  loop (beg, 1, beg2, i <= end, j <= c);
> +  loop (beg, 1, beg2, i < end, j > c);
> +  loop (beg, 1, beg2, i <= end, j > c);
> +  loop (beg, 1, beg2, i < end, j >= c);
> +  loop (beg, 1, beg2, i <= end, j >= c);
> +  beg2 += end-beg;
> +  loop (end, -1, beg2, i >= beg, j >= c);
> +  loop (end, -1, beg2, i >= beg, j > c);
> +  loop (end, -1, beg2, i > beg, j >= c);
> +  loop (end, -1, beg2, i > beg, j > c);
> +  loop (end, -1, beg2, i >= beg, j <= c);
> +  loop (end, -1, beg2, i >= beg, j < c);
> +  loop (end, -1, beg2, i > beg, j <= c);
> +  loop (end, -1, beg2, i > beg, j < c);
> +  return check;
> +}
> +
> +#else
> +
> +int __attribute__((noinline, noclone)) f (int beg, int end, int step,
> +                                         int c, int *a, int *b, int beg2)
> +{
> +  int sum = 0;
> +  int i, j;
> +  //for (i = beg, j = beg2; i < end; i += 1, j++ /*step*/)
> +  for (i = end, j = beg2 + (end-beg); i > beg; i += -1, j-- /*step*/)
> +    {
> +      // i - j == X --> i = X + j
> +      // --> i < end == X+j < end == j < end - X
> +      // --> newend = end - (i_init - j_init)
> +      // j < end-X && j < c --> j < min(end-X,c)
> +      // j < end-X && j <= c --> j <= min(end-X-1,c) or j < min(end-X,c+1{OF!})
> +      //if (j < c)
> +      if (j >= c)
> +       printf ("a: %d %d\n", i, j);
> +      /*else
> +       printf ("b: %d %d\n", i, j);*/
> +       /*sum += a[i];
> +      else
> +       sum += b[i];*/
> +    }
> +  return sum;
> +}
> +
> +int __attribute__((noinline, noclone)) f2 (int *beg, int *end, int step,
> +                                         int *c, int *a, int *b, int *beg2)
> +{
> +  int sum = 0;
> +  int *i, *j;
> +  for (i = beg, j = beg2; i < end; i += 1, j++ /*step*/)
> +    {
> +      if (j <= c)
> +       printf ("%d %d\n", i - beg, j - beg);
> +       /*sum += a[i];
> +      else
> +       sum += b[i];*/
> +    }
> +  return sum;
> +}
> +#endif
> +
> +extern int printf (const char *, ...);
> +
> +int main ()
> +{
> +  int a[] = {0,0,0,0,0, 1,2,3,4,5,6,7,8,9,          0,0,0,0,0};
> +  int b[] = {0,0,0,0,0, -1,-2,-3,-4,-5,-6,-7,-8,-9, 0,0,0,0,0,};
> +  int c;
> +  int diff = 0;
> +  unsigned check = 0;
> +#if defined(SINGLE_TEST) && (SINGLE_TEST == 1)
> +  //dotest (0, 9, 1, -1, a+5, b+5, -1);
> +  //return 0;
> +  f (0, 9, 1, 5, a+5, b+5, -1);
> +  return 0;
> +#endif
> +  for (diff = -5; diff <= 5; diff++)
> +    {
> +      for (c = -1; c <= 10; c++)
> +       {
> +#ifdef SINGLE_TEST
> +         int s = f (0, 9, 1, c, a+5, b+5, diff);
> +         //int s = f2 (a+0, a+9, 1, a+c, a+5, b+5, a+diff);
> +         printf ("%d ", s);
> +#else
> +         if (TRACE > 0)
> +           printf ("check %d %d\n", c, diff);
> +         check = check * 51 + dotest (0, 9, 1, c, a+5, b+5, diff);
> +#endif
> +       }
> +      //printf ("\n");
> +    }
> +  //printf ("%u\n", check);
> +  if (check != 3213344948)
> +    abort ();
> +  return 0;
> +}
> +
> +/* All 16 loops in dotest should be split.  */
> +/* { dg-final { scan-tree-dump-times "Loop split" 16 "lsplit" } } */

Comments

Richard Biener July 26, 2016, 11:32 a.m. UTC | #1
On Mon, Jul 25, 2016 at 10:57 PM, Andrew Pinski <pinskia@gmail.com> wrote:
> On Wed, Dec 2, 2015 at 5:23 AM, Michael Matz <matz@suse.de> wrote:
>> Hi,
>>
>> On Tue, 1 Dec 2015, Jeff Law wrote:
>>
>>> > So, okay for trunk?
>>> -ENOPATCH
>>
>> Sigh :)
>> Here it is.
>
>
> I found one problem with it.
> Take:
> void f(int *a, int M, int *b)
> {
>   for(int i = 0; i <= M; i++)
>     {
>        if (i < M)
>         a[i] = i;
>     }
> }
> ---- CUT ---
> There are two issues with the code as below.  The outer most loop's
> aux is still set which causes the vectorizer not to vector the loop.
> The other issue is I need to run pass_scev_cprop after pass_loop_split
> to get the induction variable usage after the loop gone so the
> vectorizer will work.

I think scev_cprop needs to be re-written to an utility so that the vectorizer
itself can (within its own cost-model) eliminate an induction using it.

Richard.

> Something like (note this is copy and paste from a terminal):
> diff --git a/gcc/passes.def b/gcc/passes.def
> index c327900..e8d6ea6 100644
> --- a/gcc/passes.def
> +++ b/gcc/passes.def
> @@ -262,8 +262,8 @@ along with GCC; see the file COPYING3.  If not see
>           NEXT_PASS (pass_copy_prop);
>           NEXT_PASS (pass_dce);
>           NEXT_PASS (pass_tree_unswitch);
> -         NEXT_PASS (pass_scev_cprop);
>           NEXT_PASS (pass_loop_split);
> +         NEXT_PASS (pass_scev_cprop);
>           NEXT_PASS (pass_record_bounds);
>           NEXT_PASS (pass_loop_distribution);
>           NEXT_PASS (pass_copy_prop);
> diff --git a/gcc/tree-ssa-loop-split.c b/gcc/tree-ssa-loop-split.c
> index 5411530..e72ef19 100644
> --- a/gcc/tree-ssa-loop-split.c
> +++ b/gcc/tree-ssa-loop-split.c
> @@ -592,7 +592,11 @@ tree_ssa_split_loops (void)
>
>    gcc_assert (scev_initialized_p ());
>    FOR_EACH_LOOP (loop, 0)
> -    loop->aux = NULL;
> +    {
> +      loop->aux = NULL;
> +      if (loop_outer (loop))
> +       loop_outer (loop)->aux = NULL;
> +    }

How does the iterator not visit loop_outer (loop)?!

>
>    /* Go through all loops starting from innermost.  */
>    FOR_EACH_LOOP (loop, LI_FROM_INNERMOST)
> @@ -631,7 +635,11 @@ tree_ssa_split_loops (void)
>      }
>
>    FOR_EACH_LOOP (loop, 0)
> -    loop->aux = NULL;
> +    {
> +      loop->aux = NULL;
> +      if (loop_outer (loop))
> +       loop_outer (loop)->aux = NULL;
> +    }
>
>    if (changed)
>      return TODO_cleanup_cfg;
> -----  CUT -----
>
> Thanks,
> Andrew
>
>
>>
>>
>> Ciao,
>> Michael.
>>         * common.opt (-fsplit-loops): New flag.
>>         * passes.def (pass_loop_split): Add.
>>         * opts.c (default_options_table): Add OPT_fsplit_loops entry at -O3.
>>         (enable_fdo_optimizations): Add loop splitting.
>>         * timevar.def (TV_LOOP_SPLIT): Add.
>>         * tree-pass.h (make_pass_loop_split): Declare.
>>         * tree-ssa-loop-manip.h (rewrite_into_loop_closed_ssa_1): Declare.
>>         * tree-ssa-loop-unswitch.c: Include tree-ssa-loop-manip.h,
>>         * tree-ssa-loop-split.c: New file.
>>         * Makefile.in (OBJS): Add tree-ssa-loop-split.o.
>>         * doc/invoke.texi (fsplit-loops): Document.
>>         * doc/passes.texi (Loop optimization): Add paragraph about loop
>>         splitting.
>>
>> testsuite/
>>         * gcc.dg/loop-split.c: New test.
>>
>> Index: common.opt
>> ===================================================================
>> --- common.opt  (revision 231115)
>> +++ common.opt  (working copy)
>> @@ -2453,6 +2457,10 @@ funswitch-loops
>>  Common Report Var(flag_unswitch_loops) Optimization
>>  Perform loop unswitching.
>>
>> +fsplit-loops
>> +Common Report Var(flag_split_loops) Optimization
>> +Perform loop splitting.
>> +
>>  funwind-tables
>>  Common Report Var(flag_unwind_tables) Optimization
>>  Just generate unwind tables for exception handling.
>> Index: passes.def
>> ===================================================================
>> --- passes.def  (revision 231115)
>> +++ passes.def  (working copy)
>> @@ -252,6 +252,7 @@ along with GCC; see the file COPYING3.
>>           NEXT_PASS (pass_dce);
>>           NEXT_PASS (pass_tree_unswitch);
>>           NEXT_PASS (pass_scev_cprop);
>> +         NEXT_PASS (pass_loop_split);
>>           NEXT_PASS (pass_record_bounds);
>>           NEXT_PASS (pass_loop_distribution);
>>           NEXT_PASS (pass_copy_prop);
>> Index: opts.c
>> ===================================================================
>> --- opts.c      (revision 231115)
>> +++ opts.c      (working copy)
>> @@ -532,6 +532,7 @@ static const struct default_options defa
>>         regardless of them being declared inline.  */
>>      { OPT_LEVELS_3_PLUS_AND_SIZE, OPT_finline_functions, NULL, 1 },
>>      { OPT_LEVELS_1_PLUS_NOT_DEBUG, OPT_finline_functions_called_once, NULL, 1 },
>> +    { OPT_LEVELS_3_PLUS, OPT_fsplit_loops, NULL, 1 },
>>      { OPT_LEVELS_3_PLUS, OPT_funswitch_loops, NULL, 1 },
>>      { OPT_LEVELS_3_PLUS, OPT_fgcse_after_reload, NULL, 1 },
>>      { OPT_LEVELS_3_PLUS, OPT_ftree_loop_vectorize, NULL, 1 },
>> @@ -1411,6 +1412,8 @@ enable_fdo_optimizations (struct gcc_opt
>>      opts->x_flag_ipa_cp_alignment = value;
>>    if (!opts_set->x_flag_predictive_commoning)
>>      opts->x_flag_predictive_commoning = value;
>> +  if (!opts_set->x_flag_split_loops)
>> +    opts->x_flag_split_loops = value;
>>    if (!opts_set->x_flag_unswitch_loops)
>>      opts->x_flag_unswitch_loops = value;
>>    if (!opts_set->x_flag_gcse_after_reload)
>> Index: timevar.def
>> ===================================================================
>> --- timevar.def (revision 231115)
>> +++ timevar.def (working copy)
>> @@ -182,6 +182,7 @@ DEFTIMEVAR (TV_LIM                   , "
>>  DEFTIMEVAR (TV_TREE_LOOP_IVCANON     , "tree canonical iv")
>>  DEFTIMEVAR (TV_SCEV_CONST            , "scev constant prop")
>>  DEFTIMEVAR (TV_TREE_LOOP_UNSWITCH    , "tree loop unswitching")
>> +DEFTIMEVAR (TV_LOOP_SPLIT            , "loop splitting")
>>  DEFTIMEVAR (TV_COMPLETE_UNROLL       , "complete unrolling")
>>  DEFTIMEVAR (TV_TREE_PARALLELIZE_LOOPS, "tree parallelize loops")
>>  DEFTIMEVAR (TV_TREE_VECTORIZATION    , "tree vectorization")
>> Index: tree-pass.h
>> ===================================================================
>> --- tree-pass.h (revision 231115)
>> +++ tree-pass.h (working copy)
>> @@ -370,6 +370,7 @@ extern gimple_opt_pass *make_pass_tree_n
>>  extern gimple_opt_pass *make_pass_tree_loop_init (gcc::context *ctxt);
>>  extern gimple_opt_pass *make_pass_lim (gcc::context *ctxt);
>>  extern gimple_opt_pass *make_pass_tree_unswitch (gcc::context *ctxt);
>> +extern gimple_opt_pass *make_pass_loop_split (gcc::context *ctxt);
>>  extern gimple_opt_pass *make_pass_predcom (gcc::context *ctxt);
>>  extern gimple_opt_pass *make_pass_iv_canon (gcc::context *ctxt);
>>  extern gimple_opt_pass *make_pass_scev_cprop (gcc::context *ctxt);
>> Index: tree-ssa-loop-manip.h
>> ===================================================================
>> --- tree-ssa-loop-manip.h       (revision 231115)
>> +++ tree-ssa-loop-manip.h       (working copy)
>> @@ -24,6 +24,8 @@ typedef void (*transform_callback)(struc
>>
>>  extern void create_iv (tree, tree, tree, struct loop *, gimple_stmt_iterator *,
>>                        bool, tree *, tree *);
>> +extern void rewrite_into_loop_closed_ssa_1 (bitmap, unsigned, int,
>> +                                           struct loop *);
>>  extern void rewrite_into_loop_closed_ssa (bitmap, unsigned);
>>  extern void rewrite_virtuals_into_loop_closed_ssa (struct loop *);
>>  extern void verify_loop_closed_ssa (bool);
>> Index: Makefile.in
>> ===================================================================
>> --- Makefile.in (revision 231115)
>> +++ Makefile.in (working copy)
>> @@ -1474,6 +1474,7 @@ OBJS = \
>>         tree-ssa-loop-manip.o \
>>         tree-ssa-loop-niter.o \
>>         tree-ssa-loop-prefetch.o \
>> +       tree-ssa-loop-split.o \
>>         tree-ssa-loop-unswitch.o \
>>         tree-ssa-loop.o \
>>         tree-ssa-math-opts.o \
>> Index: tree-ssa-loop-split.c
>> ===================================================================
>> --- tree-ssa-loop-split.c       (revision 0)
>> +++ tree-ssa-loop-split.c       (working copy)
>> @@ -0,0 +1,686 @@
>> +/* Loop splitting.
>> +   Copyright (C) 2015 Free Software Foundation, Inc.
>> +
>> +This file is part of GCC.
>> +
>> +GCC is free software; you can redistribute it and/or modify it
>> +under the terms of the GNU General Public License as published by the
>> +Free Software Foundation; either version 3, or (at your option) any
>> +later version.
>> +
>> +GCC is distributed in the hope that it will be useful, but WITHOUT
>> +ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
>> +FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
>> +for more details.
>> +
>> +You should have received a copy of the GNU General Public License
>> +along with GCC; see the file COPYING3.  If not see
>> +<http://www.gnu.org/licenses/>.  */
>> +
>> +#include "config.h"
>> +#include "system.h"
>> +#include "coretypes.h"
>> +#include "backend.h"
>> +#include "tree.h"
>> +#include "gimple.h"
>> +#include "tree-pass.h"
>> +#include "ssa.h"
>> +#include "fold-const.h"
>> +#include "tree-cfg.h"
>> +#include "tree-ssa.h"
>> +#include "tree-ssa-loop-niter.h"
>> +#include "tree-ssa-loop.h"
>> +#include "tree-ssa-loop-manip.h"
>> +#include "tree-into-ssa.h"
>> +#include "cfgloop.h"
>> +#include "tree-scalar-evolution.h"
>> +#include "gimple-iterator.h"
>> +#include "gimple-pretty-print.h"
>> +#include "cfghooks.h"
>> +#include "gimple-fold.h"
>> +#include "gimplify-me.h"
>> +
>> +/* This file implements loop splitting, i.e. transformation of loops like
>> +
>> +   for (i = 0; i < 100; i++)
>> +     {
>> +       if (i < 50)
>> +         A;
>> +       else
>> +         B;
>> +     }
>> +
>> +   into:
>> +
>> +   for (i = 0; i < 50; i++)
>> +     {
>> +       A;
>> +     }
>> +   for (; i < 100; i++)
>> +     {
>> +       B;
>> +     }
>> +
>> +   */
>> +
>> +/* Return true when BB inside LOOP is a potential iteration space
>> +   split point, i.e. ends with a condition like "IV < comp", which
>> +   is true on one side of the iteration space and false on the other,
>> +   and the split point can be computed.  If so, also return the border
>> +   point in *BORDER and the comparison induction variable in IV.  */
>> +
>> +static tree
>> +split_at_bb_p (struct loop *loop, basic_block bb, tree *border, affine_iv *iv)
>> +{
>> +  gimple *last;
>> +  gcond *stmt;
>> +  affine_iv iv2;
>> +
>> +  /* BB must end in a simple conditional jump.  */
>> +  last = last_stmt (bb);
>> +  if (!last || gimple_code (last) != GIMPLE_COND)
>> +    return NULL_TREE;
>> +  stmt = as_a <gcond *> (last);
>> +
>> +  enum tree_code code = gimple_cond_code (stmt);
>> +
>> +  /* Only handle relational comparisons, for equality and non-equality
>> +     we'd have to split the loop into two loops and a middle statement.  */
>> +  switch (code)
>> +    {
>> +      case LT_EXPR:
>> +      case LE_EXPR:
>> +      case GT_EXPR:
>> +      case GE_EXPR:
>> +       break;
>> +      default:
>> +       return NULL_TREE;
>> +    }
>> +
>> +  if (loop_exits_from_bb_p (loop, bb))
>> +    return NULL_TREE;
>> +
>> +  tree op0 = gimple_cond_lhs (stmt);
>> +  tree op1 = gimple_cond_rhs (stmt);
>> +
>> +  if (!simple_iv (loop, loop, op0, iv, false))
>> +    return NULL_TREE;
>> +  if (!simple_iv (loop, loop, op1, &iv2, false))
>> +    return NULL_TREE;
>> +
>> +  /* Make it so, that the first argument of the condition is
>> +     the looping one (only swap.  */
>> +  if (!integer_zerop (iv2.step))
>> +    {
>> +      std::swap (op0, op1);
>> +      std::swap (*iv, iv2);
>> +      code = swap_tree_comparison (code);
>> +      gimple_cond_set_condition (stmt, code, op0, op1);
>> +      update_stmt (stmt);
>> +    }
>> +  else if (integer_zerop (iv->step))
>> +    return NULL_TREE;
>> +  if (!integer_zerop (iv2.step))
>> +    return NULL_TREE;
>> +
>> +  if (dump_file && (dump_flags & TDF_DETAILS))
>> +    {
>> +      fprintf (dump_file, "Found potential split point: ");
>> +      print_gimple_stmt (dump_file, stmt, 0, TDF_SLIM);
>> +      fprintf (dump_file, " { ");
>> +      print_generic_expr (dump_file, iv->base, TDF_SLIM);
>> +      fprintf (dump_file, " + I*");
>> +      print_generic_expr (dump_file, iv->step, TDF_SLIM);
>> +      fprintf (dump_file, " } %s ", get_tree_code_name (code));
>> +      print_generic_expr (dump_file, iv2.base, TDF_SLIM);
>> +      fprintf (dump_file, "\n");
>> +    }
>> +
>> +  *border = iv2.base;
>> +  return op0;
>> +}
>> +
>> +/* Given a GUARD conditional stmt inside LOOP, which we want to make always
>> +   true or false depending on INITIAL_TRUE, and adjusted values NEXTVAL
>> +   (a post-increment IV) and NEWBOUND (the comparator) adjust the loop
>> +   exit test statement to loop back only if the GUARD statement will
>> +   also be true/false in the next iteration.  */
>> +
>> +static void
>> +patch_loop_exit (struct loop *loop, gcond *guard, tree nextval, tree newbound,
>> +                bool initial_true)
>> +{
>> +  edge exit = single_exit (loop);
>> +  gcond *stmt = as_a <gcond *> (last_stmt (exit->src));
>> +  gimple_cond_set_condition (stmt, gimple_cond_code (guard),
>> +                            nextval, newbound);
>> +  update_stmt (stmt);
>> +
>> +  edge stay = single_pred_edge (loop->latch);
>> +
>> +  exit->flags &= ~(EDGE_TRUE_VALUE | EDGE_FALSE_VALUE);
>> +  stay->flags &= ~(EDGE_TRUE_VALUE | EDGE_FALSE_VALUE);
>> +
>> +  if (initial_true)
>> +    {
>> +      exit->flags |= EDGE_FALSE_VALUE;
>> +      stay->flags |= EDGE_TRUE_VALUE;
>> +    }
>> +  else
>> +    {
>> +      exit->flags |= EDGE_TRUE_VALUE;
>> +      stay->flags |= EDGE_FALSE_VALUE;
>> +    }
>> +}
>> +
>> +/* Give an induction variable GUARD_IV, and its affine descriptor IV,
>> +   find the loop phi node in LOOP defining it directly, or create
>> +   such phi node.  Return that phi node.  */
>> +
>> +static gphi *
>> +find_or_create_guard_phi (struct loop *loop, tree guard_iv, affine_iv * /*iv*/)
>> +{
>> +  gimple *def = SSA_NAME_DEF_STMT (guard_iv);
>> +  gphi *phi;
>> +  if ((phi = dyn_cast <gphi *> (def))
>> +      && gimple_bb (phi) == loop->header)
>> +    return phi;
>> +
>> +  /* XXX Create the PHI instead.  */
>> +  return NULL;
>> +}
>> +
>> +/* This function updates the SSA form after connect_loops made a new
>> +   edge NEW_E leading from LOOP1 exit to LOOP2 (via in intermediate
>> +   conditional).  I.e. the second loop can now be entered either
>> +   via the original entry or via NEW_E, so the entry values of LOOP2
>> +   phi nodes are either the original ones or those at the exit
>> +   of LOOP1.  Insert new phi nodes in LOOP2 pre-header reflecting
>> +   this.  */
>> +
>> +static void
>> +connect_loop_phis (struct loop *loop1, struct loop *loop2, edge new_e)
>> +{
>> +  basic_block rest = loop_preheader_edge (loop2)->src;
>> +  gcc_assert (new_e->dest == rest);
>> +  edge skip_first = EDGE_PRED (rest, EDGE_PRED (rest, 0) == new_e);
>> +
>> +  edge firste = loop_preheader_edge (loop1);
>> +  edge seconde = loop_preheader_edge (loop2);
>> +  edge firstn = loop_latch_edge (loop1);
>> +  gphi_iterator psi_first, psi_second;
>> +  for (psi_first = gsi_start_phis (loop1->header),
>> +       psi_second = gsi_start_phis (loop2->header);
>> +       !gsi_end_p (psi_first);
>> +       gsi_next (&psi_first), gsi_next (&psi_second))
>> +    {
>> +      tree init, next, new_init;
>> +      use_operand_p op;
>> +      gphi *phi_first = psi_first.phi ();
>> +      gphi *phi_second = psi_second.phi ();
>> +
>> +      init = PHI_ARG_DEF_FROM_EDGE (phi_first, firste);
>> +      next = PHI_ARG_DEF_FROM_EDGE (phi_first, firstn);
>> +      op = PHI_ARG_DEF_PTR_FROM_EDGE (phi_second, seconde);
>> +      gcc_assert (operand_equal_for_phi_arg_p (init, USE_FROM_PTR (op)));
>> +
>> +      /* Prefer using original variable as a base for the new ssa name.
>> +        This is necessary for virtual ops, and useful in order to avoid
>> +        losing debug info for real ops.  */
>> +      if (TREE_CODE (next) == SSA_NAME
>> +         && useless_type_conversion_p (TREE_TYPE (next),
>> +                                       TREE_TYPE (init)))
>> +       new_init = copy_ssa_name (next);
>> +      else if (TREE_CODE (init) == SSA_NAME
>> +              && useless_type_conversion_p (TREE_TYPE (init),
>> +                                            TREE_TYPE (next)))
>> +       new_init = copy_ssa_name (init);
>> +      else if (useless_type_conversion_p (TREE_TYPE (next),
>> +                                         TREE_TYPE (init)))
>> +       new_init = make_temp_ssa_name (TREE_TYPE (next), NULL,
>> +                                      "unrinittmp");
>> +      else
>> +       new_init = make_temp_ssa_name (TREE_TYPE (init), NULL,
>> +                                      "unrinittmp");
>> +
>> +      gphi * newphi = create_phi_node (new_init, rest);
>> +      add_phi_arg (newphi, init, skip_first, UNKNOWN_LOCATION);
>> +      add_phi_arg (newphi, next, new_e, UNKNOWN_LOCATION);
>> +      SET_USE (op, new_init);
>> +    }
>> +}
>> +
>> +/* The two loops LOOP1 and LOOP2 were just created by loop versioning,
>> +   they are still equivalent and placed in two arms of a diamond, like so:
>> +
>> +               .------if (cond)------.
>> +               v                     v
>> +             pre1                   pre2
>> +              |                      |
>> +        .--->h1                     h2<----.
>> +        |     |                      |     |
>> +        |    ex1---.            .---ex2    |
>> +        |    /     |            |     \    |
>> +        '---l1     X            |     l2---'
>> +                   |            |
>> +                   |            |
>> +                   '--->join<---'
>> +
>> +   This function transforms the program such that LOOP1 is conditionally
>> +   falling through to LOOP2, or skipping it.  This is done by splitting
>> +   the ex1->join edge at X in the diagram above, and inserting a condition
>> +   whose one arm goes to pre2, resulting in this situation:
>> +
>> +               .------if (cond)------.
>> +               v                     v
>> +             pre1       .---------->pre2
>> +              |         |            |
>> +        .--->h1         |           h2<----.
>> +        |     |         |            |     |
>> +        |    ex1---.    |       .---ex2    |
>> +        |    /     v    |       |     \    |
>> +        '---l1   skip---'       |     l2---'
>> +                   |            |
>> +                   |            |
>> +                   '--->join<---'
>> +
>> +
>> +   The condition used is the exit condition of LOOP1, which effectively means
>> +   that when the first loop exits (for whatever reason) but the real original
>> +   exit expression is still false the second loop will be entered.
>> +   The function returns the new edge cond->pre2.
>> +
>> +   This doesn't update the SSA form, see connect_loop_phis for that.  */
>> +
>> +static edge
>> +connect_loops (struct loop *loop1, struct loop *loop2)
>> +{
>> +  edge exit = single_exit (loop1);
>> +  basic_block skip_bb = split_edge (exit);
>> +  gcond *skip_stmt;
>> +  gimple_stmt_iterator gsi;
>> +  edge new_e, skip_e;
>> +
>> +  gimple *stmt = last_stmt (exit->src);
>> +  skip_stmt = gimple_build_cond (gimple_cond_code (stmt),
>> +                                gimple_cond_lhs (stmt),
>> +                                gimple_cond_rhs (stmt),
>> +                                NULL_TREE, NULL_TREE);
>> +  gsi = gsi_last_bb (skip_bb);
>> +  gsi_insert_after (&gsi, skip_stmt, GSI_NEW_STMT);
>> +
>> +  skip_e = EDGE_SUCC (skip_bb, 0);
>> +  skip_e->flags &= ~EDGE_FALLTHRU;
>> +  new_e = make_edge (skip_bb, loop_preheader_edge (loop2)->src, 0);
>> +  if (exit->flags & EDGE_TRUE_VALUE)
>> +    {
>> +      skip_e->flags |= EDGE_TRUE_VALUE;
>> +      new_e->flags |= EDGE_FALSE_VALUE;
>> +    }
>> +  else
>> +    {
>> +      skip_e->flags |= EDGE_FALSE_VALUE;
>> +      new_e->flags |= EDGE_TRUE_VALUE;
>> +    }
>> +
>> +  new_e->count = skip_bb->count;
>> +  new_e->probability = PROB_LIKELY;
>> +  new_e->count = apply_probability (skip_e->count, PROB_LIKELY);
>> +  skip_e->count -= new_e->count;
>> +  skip_e->probability = inverse_probability (PROB_LIKELY);
>> +
>> +  return new_e;
>> +}
>> +
>> +/* This returns the new bound for iterations given the original iteration
>> +   space in NITER, an arbitrary new bound BORDER, assumed to be some
>> +   comparison value with a different IV, the initial value GUARD_INIT of
>> +   that other IV, and the comparison code GUARD_CODE that compares
>> +   that other IV with BORDER.  We return an SSA name, and place any
>> +   necessary statements for that computation into *STMTS.
>> +
>> +   For example for such a loop:
>> +
>> +     for (i = beg, j = guard_init; i < end; i++, j++)
>> +       if (j < border)  // this is supposed to be true/false
>> +         ...
>> +
>> +   we want to return a new bound (on j) that makes the loop iterate
>> +   as long as the condition j < border stays true.  We also don't want
>> +   to iterate more often than the original loop, so we have to introduce
>> +   some cut-off as well (via min/max), effectively resulting in:
>> +
>> +     newend = min (end+guard_init-beg, border)
>> +     for (i = beg; j = guard_init; j < newend; i++, j++)
>> +       if (j < c)
>> +         ...
>> +
>> +   Depending on the direction of the IVs and if the exit tests
>> +   are strict or non-strict we need to use MIN or MAX,
>> +   and add or subtract 1.  This routine computes newend above.  */
>> +
>> +static tree
>> +compute_new_first_bound (gimple_seq *stmts, struct tree_niter_desc *niter,
>> +                        tree border,
>> +                        enum tree_code guard_code, tree guard_init)
>> +{
>> +  /* The niter structure contains the after-increment IV, we need
>> +     the loop-enter base, so subtract STEP once.  */
>> +  tree controlbase = force_gimple_operand (niter->control.base,
>> +                                          stmts, true, NULL_TREE);
>> +  tree controlstep = niter->control.step;
>> +  tree enddiff;
>> +  if (POINTER_TYPE_P (TREE_TYPE (controlbase)))
>> +    {
>> +      controlstep = gimple_build (stmts, NEGATE_EXPR,
>> +                                 TREE_TYPE (controlstep), controlstep);
>> +      enddiff = gimple_build (stmts, POINTER_PLUS_EXPR,
>> +                             TREE_TYPE (controlbase),
>> +                             controlbase, controlstep);
>> +    }
>> +  else
>> +    enddiff = gimple_build (stmts, MINUS_EXPR,
>> +                           TREE_TYPE (controlbase),
>> +                           controlbase, controlstep);
>> +
>> +  /* Compute beg-guard_init.  */
>> +  if (POINTER_TYPE_P (TREE_TYPE (enddiff)))
>> +    {
>> +      tree tem = gimple_convert (stmts, sizetype, guard_init);
>> +      tem = gimple_build (stmts, NEGATE_EXPR, sizetype, tem);
>> +      enddiff = gimple_build (stmts, POINTER_PLUS_EXPR,
>> +                             TREE_TYPE (enddiff),
>> +                             enddiff, tem);
>> +    }
>> +  else
>> +    enddiff = gimple_build (stmts, MINUS_EXPR, TREE_TYPE (enddiff),
>> +                           enddiff, guard_init);
>> +
>> +  /* Compute end-(beg-guard_init).  */
>> +  gimple_seq stmts2;
>> +  tree newbound = force_gimple_operand (niter->bound, &stmts2,
>> +                                       true, NULL_TREE);
>> +  gimple_seq_add_seq_without_update (stmts, stmts2);
>> +
>> +  if (POINTER_TYPE_P (TREE_TYPE (enddiff))
>> +      || POINTER_TYPE_P (TREE_TYPE (newbound)))
>> +    {
>> +      enddiff = gimple_convert (stmts, sizetype, enddiff);
>> +      enddiff = gimple_build (stmts, NEGATE_EXPR, sizetype, enddiff);
>> +      newbound = gimple_build (stmts, POINTER_PLUS_EXPR,
>> +                              TREE_TYPE (newbound),
>> +                              newbound, enddiff);
>> +    }
>> +  else
>> +    newbound = gimple_build (stmts, MINUS_EXPR, TREE_TYPE (enddiff),
>> +                            newbound, enddiff);
>> +
>> +  /* Depending on the direction of the IVs the new bound for the first
>> +     loop is the minimum or maximum of old bound and border.
>> +     Also, if the guard condition isn't strictly less or greater,
>> +     we need to adjust the bound.  */
>> +  int addbound = 0;
>> +  enum tree_code minmax;
>> +  if (niter->cmp == LT_EXPR)
>> +    {
>> +      /* GT and LE are the same, inverted.  */
>> +      if (guard_code == GT_EXPR || guard_code == LE_EXPR)
>> +       addbound = -1;
>> +      minmax = MIN_EXPR;
>> +    }
>> +  else
>> +    {
>> +      gcc_assert (niter->cmp == GT_EXPR);
>> +      if (guard_code == GE_EXPR || guard_code == LT_EXPR)
>> +       addbound = 1;
>> +      minmax = MAX_EXPR;
>> +    }
>> +
>> +  if (addbound)
>> +    {
>> +      tree type2 = TREE_TYPE (newbound);
>> +      if (POINTER_TYPE_P (type2))
>> +       type2 = sizetype;
>> +      newbound = gimple_build (stmts,
>> +                              POINTER_TYPE_P (TREE_TYPE (newbound))
>> +                              ? POINTER_PLUS_EXPR : PLUS_EXPR,
>> +                              TREE_TYPE (newbound),
>> +                              newbound,
>> +                              build_int_cst (type2, addbound));
>> +    }
>> +
>> +  tree newend = gimple_build (stmts, minmax, TREE_TYPE (border),
>> +                             border, newbound);
>> +  return newend;
>> +}
>> +
>> +/* Checks if LOOP contains an conditional block whose condition
>> +   depends on which side in the iteration space it is, and if so
>> +   splits the iteration space into two loops.  Returns true if the
>> +   loop was split.  NITER must contain the iteration descriptor for the
>> +   single exit of LOOP.  */
>> +
>> +static bool
>> +split_loop (struct loop *loop1, struct tree_niter_desc *niter)
>> +{
>> +  basic_block *bbs;
>> +  unsigned i;
>> +  bool changed = false;
>> +  tree guard_iv;
>> +  tree border;
>> +  affine_iv iv;
>> +
>> +  bbs = get_loop_body (loop1);
>> +
>> +  /* Find a splitting opportunity.  */
>> +  for (i = 0; i < loop1->num_nodes; i++)
>> +    if ((guard_iv = split_at_bb_p (loop1, bbs[i], &border, &iv)))
>> +      {
>> +       /* Handling opposite steps is not implemented yet.  Neither
>> +          is handling different step sizes.  */
>> +       if ((tree_int_cst_sign_bit (iv.step)
>> +            != tree_int_cst_sign_bit (niter->control.step))
>> +           || !tree_int_cst_equal (iv.step, niter->control.step))
>> +         continue;
>> +
>> +       /* Find a loop PHI node that defines guard_iv directly,
>> +          or create one doing that.  */
>> +       gphi *phi = find_or_create_guard_phi (loop1, guard_iv, &iv);
>> +       if (!phi)
>> +         continue;
>> +       gcond *guard_stmt = as_a<gcond *> (last_stmt (bbs[i]));
>> +       tree guard_init = PHI_ARG_DEF_FROM_EDGE (phi,
>> +                                                loop_preheader_edge (loop1));
>> +       enum tree_code guard_code = gimple_cond_code (guard_stmt);
>> +
>> +       /* Loop splitting is implemented by versioning the loop, placing
>> +          the new loop after the old loop, make the first loop iterate
>> +          as long as the conditional stays true (or false) and let the
>> +          second (new) loop handle the rest of the iterations.
>> +
>> +          First we need to determine if the condition will start being true
>> +          or false in the first loop.  */
>> +       bool initial_true;
>> +       switch (guard_code)
>> +         {
>> +           case LT_EXPR:
>> +           case LE_EXPR:
>> +             initial_true = !tree_int_cst_sign_bit (iv.step);
>> +             break;
>> +           case GT_EXPR:
>> +           case GE_EXPR:
>> +             initial_true = tree_int_cst_sign_bit (iv.step);
>> +             break;
>> +           default:
>> +             gcc_unreachable ();
>> +         }
>> +
>> +       /* Build a condition that will skip the first loop when the
>> +          guard condition won't ever be true (or false).  */
>> +       gimple_seq stmts2;
>> +       border = force_gimple_operand (border, &stmts2, true, NULL_TREE);
>> +       if (stmts2)
>> +         gsi_insert_seq_on_edge_immediate (loop_preheader_edge (loop1),
>> +                                           stmts2);
>> +       tree cond = build2 (guard_code, boolean_type_node, guard_init, border);
>> +       if (!initial_true)
>> +         cond = fold_build1 (TRUTH_NOT_EXPR, boolean_type_node, cond);
>> +
>> +       /* Now version the loop, placing loop2 after loop1 connecting
>> +          them, and fix up SSA form for that.  */
>> +       initialize_original_copy_tables ();
>> +       basic_block cond_bb;
>> +       struct loop *loop2 = loop_version (loop1, cond, &cond_bb,
>> +                                          REG_BR_PROB_BASE, REG_BR_PROB_BASE,
>> +                                          REG_BR_PROB_BASE, true);
>> +       gcc_assert (loop2);
>> +       update_ssa (TODO_update_ssa);
>> +
>> +       edge new_e = connect_loops (loop1, loop2);
>> +       connect_loop_phis (loop1, loop2, new_e);
>> +
>> +       /* The iterations of the second loop is now already
>> +          exactly those that the first loop didn't do, but the
>> +          iteration space of the first loop is still the original one.
>> +          Compute the new bound for the guarding IV and patch the
>> +          loop exit to use it instead of original IV and bound.  */
>> +       gimple_seq stmts = NULL;
>> +       tree newend = compute_new_first_bound (&stmts, niter, border,
>> +                                              guard_code, guard_init);
>> +       if (stmts)
>> +         gsi_insert_seq_on_edge_immediate (loop_preheader_edge (loop1),
>> +                                           stmts);
>> +       tree guard_next = PHI_ARG_DEF_FROM_EDGE (phi, loop_latch_edge (loop1));
>> +       patch_loop_exit (loop1, guard_stmt, guard_next, newend, initial_true);
>> +
>> +       /* Finally patch out the two copies of the condition to be always
>> +          true/false (or opposite).  */
>> +       gcond *force_true = as_a<gcond *> (last_stmt (bbs[i]));
>> +       gcond *force_false = as_a<gcond *> (last_stmt (get_bb_copy (bbs[i])));
>> +       if (!initial_true)
>> +         std::swap (force_true, force_false);
>> +       gimple_cond_make_true (force_true);
>> +       gimple_cond_make_false (force_false);
>> +       update_stmt (force_true);
>> +       update_stmt (force_false);
>> +
>> +       free_original_copy_tables ();
>> +
>> +       /* We destroyed LCSSA form above.  Eventually we might be able
>> +          to fix it on the fly, for now simply punt and use the helper.  */
>> +       rewrite_into_loop_closed_ssa_1 (NULL, 0, SSA_OP_USE, loop1);
>> +
>> +       changed = true;
>> +       if (dump_file && (dump_flags & TDF_DETAILS))
>> +         fprintf (dump_file, ";; Loop split.\n");
>> +
>> +       /* Only deal with the first opportunity.  */
>> +       break;
>> +      }
>> +
>> +  free (bbs);
>> +  return changed;
>> +}
>> +
>> +/* Main entry point.  Perform loop splitting on all suitable loops.  */
>> +
>> +static unsigned int
>> +tree_ssa_split_loops (void)
>> +{
>> +  struct loop *loop;
>> +  bool changed = false;
>> +
>> +  gcc_assert (scev_initialized_p ());
>> +  FOR_EACH_LOOP (loop, 0)
>> +    loop->aux = NULL;
>> +
>> +  /* Go through all loops starting from innermost.  */
>> +  FOR_EACH_LOOP (loop, LI_FROM_INNERMOST)
>> +    {
>> +      struct tree_niter_desc niter;
>> +      if (loop->aux)
>> +       {
>> +         /* If any of our inner loops was split, don't split us,
>> +            and mark our containing loop as having had splits as well.  */
>> +         loop_outer (loop)->aux = loop;
>> +         continue;
>> +       }
>> +
>> +      if (single_exit (loop)
>> +         /* ??? We could handle non-empty latches when we split
>> +            the latch edge (not the exit edge), and put the new
>> +            exit condition in the new block.  OTOH this executes some
>> +            code unconditionally that might have been skipped by the
>> +            original exit before.  */
>> +         && empty_block_p (loop->latch)
>> +         && !optimize_loop_for_size_p (loop)
>> +         && number_of_iterations_exit (loop, single_exit (loop), &niter,
>> +                                       false, true)
>> +         && niter.cmp != ERROR_MARK
>> +         /* We can't yet handle loops controlled by a != predicate.  */
>> +         && niter.cmp != NE_EXPR)
>> +       {
>> +         if (split_loop (loop, &niter))
>> +           {
>> +             /* Mark our containing loop as having had some split inner
>> +                loops.  */
>> +             loop_outer (loop)->aux = loop;
>> +             changed = true;
>> +           }
>> +       }
>> +    }
>> +
>> +  FOR_EACH_LOOP (loop, 0)
>> +    loop->aux = NULL;
>> +
>> +  if (changed)
>> +    return TODO_cleanup_cfg;
>> +  return 0;
>> +}
>> +
>> +/* Loop splitting pass.  */
>> +
>> +namespace {
>> +
>> +const pass_data pass_data_loop_split =
>> +{
>> +  GIMPLE_PASS, /* type */
>> +  "lsplit", /* name */
>> +  OPTGROUP_LOOP, /* optinfo_flags */
>> +  TV_LOOP_SPLIT, /* tv_id */
>> +  PROP_cfg, /* properties_required */
>> +  0, /* properties_provided */
>> +  0, /* properties_destroyed */
>> +  0, /* todo_flags_start */
>> +  0, /* todo_flags_finish */
>> +};
>> +
>> +class pass_loop_split : public gimple_opt_pass
>> +{
>> +public:
>> +  pass_loop_split (gcc::context *ctxt)
>> +    : gimple_opt_pass (pass_data_loop_split, ctxt)
>> +  {}
>> +
>> +  /* opt_pass methods: */
>> +  virtual bool gate (function *) { return flag_split_loops != 0; }
>> +  virtual unsigned int execute (function *);
>> +
>> +}; // class pass_loop_split
>> +
>> +unsigned int
>> +pass_loop_split::execute (function *fun)
>> +{
>> +  if (number_of_loops (fun) <= 1)
>> +    return 0;
>> +
>> +  return tree_ssa_split_loops ();
>> +}
>> +
>> +} // anon namespace
>> +
>> +gimple_opt_pass *
>> +make_pass_loop_split (gcc::context *ctxt)
>> +{
>> +  return new pass_loop_split (ctxt);
>> +}
>> Index: doc/invoke.texi
>> ===================================================================
>> --- doc/invoke.texi     (revision 231115)
>> +++ doc/invoke.texi     (working copy)
>> @@ -446,7 +446,7 @@ Objective-C and Objective-C++ Dialects}.
>>  -fselective-scheduling -fselective-scheduling2 @gol
>>  -fsel-sched-pipelining -fsel-sched-pipelining-outer-loops @gol
>>  -fsemantic-interposition -fshrink-wrap -fsignaling-nans @gol
>> --fsingle-precision-constant -fsplit-ivs-in-unroller @gol
>> +-fsingle-precision-constant -fsplit-ivs-in-unroller -fsplit-loops@gol
>>  -fsplit-paths @gol
>>  -fsplit-wide-types -fssa-backprop -fssa-phiopt @gol
>>  -fstack-protector -fstack-protector-all -fstack-protector-strong @gol
>> @@ -10197,6 +10197,11 @@ Enabled with @option{-fprofile-use}.
>>  Enables the loop invariant motion pass in the RTL loop optimizer.  Enabled
>>  at level @option{-O1}
>>
>> +@item -fsplit-loops
>> +@opindex fsplit-loops
>> +Split a loop into two if it contains a condition that's always true
>> +for one side of the iteration space and false for the other.
>> +
>>  @item -funswitch-loops
>>  @opindex funswitch-loops
>>  Move branches with loop invariant conditions out of the loop, with duplicates
>> Index: doc/passes.texi
>> ===================================================================
>> --- doc/passes.texi     (revision 231115)
>> +++ doc/passes.texi     (working copy)
>> @@ -484,6 +484,12 @@ out of the loops.  To achieve this, a du
>>  each possible outcome of conditional jump(s).  The pass is implemented in
>>  @file{tree-ssa-loop-unswitch.c}.
>>
>> +Loop splitting.  If a loop contains a conditional statement that is
>> +always true for one part of the iteration space and false for the other
>> +this pass splits the loop into two, one dealing with one side the other
>> +only with the other, thereby removing one inner-loop conditional.  The
>> +pass is implemented in @file{tree-ssa-loop-split.c}.
>> +
>>  The optimizations also use various utility functions contained in
>>  @file{tree-ssa-loop-manip.c}, @file{cfgloop.c}, @file{cfgloopanal.c} and
>>  @file{cfgloopmanip.c}.
>> Index: testsuite/gcc.dg/loop-split.c
>> ===================================================================
>> --- testsuite/gcc.dg/loop-split.c       (revision 0)
>> +++ testsuite/gcc.dg/loop-split.c       (working copy)
>> @@ -0,0 +1,147 @@
>> +/* { dg-do run } */
>> +/* { dg-options "-O2 -fsplit-loops -fdump-tree-lsplit-details" } */
>> +
>> +#ifdef __cplusplus
>> +extern "C" int printf (const char *, ...);
>> +extern "C" void abort (void);
>> +#else
>> +extern int printf (const char *, ...);
>> +extern void abort (void);
>> +#endif
>> +
>> +/* Define TRACE to 1 or 2 to get detailed tracing.
>> +   Define SINGLE_TEST to 1 or 2 to get a simple routine with
>> +   just one loop, called only one time or with multiple parameters,
>> +   to make debugging easier.  */
>> +#ifndef TRACE
>> +#define TRACE 0
>> +#endif
>> +
>> +#define loop(beg,step,beg2,cond1,cond2) \
>> +    do \
>> +      { \
>> +       sum = 0; \
>> +        for (i = (beg), j = (beg2); (cond1); i+=(step),j+=(step)) \
>> +          { \
>> +            if (cond2) { \
>> +             if (TRACE > 1) printf ("a: %d %d\n", i, j); \
>> +              sum += a[i]; \
>> +           } else { \
>> +             if (TRACE > 1) printf ("b: %d %d\n", i, j); \
>> +              sum += b[i]; \
>> +           } \
>> +          } \
>> +       if (TRACE > 0) printf ("sum: %d\n", sum); \
>> +       check = check * 47 + sum; \
>> +      } while (0)
>> +
>> +#ifndef SINGLE_TEST
>> +unsigned __attribute__((noinline, noclone)) dotest (int beg, int end, int step,
>> +                                              int c, int *a, int *b, int beg2)
>> +{
>> +  unsigned check = 0;
>> +  int sum;
>> +  int i, j;
>> +  loop (beg, 1, beg2, i < end, j < c);
>> +  loop (beg, 1, beg2, i <= end, j < c);
>> +  loop (beg, 1, beg2, i < end, j <= c);
>> +  loop (beg, 1, beg2, i <= end, j <= c);
>> +  loop (beg, 1, beg2, i < end, j > c);
>> +  loop (beg, 1, beg2, i <= end, j > c);
>> +  loop (beg, 1, beg2, i < end, j >= c);
>> +  loop (beg, 1, beg2, i <= end, j >= c);
>> +  beg2 += end-beg;
>> +  loop (end, -1, beg2, i >= beg, j >= c);
>> +  loop (end, -1, beg2, i >= beg, j > c);
>> +  loop (end, -1, beg2, i > beg, j >= c);
>> +  loop (end, -1, beg2, i > beg, j > c);
>> +  loop (end, -1, beg2, i >= beg, j <= c);
>> +  loop (end, -1, beg2, i >= beg, j < c);
>> +  loop (end, -1, beg2, i > beg, j <= c);
>> +  loop (end, -1, beg2, i > beg, j < c);
>> +  return check;
>> +}
>> +
>> +#else
>> +
>> +int __attribute__((noinline, noclone)) f (int beg, int end, int step,
>> +                                         int c, int *a, int *b, int beg2)
>> +{
>> +  int sum = 0;
>> +  int i, j;
>> +  //for (i = beg, j = beg2; i < end; i += 1, j++ /*step*/)
>> +  for (i = end, j = beg2 + (end-beg); i > beg; i += -1, j-- /*step*/)
>> +    {
>> +      // i - j == X --> i = X + j
>> +      // --> i < end == X+j < end == j < end - X
>> +      // --> newend = end - (i_init - j_init)
>> +      // j < end-X && j < c --> j < min(end-X,c)
>> +      // j < end-X && j <= c --> j <= min(end-X-1,c) or j < min(end-X,c+1{OF!})
>> +      //if (j < c)
>> +      if (j >= c)
>> +       printf ("a: %d %d\n", i, j);
>> +      /*else
>> +       printf ("b: %d %d\n", i, j);*/
>> +       /*sum += a[i];
>> +      else
>> +       sum += b[i];*/
>> +    }
>> +  return sum;
>> +}
>> +
>> +int __attribute__((noinline, noclone)) f2 (int *beg, int *end, int step,
>> +                                         int *c, int *a, int *b, int *beg2)
>> +{
>> +  int sum = 0;
>> +  int *i, *j;
>> +  for (i = beg, j = beg2; i < end; i += 1, j++ /*step*/)
>> +    {
>> +      if (j <= c)
>> +       printf ("%d %d\n", i - beg, j - beg);
>> +       /*sum += a[i];
>> +      else
>> +       sum += b[i];*/
>> +    }
>> +  return sum;
>> +}
>> +#endif
>> +
>> +extern int printf (const char *, ...);
>> +
>> +int main ()
>> +{
>> +  int a[] = {0,0,0,0,0, 1,2,3,4,5,6,7,8,9,          0,0,0,0,0};
>> +  int b[] = {0,0,0,0,0, -1,-2,-3,-4,-5,-6,-7,-8,-9, 0,0,0,0,0,};
>> +  int c;
>> +  int diff = 0;
>> +  unsigned check = 0;
>> +#if defined(SINGLE_TEST) && (SINGLE_TEST == 1)
>> +  //dotest (0, 9, 1, -1, a+5, b+5, -1);
>> +  //return 0;
>> +  f (0, 9, 1, 5, a+5, b+5, -1);
>> +  return 0;
>> +#endif
>> +  for (diff = -5; diff <= 5; diff++)
>> +    {
>> +      for (c = -1; c <= 10; c++)
>> +       {
>> +#ifdef SINGLE_TEST
>> +         int s = f (0, 9, 1, c, a+5, b+5, diff);
>> +         //int s = f2 (a+0, a+9, 1, a+c, a+5, b+5, a+diff);
>> +         printf ("%d ", s);
>> +#else
>> +         if (TRACE > 0)
>> +           printf ("check %d %d\n", c, diff);
>> +         check = check * 51 + dotest (0, 9, 1, c, a+5, b+5, diff);
>> +#endif
>> +       }
>> +      //printf ("\n");
>> +    }
>> +  //printf ("%u\n", check);
>> +  if (check != 3213344948)
>> +    abort ();
>> +  return 0;
>> +}
>> +
>> +/* All 16 loops in dotest should be split.  */
>> +/* { dg-final { scan-tree-dump-times "Loop split" 16 "lsplit" } } */
Andrew Pinski July 27, 2016, 6:17 a.m. UTC | #2
On Tue, Jul 26, 2016 at 4:32 AM, Richard Biener
<richard.guenther@gmail.com> wrote:
> On Mon, Jul 25, 2016 at 10:57 PM, Andrew Pinski <pinskia@gmail.com> wrote:
>> On Wed, Dec 2, 2015 at 5:23 AM, Michael Matz <matz@suse.de> wrote:
>>> Hi,
>>>
>>> On Tue, 1 Dec 2015, Jeff Law wrote:
>>>
>>>> > So, okay for trunk?
>>>> -ENOPATCH
>>>
>>> Sigh :)
>>> Here it is.
>>
>>
>> I found one problem with it.
>> Take:
>> void f(int *a, int M, int *b)
>> {
>>   for(int i = 0; i <= M; i++)
>>     {
>>        if (i < M)
>>         a[i] = i;
>>     }
>> }
>> ---- CUT ---
>> There are two issues with the code as below.  The outer most loop's
>> aux is still set which causes the vectorizer not to vector the loop.
>> The other issue is I need to run pass_scev_cprop after pass_loop_split
>> to get the induction variable usage after the loop gone so the
>> vectorizer will work.
>
> I think scev_cprop needs to be re-written to an utility so that the vectorizer
> itself can (within its own cost-model) eliminate an induction using it.
>
> Richard.
>
>> Something like (note this is copy and paste from a terminal):
>> diff --git a/gcc/passes.def b/gcc/passes.def
>> index c327900..e8d6ea6 100644
>> --- a/gcc/passes.def
>> +++ b/gcc/passes.def
>> @@ -262,8 +262,8 @@ along with GCC; see the file COPYING3.  If not see
>>           NEXT_PASS (pass_copy_prop);
>>           NEXT_PASS (pass_dce);
>>           NEXT_PASS (pass_tree_unswitch);
>> -         NEXT_PASS (pass_scev_cprop);
>>           NEXT_PASS (pass_loop_split);
>> +         NEXT_PASS (pass_scev_cprop);
>>           NEXT_PASS (pass_record_bounds);
>>           NEXT_PASS (pass_loop_distribution);
>>           NEXT_PASS (pass_copy_prop);
>> diff --git a/gcc/tree-ssa-loop-split.c b/gcc/tree-ssa-loop-split.c
>> index 5411530..e72ef19 100644
>> --- a/gcc/tree-ssa-loop-split.c
>> +++ b/gcc/tree-ssa-loop-split.c
>> @@ -592,7 +592,11 @@ tree_ssa_split_loops (void)
>>
>>    gcc_assert (scev_initialized_p ());
>>    FOR_EACH_LOOP (loop, 0)
>> -    loop->aux = NULL;
>> +    {
>> +      loop->aux = NULL;
>> +      if (loop_outer (loop))
>> +       loop_outer (loop)->aux = NULL;
>> +    }
>
> How does the iterator not visit loop_outer (loop)?!

The iterator with flags of 0 does not visit the the root.  So the way
to fix this is change 0 (which is the flags) with LI_INCLUDE_ROOT so
we zero out the root too.

Thanks,
Andrew

>
>>
>>    /* Go through all loops starting from innermost.  */
>>    FOR_EACH_LOOP (loop, LI_FROM_INNERMOST)
>> @@ -631,7 +635,11 @@ tree_ssa_split_loops (void)
>>      }
>>
>>    FOR_EACH_LOOP (loop, 0)
>> -    loop->aux = NULL;
>> +    {
>> +      loop->aux = NULL;
>> +      if (loop_outer (loop))
>> +       loop_outer (loop)->aux = NULL;
>> +    }
>>
>>    if (changed)
>>      return TODO_cleanup_cfg;
>> -----  CUT -----
>>
>> Thanks,
>> Andrew
>>
>>
>>>
>>>
>>> Ciao,
>>> Michael.
>>>         * common.opt (-fsplit-loops): New flag.
>>>         * passes.def (pass_loop_split): Add.
>>>         * opts.c (default_options_table): Add OPT_fsplit_loops entry at -O3.
>>>         (enable_fdo_optimizations): Add loop splitting.
>>>         * timevar.def (TV_LOOP_SPLIT): Add.
>>>         * tree-pass.h (make_pass_loop_split): Declare.
>>>         * tree-ssa-loop-manip.h (rewrite_into_loop_closed_ssa_1): Declare.
>>>         * tree-ssa-loop-unswitch.c: Include tree-ssa-loop-manip.h,
>>>         * tree-ssa-loop-split.c: New file.
>>>         * Makefile.in (OBJS): Add tree-ssa-loop-split.o.
>>>         * doc/invoke.texi (fsplit-loops): Document.
>>>         * doc/passes.texi (Loop optimization): Add paragraph about loop
>>>         splitting.
>>>
>>> testsuite/
>>>         * gcc.dg/loop-split.c: New test.
>>>
>>> Index: common.opt
>>> ===================================================================
>>> --- common.opt  (revision 231115)
>>> +++ common.opt  (working copy)
>>> @@ -2453,6 +2457,10 @@ funswitch-loops
>>>  Common Report Var(flag_unswitch_loops) Optimization
>>>  Perform loop unswitching.
>>>
>>> +fsplit-loops
>>> +Common Report Var(flag_split_loops) Optimization
>>> +Perform loop splitting.
>>> +
>>>  funwind-tables
>>>  Common Report Var(flag_unwind_tables) Optimization
>>>  Just generate unwind tables for exception handling.
>>> Index: passes.def
>>> ===================================================================
>>> --- passes.def  (revision 231115)
>>> +++ passes.def  (working copy)
>>> @@ -252,6 +252,7 @@ along with GCC; see the file COPYING3.
>>>           NEXT_PASS (pass_dce);
>>>           NEXT_PASS (pass_tree_unswitch);
>>>           NEXT_PASS (pass_scev_cprop);
>>> +         NEXT_PASS (pass_loop_split);
>>>           NEXT_PASS (pass_record_bounds);
>>>           NEXT_PASS (pass_loop_distribution);
>>>           NEXT_PASS (pass_copy_prop);
>>> Index: opts.c
>>> ===================================================================
>>> --- opts.c      (revision 231115)
>>> +++ opts.c      (working copy)
>>> @@ -532,6 +532,7 @@ static const struct default_options defa
>>>         regardless of them being declared inline.  */
>>>      { OPT_LEVELS_3_PLUS_AND_SIZE, OPT_finline_functions, NULL, 1 },
>>>      { OPT_LEVELS_1_PLUS_NOT_DEBUG, OPT_finline_functions_called_once, NULL, 1 },
>>> +    { OPT_LEVELS_3_PLUS, OPT_fsplit_loops, NULL, 1 },
>>>      { OPT_LEVELS_3_PLUS, OPT_funswitch_loops, NULL, 1 },
>>>      { OPT_LEVELS_3_PLUS, OPT_fgcse_after_reload, NULL, 1 },
>>>      { OPT_LEVELS_3_PLUS, OPT_ftree_loop_vectorize, NULL, 1 },
>>> @@ -1411,6 +1412,8 @@ enable_fdo_optimizations (struct gcc_opt
>>>      opts->x_flag_ipa_cp_alignment = value;
>>>    if (!opts_set->x_flag_predictive_commoning)
>>>      opts->x_flag_predictive_commoning = value;
>>> +  if (!opts_set->x_flag_split_loops)
>>> +    opts->x_flag_split_loops = value;
>>>    if (!opts_set->x_flag_unswitch_loops)
>>>      opts->x_flag_unswitch_loops = value;
>>>    if (!opts_set->x_flag_gcse_after_reload)
>>> Index: timevar.def
>>> ===================================================================
>>> --- timevar.def (revision 231115)
>>> +++ timevar.def (working copy)
>>> @@ -182,6 +182,7 @@ DEFTIMEVAR (TV_LIM                   , "
>>>  DEFTIMEVAR (TV_TREE_LOOP_IVCANON     , "tree canonical iv")
>>>  DEFTIMEVAR (TV_SCEV_CONST            , "scev constant prop")
>>>  DEFTIMEVAR (TV_TREE_LOOP_UNSWITCH    , "tree loop unswitching")
>>> +DEFTIMEVAR (TV_LOOP_SPLIT            , "loop splitting")
>>>  DEFTIMEVAR (TV_COMPLETE_UNROLL       , "complete unrolling")
>>>  DEFTIMEVAR (TV_TREE_PARALLELIZE_LOOPS, "tree parallelize loops")
>>>  DEFTIMEVAR (TV_TREE_VECTORIZATION    , "tree vectorization")
>>> Index: tree-pass.h
>>> ===================================================================
>>> --- tree-pass.h (revision 231115)
>>> +++ tree-pass.h (working copy)
>>> @@ -370,6 +370,7 @@ extern gimple_opt_pass *make_pass_tree_n
>>>  extern gimple_opt_pass *make_pass_tree_loop_init (gcc::context *ctxt);
>>>  extern gimple_opt_pass *make_pass_lim (gcc::context *ctxt);
>>>  extern gimple_opt_pass *make_pass_tree_unswitch (gcc::context *ctxt);
>>> +extern gimple_opt_pass *make_pass_loop_split (gcc::context *ctxt);
>>>  extern gimple_opt_pass *make_pass_predcom (gcc::context *ctxt);
>>>  extern gimple_opt_pass *make_pass_iv_canon (gcc::context *ctxt);
>>>  extern gimple_opt_pass *make_pass_scev_cprop (gcc::context *ctxt);
>>> Index: tree-ssa-loop-manip.h
>>> ===================================================================
>>> --- tree-ssa-loop-manip.h       (revision 231115)
>>> +++ tree-ssa-loop-manip.h       (working copy)
>>> @@ -24,6 +24,8 @@ typedef void (*transform_callback)(struc
>>>
>>>  extern void create_iv (tree, tree, tree, struct loop *, gimple_stmt_iterator *,
>>>                        bool, tree *, tree *);
>>> +extern void rewrite_into_loop_closed_ssa_1 (bitmap, unsigned, int,
>>> +                                           struct loop *);
>>>  extern void rewrite_into_loop_closed_ssa (bitmap, unsigned);
>>>  extern void rewrite_virtuals_into_loop_closed_ssa (struct loop *);
>>>  extern void verify_loop_closed_ssa (bool);
>>> Index: Makefile.in
>>> ===================================================================
>>> --- Makefile.in (revision 231115)
>>> +++ Makefile.in (working copy)
>>> @@ -1474,6 +1474,7 @@ OBJS = \
>>>         tree-ssa-loop-manip.o \
>>>         tree-ssa-loop-niter.o \
>>>         tree-ssa-loop-prefetch.o \
>>> +       tree-ssa-loop-split.o \
>>>         tree-ssa-loop-unswitch.o \
>>>         tree-ssa-loop.o \
>>>         tree-ssa-math-opts.o \
>>> Index: tree-ssa-loop-split.c
>>> ===================================================================
>>> --- tree-ssa-loop-split.c       (revision 0)
>>> +++ tree-ssa-loop-split.c       (working copy)
>>> @@ -0,0 +1,686 @@
>>> +/* Loop splitting.
>>> +   Copyright (C) 2015 Free Software Foundation, Inc.
>>> +
>>> +This file is part of GCC.
>>> +
>>> +GCC is free software; you can redistribute it and/or modify it
>>> +under the terms of the GNU General Public License as published by the
>>> +Free Software Foundation; either version 3, or (at your option) any
>>> +later version.
>>> +
>>> +GCC is distributed in the hope that it will be useful, but WITHOUT
>>> +ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
>>> +FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
>>> +for more details.
>>> +
>>> +You should have received a copy of the GNU General Public License
>>> +along with GCC; see the file COPYING3.  If not see
>>> +<http://www.gnu.org/licenses/>.  */
>>> +
>>> +#include "config.h"
>>> +#include "system.h"
>>> +#include "coretypes.h"
>>> +#include "backend.h"
>>> +#include "tree.h"
>>> +#include "gimple.h"
>>> +#include "tree-pass.h"
>>> +#include "ssa.h"
>>> +#include "fold-const.h"
>>> +#include "tree-cfg.h"
>>> +#include "tree-ssa.h"
>>> +#include "tree-ssa-loop-niter.h"
>>> +#include "tree-ssa-loop.h"
>>> +#include "tree-ssa-loop-manip.h"
>>> +#include "tree-into-ssa.h"
>>> +#include "cfgloop.h"
>>> +#include "tree-scalar-evolution.h"
>>> +#include "gimple-iterator.h"
>>> +#include "gimple-pretty-print.h"
>>> +#include "cfghooks.h"
>>> +#include "gimple-fold.h"
>>> +#include "gimplify-me.h"
>>> +
>>> +/* This file implements loop splitting, i.e. transformation of loops like
>>> +
>>> +   for (i = 0; i < 100; i++)
>>> +     {
>>> +       if (i < 50)
>>> +         A;
>>> +       else
>>> +         B;
>>> +     }
>>> +
>>> +   into:
>>> +
>>> +   for (i = 0; i < 50; i++)
>>> +     {
>>> +       A;
>>> +     }
>>> +   for (; i < 100; i++)
>>> +     {
>>> +       B;
>>> +     }
>>> +
>>> +   */
>>> +
>>> +/* Return true when BB inside LOOP is a potential iteration space
>>> +   split point, i.e. ends with a condition like "IV < comp", which
>>> +   is true on one side of the iteration space and false on the other,
>>> +   and the split point can be computed.  If so, also return the border
>>> +   point in *BORDER and the comparison induction variable in IV.  */
>>> +
>>> +static tree
>>> +split_at_bb_p (struct loop *loop, basic_block bb, tree *border, affine_iv *iv)
>>> +{
>>> +  gimple *last;
>>> +  gcond *stmt;
>>> +  affine_iv iv2;
>>> +
>>> +  /* BB must end in a simple conditional jump.  */
>>> +  last = last_stmt (bb);
>>> +  if (!last || gimple_code (last) != GIMPLE_COND)
>>> +    return NULL_TREE;
>>> +  stmt = as_a <gcond *> (last);
>>> +
>>> +  enum tree_code code = gimple_cond_code (stmt);
>>> +
>>> +  /* Only handle relational comparisons, for equality and non-equality
>>> +     we'd have to split the loop into two loops and a middle statement.  */
>>> +  switch (code)
>>> +    {
>>> +      case LT_EXPR:
>>> +      case LE_EXPR:
>>> +      case GT_EXPR:
>>> +      case GE_EXPR:
>>> +       break;
>>> +      default:
>>> +       return NULL_TREE;
>>> +    }
>>> +
>>> +  if (loop_exits_from_bb_p (loop, bb))
>>> +    return NULL_TREE;
>>> +
>>> +  tree op0 = gimple_cond_lhs (stmt);
>>> +  tree op1 = gimple_cond_rhs (stmt);
>>> +
>>> +  if (!simple_iv (loop, loop, op0, iv, false))
>>> +    return NULL_TREE;
>>> +  if (!simple_iv (loop, loop, op1, &iv2, false))
>>> +    return NULL_TREE;
>>> +
>>> +  /* Make it so, that the first argument of the condition is
>>> +     the looping one (only swap.  */
>>> +  if (!integer_zerop (iv2.step))
>>> +    {
>>> +      std::swap (op0, op1);
>>> +      std::swap (*iv, iv2);
>>> +      code = swap_tree_comparison (code);
>>> +      gimple_cond_set_condition (stmt, code, op0, op1);
>>> +      update_stmt (stmt);
>>> +    }
>>> +  else if (integer_zerop (iv->step))
>>> +    return NULL_TREE;
>>> +  if (!integer_zerop (iv2.step))
>>> +    return NULL_TREE;
>>> +
>>> +  if (dump_file && (dump_flags & TDF_DETAILS))
>>> +    {
>>> +      fprintf (dump_file, "Found potential split point: ");
>>> +      print_gimple_stmt (dump_file, stmt, 0, TDF_SLIM);
>>> +      fprintf (dump_file, " { ");
>>> +      print_generic_expr (dump_file, iv->base, TDF_SLIM);
>>> +      fprintf (dump_file, " + I*");
>>> +      print_generic_expr (dump_file, iv->step, TDF_SLIM);
>>> +      fprintf (dump_file, " } %s ", get_tree_code_name (code));
>>> +      print_generic_expr (dump_file, iv2.base, TDF_SLIM);
>>> +      fprintf (dump_file, "\n");
>>> +    }
>>> +
>>> +  *border = iv2.base;
>>> +  return op0;
>>> +}
>>> +
>>> +/* Given a GUARD conditional stmt inside LOOP, which we want to make always
>>> +   true or false depending on INITIAL_TRUE, and adjusted values NEXTVAL
>>> +   (a post-increment IV) and NEWBOUND (the comparator) adjust the loop
>>> +   exit test statement to loop back only if the GUARD statement will
>>> +   also be true/false in the next iteration.  */
>>> +
>>> +static void
>>> +patch_loop_exit (struct loop *loop, gcond *guard, tree nextval, tree newbound,
>>> +                bool initial_true)
>>> +{
>>> +  edge exit = single_exit (loop);
>>> +  gcond *stmt = as_a <gcond *> (last_stmt (exit->src));
>>> +  gimple_cond_set_condition (stmt, gimple_cond_code (guard),
>>> +                            nextval, newbound);
>>> +  update_stmt (stmt);
>>> +
>>> +  edge stay = single_pred_edge (loop->latch);
>>> +
>>> +  exit->flags &= ~(EDGE_TRUE_VALUE | EDGE_FALSE_VALUE);
>>> +  stay->flags &= ~(EDGE_TRUE_VALUE | EDGE_FALSE_VALUE);
>>> +
>>> +  if (initial_true)
>>> +    {
>>> +      exit->flags |= EDGE_FALSE_VALUE;
>>> +      stay->flags |= EDGE_TRUE_VALUE;
>>> +    }
>>> +  else
>>> +    {
>>> +      exit->flags |= EDGE_TRUE_VALUE;
>>> +      stay->flags |= EDGE_FALSE_VALUE;
>>> +    }
>>> +}
>>> +
>>> +/* Give an induction variable GUARD_IV, and its affine descriptor IV,
>>> +   find the loop phi node in LOOP defining it directly, or create
>>> +   such phi node.  Return that phi node.  */
>>> +
>>> +static gphi *
>>> +find_or_create_guard_phi (struct loop *loop, tree guard_iv, affine_iv * /*iv*/)
>>> +{
>>> +  gimple *def = SSA_NAME_DEF_STMT (guard_iv);
>>> +  gphi *phi;
>>> +  if ((phi = dyn_cast <gphi *> (def))
>>> +      && gimple_bb (phi) == loop->header)
>>> +    return phi;
>>> +
>>> +  /* XXX Create the PHI instead.  */
>>> +  return NULL;
>>> +}
>>> +
>>> +/* This function updates the SSA form after connect_loops made a new
>>> +   edge NEW_E leading from LOOP1 exit to LOOP2 (via in intermediate
>>> +   conditional).  I.e. the second loop can now be entered either
>>> +   via the original entry or via NEW_E, so the entry values of LOOP2
>>> +   phi nodes are either the original ones or those at the exit
>>> +   of LOOP1.  Insert new phi nodes in LOOP2 pre-header reflecting
>>> +   this.  */
>>> +
>>> +static void
>>> +connect_loop_phis (struct loop *loop1, struct loop *loop2, edge new_e)
>>> +{
>>> +  basic_block rest = loop_preheader_edge (loop2)->src;
>>> +  gcc_assert (new_e->dest == rest);
>>> +  edge skip_first = EDGE_PRED (rest, EDGE_PRED (rest, 0) == new_e);
>>> +
>>> +  edge firste = loop_preheader_edge (loop1);
>>> +  edge seconde = loop_preheader_edge (loop2);
>>> +  edge firstn = loop_latch_edge (loop1);
>>> +  gphi_iterator psi_first, psi_second;
>>> +  for (psi_first = gsi_start_phis (loop1->header),
>>> +       psi_second = gsi_start_phis (loop2->header);
>>> +       !gsi_end_p (psi_first);
>>> +       gsi_next (&psi_first), gsi_next (&psi_second))
>>> +    {
>>> +      tree init, next, new_init;
>>> +      use_operand_p op;
>>> +      gphi *phi_first = psi_first.phi ();
>>> +      gphi *phi_second = psi_second.phi ();
>>> +
>>> +      init = PHI_ARG_DEF_FROM_EDGE (phi_first, firste);
>>> +      next = PHI_ARG_DEF_FROM_EDGE (phi_first, firstn);
>>> +      op = PHI_ARG_DEF_PTR_FROM_EDGE (phi_second, seconde);
>>> +      gcc_assert (operand_equal_for_phi_arg_p (init, USE_FROM_PTR (op)));
>>> +
>>> +      /* Prefer using original variable as a base for the new ssa name.
>>> +        This is necessary for virtual ops, and useful in order to avoid
>>> +        losing debug info for real ops.  */
>>> +      if (TREE_CODE (next) == SSA_NAME
>>> +         && useless_type_conversion_p (TREE_TYPE (next),
>>> +                                       TREE_TYPE (init)))
>>> +       new_init = copy_ssa_name (next);
>>> +      else if (TREE_CODE (init) == SSA_NAME
>>> +              && useless_type_conversion_p (TREE_TYPE (init),
>>> +                                            TREE_TYPE (next)))
>>> +       new_init = copy_ssa_name (init);
>>> +      else if (useless_type_conversion_p (TREE_TYPE (next),
>>> +                                         TREE_TYPE (init)))
>>> +       new_init = make_temp_ssa_name (TREE_TYPE (next), NULL,
>>> +                                      "unrinittmp");
>>> +      else
>>> +       new_init = make_temp_ssa_name (TREE_TYPE (init), NULL,
>>> +                                      "unrinittmp");
>>> +
>>> +      gphi * newphi = create_phi_node (new_init, rest);
>>> +      add_phi_arg (newphi, init, skip_first, UNKNOWN_LOCATION);
>>> +      add_phi_arg (newphi, next, new_e, UNKNOWN_LOCATION);
>>> +      SET_USE (op, new_init);
>>> +    }
>>> +}
>>> +
>>> +/* The two loops LOOP1 and LOOP2 were just created by loop versioning,
>>> +   they are still equivalent and placed in two arms of a diamond, like so:
>>> +
>>> +               .------if (cond)------.
>>> +               v                     v
>>> +             pre1                   pre2
>>> +              |                      |
>>> +        .--->h1                     h2<----.
>>> +        |     |                      |     |
>>> +        |    ex1---.            .---ex2    |
>>> +        |    /     |            |     \    |
>>> +        '---l1     X            |     l2---'
>>> +                   |            |
>>> +                   |            |
>>> +                   '--->join<---'
>>> +
>>> +   This function transforms the program such that LOOP1 is conditionally
>>> +   falling through to LOOP2, or skipping it.  This is done by splitting
>>> +   the ex1->join edge at X in the diagram above, and inserting a condition
>>> +   whose one arm goes to pre2, resulting in this situation:
>>> +
>>> +               .------if (cond)------.
>>> +               v                     v
>>> +             pre1       .---------->pre2
>>> +              |         |            |
>>> +        .--->h1         |           h2<----.
>>> +        |     |         |            |     |
>>> +        |    ex1---.    |       .---ex2    |
>>> +        |    /     v    |       |     \    |
>>> +        '---l1   skip---'       |     l2---'
>>> +                   |            |
>>> +                   |            |
>>> +                   '--->join<---'
>>> +
>>> +
>>> +   The condition used is the exit condition of LOOP1, which effectively means
>>> +   that when the first loop exits (for whatever reason) but the real original
>>> +   exit expression is still false the second loop will be entered.
>>> +   The function returns the new edge cond->pre2.
>>> +
>>> +   This doesn't update the SSA form, see connect_loop_phis for that.  */
>>> +
>>> +static edge
>>> +connect_loops (struct loop *loop1, struct loop *loop2)
>>> +{
>>> +  edge exit = single_exit (loop1);
>>> +  basic_block skip_bb = split_edge (exit);
>>> +  gcond *skip_stmt;
>>> +  gimple_stmt_iterator gsi;
>>> +  edge new_e, skip_e;
>>> +
>>> +  gimple *stmt = last_stmt (exit->src);
>>> +  skip_stmt = gimple_build_cond (gimple_cond_code (stmt),
>>> +                                gimple_cond_lhs (stmt),
>>> +                                gimple_cond_rhs (stmt),
>>> +                                NULL_TREE, NULL_TREE);
>>> +  gsi = gsi_last_bb (skip_bb);
>>> +  gsi_insert_after (&gsi, skip_stmt, GSI_NEW_STMT);
>>> +
>>> +  skip_e = EDGE_SUCC (skip_bb, 0);
>>> +  skip_e->flags &= ~EDGE_FALLTHRU;
>>> +  new_e = make_edge (skip_bb, loop_preheader_edge (loop2)->src, 0);
>>> +  if (exit->flags & EDGE_TRUE_VALUE)
>>> +    {
>>> +      skip_e->flags |= EDGE_TRUE_VALUE;
>>> +      new_e->flags |= EDGE_FALSE_VALUE;
>>> +    }
>>> +  else
>>> +    {
>>> +      skip_e->flags |= EDGE_FALSE_VALUE;
>>> +      new_e->flags |= EDGE_TRUE_VALUE;
>>> +    }
>>> +
>>> +  new_e->count = skip_bb->count;
>>> +  new_e->probability = PROB_LIKELY;
>>> +  new_e->count = apply_probability (skip_e->count, PROB_LIKELY);
>>> +  skip_e->count -= new_e->count;
>>> +  skip_e->probability = inverse_probability (PROB_LIKELY);
>>> +
>>> +  return new_e;
>>> +}
>>> +
>>> +/* This returns the new bound for iterations given the original iteration
>>> +   space in NITER, an arbitrary new bound BORDER, assumed to be some
>>> +   comparison value with a different IV, the initial value GUARD_INIT of
>>> +   that other IV, and the comparison code GUARD_CODE that compares
>>> +   that other IV with BORDER.  We return an SSA name, and place any
>>> +   necessary statements for that computation into *STMTS.
>>> +
>>> +   For example for such a loop:
>>> +
>>> +     for (i = beg, j = guard_init; i < end; i++, j++)
>>> +       if (j < border)  // this is supposed to be true/false
>>> +         ...
>>> +
>>> +   we want to return a new bound (on j) that makes the loop iterate
>>> +   as long as the condition j < border stays true.  We also don't want
>>> +   to iterate more often than the original loop, so we have to introduce
>>> +   some cut-off as well (via min/max), effectively resulting in:
>>> +
>>> +     newend = min (end+guard_init-beg, border)
>>> +     for (i = beg; j = guard_init; j < newend; i++, j++)
>>> +       if (j < c)
>>> +         ...
>>> +
>>> +   Depending on the direction of the IVs and if the exit tests
>>> +   are strict or non-strict we need to use MIN or MAX,
>>> +   and add or subtract 1.  This routine computes newend above.  */
>>> +
>>> +static tree
>>> +compute_new_first_bound (gimple_seq *stmts, struct tree_niter_desc *niter,
>>> +                        tree border,
>>> +                        enum tree_code guard_code, tree guard_init)
>>> +{
>>> +  /* The niter structure contains the after-increment IV, we need
>>> +     the loop-enter base, so subtract STEP once.  */
>>> +  tree controlbase = force_gimple_operand (niter->control.base,
>>> +                                          stmts, true, NULL_TREE);
>>> +  tree controlstep = niter->control.step;
>>> +  tree enddiff;
>>> +  if (POINTER_TYPE_P (TREE_TYPE (controlbase)))
>>> +    {
>>> +      controlstep = gimple_build (stmts, NEGATE_EXPR,
>>> +                                 TREE_TYPE (controlstep), controlstep);
>>> +      enddiff = gimple_build (stmts, POINTER_PLUS_EXPR,
>>> +                             TREE_TYPE (controlbase),
>>> +                             controlbase, controlstep);
>>> +    }
>>> +  else
>>> +    enddiff = gimple_build (stmts, MINUS_EXPR,
>>> +                           TREE_TYPE (controlbase),
>>> +                           controlbase, controlstep);
>>> +
>>> +  /* Compute beg-guard_init.  */
>>> +  if (POINTER_TYPE_P (TREE_TYPE (enddiff)))
>>> +    {
>>> +      tree tem = gimple_convert (stmts, sizetype, guard_init);
>>> +      tem = gimple_build (stmts, NEGATE_EXPR, sizetype, tem);
>>> +      enddiff = gimple_build (stmts, POINTER_PLUS_EXPR,
>>> +                             TREE_TYPE (enddiff),
>>> +                             enddiff, tem);
>>> +    }
>>> +  else
>>> +    enddiff = gimple_build (stmts, MINUS_EXPR, TREE_TYPE (enddiff),
>>> +                           enddiff, guard_init);
>>> +
>>> +  /* Compute end-(beg-guard_init).  */
>>> +  gimple_seq stmts2;
>>> +  tree newbound = force_gimple_operand (niter->bound, &stmts2,
>>> +                                       true, NULL_TREE);
>>> +  gimple_seq_add_seq_without_update (stmts, stmts2);
>>> +
>>> +  if (POINTER_TYPE_P (TREE_TYPE (enddiff))
>>> +      || POINTER_TYPE_P (TREE_TYPE (newbound)))
>>> +    {
>>> +      enddiff = gimple_convert (stmts, sizetype, enddiff);
>>> +      enddiff = gimple_build (stmts, NEGATE_EXPR, sizetype, enddiff);
>>> +      newbound = gimple_build (stmts, POINTER_PLUS_EXPR,
>>> +                              TREE_TYPE (newbound),
>>> +                              newbound, enddiff);
>>> +    }
>>> +  else
>>> +    newbound = gimple_build (stmts, MINUS_EXPR, TREE_TYPE (enddiff),
>>> +                            newbound, enddiff);
>>> +
>>> +  /* Depending on the direction of the IVs the new bound for the first
>>> +     loop is the minimum or maximum of old bound and border.
>>> +     Also, if the guard condition isn't strictly less or greater,
>>> +     we need to adjust the bound.  */
>>> +  int addbound = 0;
>>> +  enum tree_code minmax;
>>> +  if (niter->cmp == LT_EXPR)
>>> +    {
>>> +      /* GT and LE are the same, inverted.  */
>>> +      if (guard_code == GT_EXPR || guard_code == LE_EXPR)
>>> +       addbound = -1;
>>> +      minmax = MIN_EXPR;
>>> +    }
>>> +  else
>>> +    {
>>> +      gcc_assert (niter->cmp == GT_EXPR);
>>> +      if (guard_code == GE_EXPR || guard_code == LT_EXPR)
>>> +       addbound = 1;
>>> +      minmax = MAX_EXPR;
>>> +    }
>>> +
>>> +  if (addbound)
>>> +    {
>>> +      tree type2 = TREE_TYPE (newbound);
>>> +      if (POINTER_TYPE_P (type2))
>>> +       type2 = sizetype;
>>> +      newbound = gimple_build (stmts,
>>> +                              POINTER_TYPE_P (TREE_TYPE (newbound))
>>> +                              ? POINTER_PLUS_EXPR : PLUS_EXPR,
>>> +                              TREE_TYPE (newbound),
>>> +                              newbound,
>>> +                              build_int_cst (type2, addbound));
>>> +    }
>>> +
>>> +  tree newend = gimple_build (stmts, minmax, TREE_TYPE (border),
>>> +                             border, newbound);
>>> +  return newend;
>>> +}
>>> +
>>> +/* Checks if LOOP contains an conditional block whose condition
>>> +   depends on which side in the iteration space it is, and if so
>>> +   splits the iteration space into two loops.  Returns true if the
>>> +   loop was split.  NITER must contain the iteration descriptor for the
>>> +   single exit of LOOP.  */
>>> +
>>> +static bool
>>> +split_loop (struct loop *loop1, struct tree_niter_desc *niter)
>>> +{
>>> +  basic_block *bbs;
>>> +  unsigned i;
>>> +  bool changed = false;
>>> +  tree guard_iv;
>>> +  tree border;
>>> +  affine_iv iv;
>>> +
>>> +  bbs = get_loop_body (loop1);
>>> +
>>> +  /* Find a splitting opportunity.  */
>>> +  for (i = 0; i < loop1->num_nodes; i++)
>>> +    if ((guard_iv = split_at_bb_p (loop1, bbs[i], &border, &iv)))
>>> +      {
>>> +       /* Handling opposite steps is not implemented yet.  Neither
>>> +          is handling different step sizes.  */
>>> +       if ((tree_int_cst_sign_bit (iv.step)
>>> +            != tree_int_cst_sign_bit (niter->control.step))
>>> +           || !tree_int_cst_equal (iv.step, niter->control.step))
>>> +         continue;
>>> +
>>> +       /* Find a loop PHI node that defines guard_iv directly,
>>> +          or create one doing that.  */
>>> +       gphi *phi = find_or_create_guard_phi (loop1, guard_iv, &iv);
>>> +       if (!phi)
>>> +         continue;
>>> +       gcond *guard_stmt = as_a<gcond *> (last_stmt (bbs[i]));
>>> +       tree guard_init = PHI_ARG_DEF_FROM_EDGE (phi,
>>> +                                                loop_preheader_edge (loop1));
>>> +       enum tree_code guard_code = gimple_cond_code (guard_stmt);
>>> +
>>> +       /* Loop splitting is implemented by versioning the loop, placing
>>> +          the new loop after the old loop, make the first loop iterate
>>> +          as long as the conditional stays true (or false) and let the
>>> +          second (new) loop handle the rest of the iterations.
>>> +
>>> +          First we need to determine if the condition will start being true
>>> +          or false in the first loop.  */
>>> +       bool initial_true;
>>> +       switch (guard_code)
>>> +         {
>>> +           case LT_EXPR:
>>> +           case LE_EXPR:
>>> +             initial_true = !tree_int_cst_sign_bit (iv.step);
>>> +             break;
>>> +           case GT_EXPR:
>>> +           case GE_EXPR:
>>> +             initial_true = tree_int_cst_sign_bit (iv.step);
>>> +             break;
>>> +           default:
>>> +             gcc_unreachable ();
>>> +         }
>>> +
>>> +       /* Build a condition that will skip the first loop when the
>>> +          guard condition won't ever be true (or false).  */
>>> +       gimple_seq stmts2;
>>> +       border = force_gimple_operand (border, &stmts2, true, NULL_TREE);
>>> +       if (stmts2)
>>> +         gsi_insert_seq_on_edge_immediate (loop_preheader_edge (loop1),
>>> +                                           stmts2);
>>> +       tree cond = build2 (guard_code, boolean_type_node, guard_init, border);
>>> +       if (!initial_true)
>>> +         cond = fold_build1 (TRUTH_NOT_EXPR, boolean_type_node, cond);
>>> +
>>> +       /* Now version the loop, placing loop2 after loop1 connecting
>>> +          them, and fix up SSA form for that.  */
>>> +       initialize_original_copy_tables ();
>>> +       basic_block cond_bb;
>>> +       struct loop *loop2 = loop_version (loop1, cond, &cond_bb,
>>> +                                          REG_BR_PROB_BASE, REG_BR_PROB_BASE,
>>> +                                          REG_BR_PROB_BASE, true);
>>> +       gcc_assert (loop2);
>>> +       update_ssa (TODO_update_ssa);
>>> +
>>> +       edge new_e = connect_loops (loop1, loop2);
>>> +       connect_loop_phis (loop1, loop2, new_e);
>>> +
>>> +       /* The iterations of the second loop is now already
>>> +          exactly those that the first loop didn't do, but the
>>> +          iteration space of the first loop is still the original one.
>>> +          Compute the new bound for the guarding IV and patch the
>>> +          loop exit to use it instead of original IV and bound.  */
>>> +       gimple_seq stmts = NULL;
>>> +       tree newend = compute_new_first_bound (&stmts, niter, border,
>>> +                                              guard_code, guard_init);
>>> +       if (stmts)
>>> +         gsi_insert_seq_on_edge_immediate (loop_preheader_edge (loop1),
>>> +                                           stmts);
>>> +       tree guard_next = PHI_ARG_DEF_FROM_EDGE (phi, loop_latch_edge (loop1));
>>> +       patch_loop_exit (loop1, guard_stmt, guard_next, newend, initial_true);
>>> +
>>> +       /* Finally patch out the two copies of the condition to be always
>>> +          true/false (or opposite).  */
>>> +       gcond *force_true = as_a<gcond *> (last_stmt (bbs[i]));
>>> +       gcond *force_false = as_a<gcond *> (last_stmt (get_bb_copy (bbs[i])));
>>> +       if (!initial_true)
>>> +         std::swap (force_true, force_false);
>>> +       gimple_cond_make_true (force_true);
>>> +       gimple_cond_make_false (force_false);
>>> +       update_stmt (force_true);
>>> +       update_stmt (force_false);
>>> +
>>> +       free_original_copy_tables ();
>>> +
>>> +       /* We destroyed LCSSA form above.  Eventually we might be able
>>> +          to fix it on the fly, for now simply punt and use the helper.  */
>>> +       rewrite_into_loop_closed_ssa_1 (NULL, 0, SSA_OP_USE, loop1);
>>> +
>>> +       changed = true;
>>> +       if (dump_file && (dump_flags & TDF_DETAILS))
>>> +         fprintf (dump_file, ";; Loop split.\n");
>>> +
>>> +       /* Only deal with the first opportunity.  */
>>> +       break;
>>> +      }
>>> +
>>> +  free (bbs);
>>> +  return changed;
>>> +}
>>> +
>>> +/* Main entry point.  Perform loop splitting on all suitable loops.  */
>>> +
>>> +static unsigned int
>>> +tree_ssa_split_loops (void)
>>> +{
>>> +  struct loop *loop;
>>> +  bool changed = false;
>>> +
>>> +  gcc_assert (scev_initialized_p ());
>>> +  FOR_EACH_LOOP (loop, 0)
>>> +    loop->aux = NULL;
>>> +
>>> +  /* Go through all loops starting from innermost.  */
>>> +  FOR_EACH_LOOP (loop, LI_FROM_INNERMOST)
>>> +    {
>>> +      struct tree_niter_desc niter;
>>> +      if (loop->aux)
>>> +       {
>>> +         /* If any of our inner loops was split, don't split us,
>>> +            and mark our containing loop as having had splits as well.  */
>>> +         loop_outer (loop)->aux = loop;
>>> +         continue;
>>> +       }
>>> +
>>> +      if (single_exit (loop)
>>> +         /* ??? We could handle non-empty latches when we split
>>> +            the latch edge (not the exit edge), and put the new
>>> +            exit condition in the new block.  OTOH this executes some
>>> +            code unconditionally that might have been skipped by the
>>> +            original exit before.  */
>>> +         && empty_block_p (loop->latch)
>>> +         && !optimize_loop_for_size_p (loop)
>>> +         && number_of_iterations_exit (loop, single_exit (loop), &niter,
>>> +                                       false, true)
>>> +         && niter.cmp != ERROR_MARK
>>> +         /* We can't yet handle loops controlled by a != predicate.  */
>>> +         && niter.cmp != NE_EXPR)
>>> +       {
>>> +         if (split_loop (loop, &niter))
>>> +           {
>>> +             /* Mark our containing loop as having had some split inner
>>> +                loops.  */
>>> +             loop_outer (loop)->aux = loop;
>>> +             changed = true;
>>> +           }
>>> +       }
>>> +    }
>>> +
>>> +  FOR_EACH_LOOP (loop, 0)
>>> +    loop->aux = NULL;
>>> +
>>> +  if (changed)
>>> +    return TODO_cleanup_cfg;
>>> +  return 0;
>>> +}
>>> +
>>> +/* Loop splitting pass.  */
>>> +
>>> +namespace {
>>> +
>>> +const pass_data pass_data_loop_split =
>>> +{
>>> +  GIMPLE_PASS, /* type */
>>> +  "lsplit", /* name */
>>> +  OPTGROUP_LOOP, /* optinfo_flags */
>>> +  TV_LOOP_SPLIT, /* tv_id */
>>> +  PROP_cfg, /* properties_required */
>>> +  0, /* properties_provided */
>>> +  0, /* properties_destroyed */
>>> +  0, /* todo_flags_start */
>>> +  0, /* todo_flags_finish */
>>> +};
>>> +
>>> +class pass_loop_split : public gimple_opt_pass
>>> +{
>>> +public:
>>> +  pass_loop_split (gcc::context *ctxt)
>>> +    : gimple_opt_pass (pass_data_loop_split, ctxt)
>>> +  {}
>>> +
>>> +  /* opt_pass methods: */
>>> +  virtual bool gate (function *) { return flag_split_loops != 0; }
>>> +  virtual unsigned int execute (function *);
>>> +
>>> +}; // class pass_loop_split
>>> +
>>> +unsigned int
>>> +pass_loop_split::execute (function *fun)
>>> +{
>>> +  if (number_of_loops (fun) <= 1)
>>> +    return 0;
>>> +
>>> +  return tree_ssa_split_loops ();
>>> +}
>>> +
>>> +} // anon namespace
>>> +
>>> +gimple_opt_pass *
>>> +make_pass_loop_split (gcc::context *ctxt)
>>> +{
>>> +  return new pass_loop_split (ctxt);
>>> +}
>>> Index: doc/invoke.texi
>>> ===================================================================
>>> --- doc/invoke.texi     (revision 231115)
>>> +++ doc/invoke.texi     (working copy)
>>> @@ -446,7 +446,7 @@ Objective-C and Objective-C++ Dialects}.
>>>  -fselective-scheduling -fselective-scheduling2 @gol
>>>  -fsel-sched-pipelining -fsel-sched-pipelining-outer-loops @gol
>>>  -fsemantic-interposition -fshrink-wrap -fsignaling-nans @gol
>>> --fsingle-precision-constant -fsplit-ivs-in-unroller @gol
>>> +-fsingle-precision-constant -fsplit-ivs-in-unroller -fsplit-loops@gol
>>>  -fsplit-paths @gol
>>>  -fsplit-wide-types -fssa-backprop -fssa-phiopt @gol
>>>  -fstack-protector -fstack-protector-all -fstack-protector-strong @gol
>>> @@ -10197,6 +10197,11 @@ Enabled with @option{-fprofile-use}.
>>>  Enables the loop invariant motion pass in the RTL loop optimizer.  Enabled
>>>  at level @option{-O1}
>>>
>>> +@item -fsplit-loops
>>> +@opindex fsplit-loops
>>> +Split a loop into two if it contains a condition that's always true
>>> +for one side of the iteration space and false for the other.
>>> +
>>>  @item -funswitch-loops
>>>  @opindex funswitch-loops
>>>  Move branches with loop invariant conditions out of the loop, with duplicates
>>> Index: doc/passes.texi
>>> ===================================================================
>>> --- doc/passes.texi     (revision 231115)
>>> +++ doc/passes.texi     (working copy)
>>> @@ -484,6 +484,12 @@ out of the loops.  To achieve this, a du
>>>  each possible outcome of conditional jump(s).  The pass is implemented in
>>>  @file{tree-ssa-loop-unswitch.c}.
>>>
>>> +Loop splitting.  If a loop contains a conditional statement that is
>>> +always true for one part of the iteration space and false for the other
>>> +this pass splits the loop into two, one dealing with one side the other
>>> +only with the other, thereby removing one inner-loop conditional.  The
>>> +pass is implemented in @file{tree-ssa-loop-split.c}.
>>> +
>>>  The optimizations also use various utility functions contained in
>>>  @file{tree-ssa-loop-manip.c}, @file{cfgloop.c}, @file{cfgloopanal.c} and
>>>  @file{cfgloopmanip.c}.
>>> Index: testsuite/gcc.dg/loop-split.c
>>> ===================================================================
>>> --- testsuite/gcc.dg/loop-split.c       (revision 0)
>>> +++ testsuite/gcc.dg/loop-split.c       (working copy)
>>> @@ -0,0 +1,147 @@
>>> +/* { dg-do run } */
>>> +/* { dg-options "-O2 -fsplit-loops -fdump-tree-lsplit-details" } */
>>> +
>>> +#ifdef __cplusplus
>>> +extern "C" int printf (const char *, ...);
>>> +extern "C" void abort (void);
>>> +#else
>>> +extern int printf (const char *, ...);
>>> +extern void abort (void);
>>> +#endif
>>> +
>>> +/* Define TRACE to 1 or 2 to get detailed tracing.
>>> +   Define SINGLE_TEST to 1 or 2 to get a simple routine with
>>> +   just one loop, called only one time or with multiple parameters,
>>> +   to make debugging easier.  */
>>> +#ifndef TRACE
>>> +#define TRACE 0
>>> +#endif
>>> +
>>> +#define loop(beg,step,beg2,cond1,cond2) \
>>> +    do \
>>> +      { \
>>> +       sum = 0; \
>>> +        for (i = (beg), j = (beg2); (cond1); i+=(step),j+=(step)) \
>>> +          { \
>>> +            if (cond2) { \
>>> +             if (TRACE > 1) printf ("a: %d %d\n", i, j); \
>>> +              sum += a[i]; \
>>> +           } else { \
>>> +             if (TRACE > 1) printf ("b: %d %d\n", i, j); \
>>> +              sum += b[i]; \
>>> +           } \
>>> +          } \
>>> +       if (TRACE > 0) printf ("sum: %d\n", sum); \
>>> +       check = check * 47 + sum; \
>>> +      } while (0)
>>> +
>>> +#ifndef SINGLE_TEST
>>> +unsigned __attribute__((noinline, noclone)) dotest (int beg, int end, int step,
>>> +                                              int c, int *a, int *b, int beg2)
>>> +{
>>> +  unsigned check = 0;
>>> +  int sum;
>>> +  int i, j;
>>> +  loop (beg, 1, beg2, i < end, j < c);
>>> +  loop (beg, 1, beg2, i <= end, j < c);
>>> +  loop (beg, 1, beg2, i < end, j <= c);
>>> +  loop (beg, 1, beg2, i <= end, j <= c);
>>> +  loop (beg, 1, beg2, i < end, j > c);
>>> +  loop (beg, 1, beg2, i <= end, j > c);
>>> +  loop (beg, 1, beg2, i < end, j >= c);
>>> +  loop (beg, 1, beg2, i <= end, j >= c);
>>> +  beg2 += end-beg;
>>> +  loop (end, -1, beg2, i >= beg, j >= c);
>>> +  loop (end, -1, beg2, i >= beg, j > c);
>>> +  loop (end, -1, beg2, i > beg, j >= c);
>>> +  loop (end, -1, beg2, i > beg, j > c);
>>> +  loop (end, -1, beg2, i >= beg, j <= c);
>>> +  loop (end, -1, beg2, i >= beg, j < c);
>>> +  loop (end, -1, beg2, i > beg, j <= c);
>>> +  loop (end, -1, beg2, i > beg, j < c);
>>> +  return check;
>>> +}
>>> +
>>> +#else
>>> +
>>> +int __attribute__((noinline, noclone)) f (int beg, int end, int step,
>>> +                                         int c, int *a, int *b, int beg2)
>>> +{
>>> +  int sum = 0;
>>> +  int i, j;
>>> +  //for (i = beg, j = beg2; i < end; i += 1, j++ /*step*/)
>>> +  for (i = end, j = beg2 + (end-beg); i > beg; i += -1, j-- /*step*/)
>>> +    {
>>> +      // i - j == X --> i = X + j
>>> +      // --> i < end == X+j < end == j < end - X
>>> +      // --> newend = end - (i_init - j_init)
>>> +      // j < end-X && j < c --> j < min(end-X,c)
>>> +      // j < end-X && j <= c --> j <= min(end-X-1,c) or j < min(end-X,c+1{OF!})
>>> +      //if (j < c)
>>> +      if (j >= c)
>>> +       printf ("a: %d %d\n", i, j);
>>> +      /*else
>>> +       printf ("b: %d %d\n", i, j);*/
>>> +       /*sum += a[i];
>>> +      else
>>> +       sum += b[i];*/
>>> +    }
>>> +  return sum;
>>> +}
>>> +
>>> +int __attribute__((noinline, noclone)) f2 (int *beg, int *end, int step,
>>> +                                         int *c, int *a, int *b, int *beg2)
>>> +{
>>> +  int sum = 0;
>>> +  int *i, *j;
>>> +  for (i = beg, j = beg2; i < end; i += 1, j++ /*step*/)
>>> +    {
>>> +      if (j <= c)
>>> +       printf ("%d %d\n", i - beg, j - beg);
>>> +       /*sum += a[i];
>>> +      else
>>> +       sum += b[i];*/
>>> +    }
>>> +  return sum;
>>> +}
>>> +#endif
>>> +
>>> +extern int printf (const char *, ...);
>>> +
>>> +int main ()
>>> +{
>>> +  int a[] = {0,0,0,0,0, 1,2,3,4,5,6,7,8,9,          0,0,0,0,0};
>>> +  int b[] = {0,0,0,0,0, -1,-2,-3,-4,-5,-6,-7,-8,-9, 0,0,0,0,0,};
>>> +  int c;
>>> +  int diff = 0;
>>> +  unsigned check = 0;
>>> +#if defined(SINGLE_TEST) && (SINGLE_TEST == 1)
>>> +  //dotest (0, 9, 1, -1, a+5, b+5, -1);
>>> +  //return 0;
>>> +  f (0, 9, 1, 5, a+5, b+5, -1);
>>> +  return 0;
>>> +#endif
>>> +  for (diff = -5; diff <= 5; diff++)
>>> +    {
>>> +      for (c = -1; c <= 10; c++)
>>> +       {
>>> +#ifdef SINGLE_TEST
>>> +         int s = f (0, 9, 1, c, a+5, b+5, diff);
>>> +         //int s = f2 (a+0, a+9, 1, a+c, a+5, b+5, a+diff);
>>> +         printf ("%d ", s);
>>> +#else
>>> +         if (TRACE > 0)
>>> +           printf ("check %d %d\n", c, diff);
>>> +         check = check * 51 + dotest (0, 9, 1, c, a+5, b+5, diff);
>>> +#endif
>>> +       }
>>> +      //printf ("\n");
>>> +    }
>>> +  //printf ("%u\n", check);
>>> +  if (check != 3213344948)
>>> +    abort ();
>>> +  return 0;
>>> +}
>>> +
>>> +/* All 16 loops in dotest should be split.  */
>>> +/* { dg-final { scan-tree-dump-times "Loop split" 16 "lsplit" } } */
Richard Biener July 27, 2016, 8:10 a.m. UTC | #3
On Wed, Jul 27, 2016 at 8:17 AM, Andrew Pinski <pinskia@gmail.com> wrote:
> On Tue, Jul 26, 2016 at 4:32 AM, Richard Biener
> <richard.guenther@gmail.com> wrote:
>> On Mon, Jul 25, 2016 at 10:57 PM, Andrew Pinski <pinskia@gmail.com> wrote:
>>> On Wed, Dec 2, 2015 at 5:23 AM, Michael Matz <matz@suse.de> wrote:
>>>> Hi,
>>>>
>>>> On Tue, 1 Dec 2015, Jeff Law wrote:
>>>>
>>>>> > So, okay for trunk?
>>>>> -ENOPATCH
>>>>
>>>> Sigh :)
>>>> Here it is.
>>>
>>>
>>> I found one problem with it.
>>> Take:
>>> void f(int *a, int M, int *b)
>>> {
>>>   for(int i = 0; i <= M; i++)
>>>     {
>>>        if (i < M)
>>>         a[i] = i;
>>>     }
>>> }
>>> ---- CUT ---
>>> There are two issues with the code as below.  The outer most loop's
>>> aux is still set which causes the vectorizer not to vector the loop.
>>> The other issue is I need to run pass_scev_cprop after pass_loop_split
>>> to get the induction variable usage after the loop gone so the
>>> vectorizer will work.
>>
>> I think scev_cprop needs to be re-written to an utility so that the vectorizer
>> itself can (within its own cost-model) eliminate an induction using it.
>>
>> Richard.
>>
>>> Something like (note this is copy and paste from a terminal):
>>> diff --git a/gcc/passes.def b/gcc/passes.def
>>> index c327900..e8d6ea6 100644
>>> --- a/gcc/passes.def
>>> +++ b/gcc/passes.def
>>> @@ -262,8 +262,8 @@ along with GCC; see the file COPYING3.  If not see
>>>           NEXT_PASS (pass_copy_prop);
>>>           NEXT_PASS (pass_dce);
>>>           NEXT_PASS (pass_tree_unswitch);
>>> -         NEXT_PASS (pass_scev_cprop);
>>>           NEXT_PASS (pass_loop_split);
>>> +         NEXT_PASS (pass_scev_cprop);
>>>           NEXT_PASS (pass_record_bounds);
>>>           NEXT_PASS (pass_loop_distribution);
>>>           NEXT_PASS (pass_copy_prop);
>>> diff --git a/gcc/tree-ssa-loop-split.c b/gcc/tree-ssa-loop-split.c
>>> index 5411530..e72ef19 100644
>>> --- a/gcc/tree-ssa-loop-split.c
>>> +++ b/gcc/tree-ssa-loop-split.c
>>> @@ -592,7 +592,11 @@ tree_ssa_split_loops (void)
>>>
>>>    gcc_assert (scev_initialized_p ());
>>>    FOR_EACH_LOOP (loop, 0)
>>> -    loop->aux = NULL;
>>> +    {
>>> +      loop->aux = NULL;
>>> +      if (loop_outer (loop))
>>> +       loop_outer (loop)->aux = NULL;
>>> +    }
>>
>> How does the iterator not visit loop_outer (loop)?!
>
> The iterator with flags of 0 does not visit the the root.  So the way
> to fix this is change 0 (which is the flags) with LI_INCLUDE_ROOT so
> we zero out the root too.

Or not set ->aux on the root in the first place.

Richard.

> Thanks,
> Andrew
>
>>
>>>
>>>    /* Go through all loops starting from innermost.  */
>>>    FOR_EACH_LOOP (loop, LI_FROM_INNERMOST)
>>> @@ -631,7 +635,11 @@ tree_ssa_split_loops (void)
>>>      }
>>>
>>>    FOR_EACH_LOOP (loop, 0)
>>> -    loop->aux = NULL;
>>> +    {
>>> +      loop->aux = NULL;
>>> +      if (loop_outer (loop))
>>> +       loop_outer (loop)->aux = NULL;
>>> +    }
>>>
>>>    if (changed)
>>>      return TODO_cleanup_cfg;
>>> -----  CUT -----
>>>
>>> Thanks,
>>> Andrew
>>>
>>>
>>>>
>>>>
>>>> Ciao,
>>>> Michael.
>>>>         * common.opt (-fsplit-loops): New flag.
>>>>         * passes.def (pass_loop_split): Add.
>>>>         * opts.c (default_options_table): Add OPT_fsplit_loops entry at -O3.
>>>>         (enable_fdo_optimizations): Add loop splitting.
>>>>         * timevar.def (TV_LOOP_SPLIT): Add.
>>>>         * tree-pass.h (make_pass_loop_split): Declare.
>>>>         * tree-ssa-loop-manip.h (rewrite_into_loop_closed_ssa_1): Declare.
>>>>         * tree-ssa-loop-unswitch.c: Include tree-ssa-loop-manip.h,
>>>>         * tree-ssa-loop-split.c: New file.
>>>>         * Makefile.in (OBJS): Add tree-ssa-loop-split.o.
>>>>         * doc/invoke.texi (fsplit-loops): Document.
>>>>         * doc/passes.texi (Loop optimization): Add paragraph about loop
>>>>         splitting.
>>>>
>>>> testsuite/
>>>>         * gcc.dg/loop-split.c: New test.
>>>>
>>>> Index: common.opt
>>>> ===================================================================
>>>> --- common.opt  (revision 231115)
>>>> +++ common.opt  (working copy)
>>>> @@ -2453,6 +2457,10 @@ funswitch-loops
>>>>  Common Report Var(flag_unswitch_loops) Optimization
>>>>  Perform loop unswitching.
>>>>
>>>> +fsplit-loops
>>>> +Common Report Var(flag_split_loops) Optimization
>>>> +Perform loop splitting.
>>>> +
>>>>  funwind-tables
>>>>  Common Report Var(flag_unwind_tables) Optimization
>>>>  Just generate unwind tables for exception handling.
>>>> Index: passes.def
>>>> ===================================================================
>>>> --- passes.def  (revision 231115)
>>>> +++ passes.def  (working copy)
>>>> @@ -252,6 +252,7 @@ along with GCC; see the file COPYING3.
>>>>           NEXT_PASS (pass_dce);
>>>>           NEXT_PASS (pass_tree_unswitch);
>>>>           NEXT_PASS (pass_scev_cprop);
>>>> +         NEXT_PASS (pass_loop_split);
>>>>           NEXT_PASS (pass_record_bounds);
>>>>           NEXT_PASS (pass_loop_distribution);
>>>>           NEXT_PASS (pass_copy_prop);
>>>> Index: opts.c
>>>> ===================================================================
>>>> --- opts.c      (revision 231115)
>>>> +++ opts.c      (working copy)
>>>> @@ -532,6 +532,7 @@ static const struct default_options defa
>>>>         regardless of them being declared inline.  */
>>>>      { OPT_LEVELS_3_PLUS_AND_SIZE, OPT_finline_functions, NULL, 1 },
>>>>      { OPT_LEVELS_1_PLUS_NOT_DEBUG, OPT_finline_functions_called_once, NULL, 1 },
>>>> +    { OPT_LEVELS_3_PLUS, OPT_fsplit_loops, NULL, 1 },
>>>>      { OPT_LEVELS_3_PLUS, OPT_funswitch_loops, NULL, 1 },
>>>>      { OPT_LEVELS_3_PLUS, OPT_fgcse_after_reload, NULL, 1 },
>>>>      { OPT_LEVELS_3_PLUS, OPT_ftree_loop_vectorize, NULL, 1 },
>>>> @@ -1411,6 +1412,8 @@ enable_fdo_optimizations (struct gcc_opt
>>>>      opts->x_flag_ipa_cp_alignment = value;
>>>>    if (!opts_set->x_flag_predictive_commoning)
>>>>      opts->x_flag_predictive_commoning = value;
>>>> +  if (!opts_set->x_flag_split_loops)
>>>> +    opts->x_flag_split_loops = value;
>>>>    if (!opts_set->x_flag_unswitch_loops)
>>>>      opts->x_flag_unswitch_loops = value;
>>>>    if (!opts_set->x_flag_gcse_after_reload)
>>>> Index: timevar.def
>>>> ===================================================================
>>>> --- timevar.def (revision 231115)
>>>> +++ timevar.def (working copy)
>>>> @@ -182,6 +182,7 @@ DEFTIMEVAR (TV_LIM                   , "
>>>>  DEFTIMEVAR (TV_TREE_LOOP_IVCANON     , "tree canonical iv")
>>>>  DEFTIMEVAR (TV_SCEV_CONST            , "scev constant prop")
>>>>  DEFTIMEVAR (TV_TREE_LOOP_UNSWITCH    , "tree loop unswitching")
>>>> +DEFTIMEVAR (TV_LOOP_SPLIT            , "loop splitting")
>>>>  DEFTIMEVAR (TV_COMPLETE_UNROLL       , "complete unrolling")
>>>>  DEFTIMEVAR (TV_TREE_PARALLELIZE_LOOPS, "tree parallelize loops")
>>>>  DEFTIMEVAR (TV_TREE_VECTORIZATION    , "tree vectorization")
>>>> Index: tree-pass.h
>>>> ===================================================================
>>>> --- tree-pass.h (revision 231115)
>>>> +++ tree-pass.h (working copy)
>>>> @@ -370,6 +370,7 @@ extern gimple_opt_pass *make_pass_tree_n
>>>>  extern gimple_opt_pass *make_pass_tree_loop_init (gcc::context *ctxt);
>>>>  extern gimple_opt_pass *make_pass_lim (gcc::context *ctxt);
>>>>  extern gimple_opt_pass *make_pass_tree_unswitch (gcc::context *ctxt);
>>>> +extern gimple_opt_pass *make_pass_loop_split (gcc::context *ctxt);
>>>>  extern gimple_opt_pass *make_pass_predcom (gcc::context *ctxt);
>>>>  extern gimple_opt_pass *make_pass_iv_canon (gcc::context *ctxt);
>>>>  extern gimple_opt_pass *make_pass_scev_cprop (gcc::context *ctxt);
>>>> Index: tree-ssa-loop-manip.h
>>>> ===================================================================
>>>> --- tree-ssa-loop-manip.h       (revision 231115)
>>>> +++ tree-ssa-loop-manip.h       (working copy)
>>>> @@ -24,6 +24,8 @@ typedef void (*transform_callback)(struc
>>>>
>>>>  extern void create_iv (tree, tree, tree, struct loop *, gimple_stmt_iterator *,
>>>>                        bool, tree *, tree *);
>>>> +extern void rewrite_into_loop_closed_ssa_1 (bitmap, unsigned, int,
>>>> +                                           struct loop *);
>>>>  extern void rewrite_into_loop_closed_ssa (bitmap, unsigned);
>>>>  extern void rewrite_virtuals_into_loop_closed_ssa (struct loop *);
>>>>  extern void verify_loop_closed_ssa (bool);
>>>> Index: Makefile.in
>>>> ===================================================================
>>>> --- Makefile.in (revision 231115)
>>>> +++ Makefile.in (working copy)
>>>> @@ -1474,6 +1474,7 @@ OBJS = \
>>>>         tree-ssa-loop-manip.o \
>>>>         tree-ssa-loop-niter.o \
>>>>         tree-ssa-loop-prefetch.o \
>>>> +       tree-ssa-loop-split.o \
>>>>         tree-ssa-loop-unswitch.o \
>>>>         tree-ssa-loop.o \
>>>>         tree-ssa-math-opts.o \
>>>> Index: tree-ssa-loop-split.c
>>>> ===================================================================
>>>> --- tree-ssa-loop-split.c       (revision 0)
>>>> +++ tree-ssa-loop-split.c       (working copy)
>>>> @@ -0,0 +1,686 @@
>>>> +/* Loop splitting.
>>>> +   Copyright (C) 2015 Free Software Foundation, Inc.
>>>> +
>>>> +This file is part of GCC.
>>>> +
>>>> +GCC is free software; you can redistribute it and/or modify it
>>>> +under the terms of the GNU General Public License as published by the
>>>> +Free Software Foundation; either version 3, or (at your option) any
>>>> +later version.
>>>> +
>>>> +GCC is distributed in the hope that it will be useful, but WITHOUT
>>>> +ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
>>>> +FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
>>>> +for more details.
>>>> +
>>>> +You should have received a copy of the GNU General Public License
>>>> +along with GCC; see the file COPYING3.  If not see
>>>> +<http://www.gnu.org/licenses/>.  */
>>>> +
>>>> +#include "config.h"
>>>> +#include "system.h"
>>>> +#include "coretypes.h"
>>>> +#include "backend.h"
>>>> +#include "tree.h"
>>>> +#include "gimple.h"
>>>> +#include "tree-pass.h"
>>>> +#include "ssa.h"
>>>> +#include "fold-const.h"
>>>> +#include "tree-cfg.h"
>>>> +#include "tree-ssa.h"
>>>> +#include "tree-ssa-loop-niter.h"
>>>> +#include "tree-ssa-loop.h"
>>>> +#include "tree-ssa-loop-manip.h"
>>>> +#include "tree-into-ssa.h"
>>>> +#include "cfgloop.h"
>>>> +#include "tree-scalar-evolution.h"
>>>> +#include "gimple-iterator.h"
>>>> +#include "gimple-pretty-print.h"
>>>> +#include "cfghooks.h"
>>>> +#include "gimple-fold.h"
>>>> +#include "gimplify-me.h"
>>>> +
>>>> +/* This file implements loop splitting, i.e. transformation of loops like
>>>> +
>>>> +   for (i = 0; i < 100; i++)
>>>> +     {
>>>> +       if (i < 50)
>>>> +         A;
>>>> +       else
>>>> +         B;
>>>> +     }
>>>> +
>>>> +   into:
>>>> +
>>>> +   for (i = 0; i < 50; i++)
>>>> +     {
>>>> +       A;
>>>> +     }
>>>> +   for (; i < 100; i++)
>>>> +     {
>>>> +       B;
>>>> +     }
>>>> +
>>>> +   */
>>>> +
>>>> +/* Return true when BB inside LOOP is a potential iteration space
>>>> +   split point, i.e. ends with a condition like "IV < comp", which
>>>> +   is true on one side of the iteration space and false on the other,
>>>> +   and the split point can be computed.  If so, also return the border
>>>> +   point in *BORDER and the comparison induction variable in IV.  */
>>>> +
>>>> +static tree
>>>> +split_at_bb_p (struct loop *loop, basic_block bb, tree *border, affine_iv *iv)
>>>> +{
>>>> +  gimple *last;
>>>> +  gcond *stmt;
>>>> +  affine_iv iv2;
>>>> +
>>>> +  /* BB must end in a simple conditional jump.  */
>>>> +  last = last_stmt (bb);
>>>> +  if (!last || gimple_code (last) != GIMPLE_COND)
>>>> +    return NULL_TREE;
>>>> +  stmt = as_a <gcond *> (last);
>>>> +
>>>> +  enum tree_code code = gimple_cond_code (stmt);
>>>> +
>>>> +  /* Only handle relational comparisons, for equality and non-equality
>>>> +     we'd have to split the loop into two loops and a middle statement.  */
>>>> +  switch (code)
>>>> +    {
>>>> +      case LT_EXPR:
>>>> +      case LE_EXPR:
>>>> +      case GT_EXPR:
>>>> +      case GE_EXPR:
>>>> +       break;
>>>> +      default:
>>>> +       return NULL_TREE;
>>>> +    }
>>>> +
>>>> +  if (loop_exits_from_bb_p (loop, bb))
>>>> +    return NULL_TREE;
>>>> +
>>>> +  tree op0 = gimple_cond_lhs (stmt);
>>>> +  tree op1 = gimple_cond_rhs (stmt);
>>>> +
>>>> +  if (!simple_iv (loop, loop, op0, iv, false))
>>>> +    return NULL_TREE;
>>>> +  if (!simple_iv (loop, loop, op1, &iv2, false))
>>>> +    return NULL_TREE;
>>>> +
>>>> +  /* Make it so, that the first argument of the condition is
>>>> +     the looping one (only swap.  */
>>>> +  if (!integer_zerop (iv2.step))
>>>> +    {
>>>> +      std::swap (op0, op1);
>>>> +      std::swap (*iv, iv2);
>>>> +      code = swap_tree_comparison (code);
>>>> +      gimple_cond_set_condition (stmt, code, op0, op1);
>>>> +      update_stmt (stmt);
>>>> +    }
>>>> +  else if (integer_zerop (iv->step))
>>>> +    return NULL_TREE;
>>>> +  if (!integer_zerop (iv2.step))
>>>> +    return NULL_TREE;
>>>> +
>>>> +  if (dump_file && (dump_flags & TDF_DETAILS))
>>>> +    {
>>>> +      fprintf (dump_file, "Found potential split point: ");
>>>> +      print_gimple_stmt (dump_file, stmt, 0, TDF_SLIM);
>>>> +      fprintf (dump_file, " { ");
>>>> +      print_generic_expr (dump_file, iv->base, TDF_SLIM);
>>>> +      fprintf (dump_file, " + I*");
>>>> +      print_generic_expr (dump_file, iv->step, TDF_SLIM);
>>>> +      fprintf (dump_file, " } %s ", get_tree_code_name (code));
>>>> +      print_generic_expr (dump_file, iv2.base, TDF_SLIM);
>>>> +      fprintf (dump_file, "\n");
>>>> +    }
>>>> +
>>>> +  *border = iv2.base;
>>>> +  return op0;
>>>> +}
>>>> +
>>>> +/* Given a GUARD conditional stmt inside LOOP, which we want to make always
>>>> +   true or false depending on INITIAL_TRUE, and adjusted values NEXTVAL
>>>> +   (a post-increment IV) and NEWBOUND (the comparator) adjust the loop
>>>> +   exit test statement to loop back only if the GUARD statement will
>>>> +   also be true/false in the next iteration.  */
>>>> +
>>>> +static void
>>>> +patch_loop_exit (struct loop *loop, gcond *guard, tree nextval, tree newbound,
>>>> +                bool initial_true)
>>>> +{
>>>> +  edge exit = single_exit (loop);
>>>> +  gcond *stmt = as_a <gcond *> (last_stmt (exit->src));
>>>> +  gimple_cond_set_condition (stmt, gimple_cond_code (guard),
>>>> +                            nextval, newbound);
>>>> +  update_stmt (stmt);
>>>> +
>>>> +  edge stay = single_pred_edge (loop->latch);
>>>> +
>>>> +  exit->flags &= ~(EDGE_TRUE_VALUE | EDGE_FALSE_VALUE);
>>>> +  stay->flags &= ~(EDGE_TRUE_VALUE | EDGE_FALSE_VALUE);
>>>> +
>>>> +  if (initial_true)
>>>> +    {
>>>> +      exit->flags |= EDGE_FALSE_VALUE;
>>>> +      stay->flags |= EDGE_TRUE_VALUE;
>>>> +    }
>>>> +  else
>>>> +    {
>>>> +      exit->flags |= EDGE_TRUE_VALUE;
>>>> +      stay->flags |= EDGE_FALSE_VALUE;
>>>> +    }
>>>> +}
>>>> +
>>>> +/* Give an induction variable GUARD_IV, and its affine descriptor IV,
>>>> +   find the loop phi node in LOOP defining it directly, or create
>>>> +   such phi node.  Return that phi node.  */
>>>> +
>>>> +static gphi *
>>>> +find_or_create_guard_phi (struct loop *loop, tree guard_iv, affine_iv * /*iv*/)
>>>> +{
>>>> +  gimple *def = SSA_NAME_DEF_STMT (guard_iv);
>>>> +  gphi *phi;
>>>> +  if ((phi = dyn_cast <gphi *> (def))
>>>> +      && gimple_bb (phi) == loop->header)
>>>> +    return phi;
>>>> +
>>>> +  /* XXX Create the PHI instead.  */
>>>> +  return NULL;
>>>> +}
>>>> +
>>>> +/* This function updates the SSA form after connect_loops made a new
>>>> +   edge NEW_E leading from LOOP1 exit to LOOP2 (via in intermediate
>>>> +   conditional).  I.e. the second loop can now be entered either
>>>> +   via the original entry or via NEW_E, so the entry values of LOOP2
>>>> +   phi nodes are either the original ones or those at the exit
>>>> +   of LOOP1.  Insert new phi nodes in LOOP2 pre-header reflecting
>>>> +   this.  */
>>>> +
>>>> +static void
>>>> +connect_loop_phis (struct loop *loop1, struct loop *loop2, edge new_e)
>>>> +{
>>>> +  basic_block rest = loop_preheader_edge (loop2)->src;
>>>> +  gcc_assert (new_e->dest == rest);
>>>> +  edge skip_first = EDGE_PRED (rest, EDGE_PRED (rest, 0) == new_e);
>>>> +
>>>> +  edge firste = loop_preheader_edge (loop1);
>>>> +  edge seconde = loop_preheader_edge (loop2);
>>>> +  edge firstn = loop_latch_edge (loop1);
>>>> +  gphi_iterator psi_first, psi_second;
>>>> +  for (psi_first = gsi_start_phis (loop1->header),
>>>> +       psi_second = gsi_start_phis (loop2->header);
>>>> +       !gsi_end_p (psi_first);
>>>> +       gsi_next (&psi_first), gsi_next (&psi_second))
>>>> +    {
>>>> +      tree init, next, new_init;
>>>> +      use_operand_p op;
>>>> +      gphi *phi_first = psi_first.phi ();
>>>> +      gphi *phi_second = psi_second.phi ();
>>>> +
>>>> +      init = PHI_ARG_DEF_FROM_EDGE (phi_first, firste);
>>>> +      next = PHI_ARG_DEF_FROM_EDGE (phi_first, firstn);
>>>> +      op = PHI_ARG_DEF_PTR_FROM_EDGE (phi_second, seconde);
>>>> +      gcc_assert (operand_equal_for_phi_arg_p (init, USE_FROM_PTR (op)));
>>>> +
>>>> +      /* Prefer using original variable as a base for the new ssa name.
>>>> +        This is necessary for virtual ops, and useful in order to avoid
>>>> +        losing debug info for real ops.  */
>>>> +      if (TREE_CODE (next) == SSA_NAME
>>>> +         && useless_type_conversion_p (TREE_TYPE (next),
>>>> +                                       TREE_TYPE (init)))
>>>> +       new_init = copy_ssa_name (next);
>>>> +      else if (TREE_CODE (init) == SSA_NAME
>>>> +              && useless_type_conversion_p (TREE_TYPE (init),
>>>> +                                            TREE_TYPE (next)))
>>>> +       new_init = copy_ssa_name (init);
>>>> +      else if (useless_type_conversion_p (TREE_TYPE (next),
>>>> +                                         TREE_TYPE (init)))
>>>> +       new_init = make_temp_ssa_name (TREE_TYPE (next), NULL,
>>>> +                                      "unrinittmp");
>>>> +      else
>>>> +       new_init = make_temp_ssa_name (TREE_TYPE (init), NULL,
>>>> +                                      "unrinittmp");
>>>> +
>>>> +      gphi * newphi = create_phi_node (new_init, rest);
>>>> +      add_phi_arg (newphi, init, skip_first, UNKNOWN_LOCATION);
>>>> +      add_phi_arg (newphi, next, new_e, UNKNOWN_LOCATION);
>>>> +      SET_USE (op, new_init);
>>>> +    }
>>>> +}
>>>> +
>>>> +/* The two loops LOOP1 and LOOP2 were just created by loop versioning,
>>>> +   they are still equivalent and placed in two arms of a diamond, like so:
>>>> +
>>>> +               .------if (cond)------.
>>>> +               v                     v
>>>> +             pre1                   pre2
>>>> +              |                      |
>>>> +        .--->h1                     h2<----.
>>>> +        |     |                      |     |
>>>> +        |    ex1---.            .---ex2    |
>>>> +        |    /     |            |     \    |
>>>> +        '---l1     X            |     l2---'
>>>> +                   |            |
>>>> +                   |            |
>>>> +                   '--->join<---'
>>>> +
>>>> +   This function transforms the program such that LOOP1 is conditionally
>>>> +   falling through to LOOP2, or skipping it.  This is done by splitting
>>>> +   the ex1->join edge at X in the diagram above, and inserting a condition
>>>> +   whose one arm goes to pre2, resulting in this situation:
>>>> +
>>>> +               .------if (cond)------.
>>>> +               v                     v
>>>> +             pre1       .---------->pre2
>>>> +              |         |            |
>>>> +        .--->h1         |           h2<----.
>>>> +        |     |         |            |     |
>>>> +        |    ex1---.    |       .---ex2    |
>>>> +        |    /     v    |       |     \    |
>>>> +        '---l1   skip---'       |     l2---'
>>>> +                   |            |
>>>> +                   |            |
>>>> +                   '--->join<---'
>>>> +
>>>> +
>>>> +   The condition used is the exit condition of LOOP1, which effectively means
>>>> +   that when the first loop exits (for whatever reason) but the real original
>>>> +   exit expression is still false the second loop will be entered.
>>>> +   The function returns the new edge cond->pre2.
>>>> +
>>>> +   This doesn't update the SSA form, see connect_loop_phis for that.  */
>>>> +
>>>> +static edge
>>>> +connect_loops (struct loop *loop1, struct loop *loop2)
>>>> +{
>>>> +  edge exit = single_exit (loop1);
>>>> +  basic_block skip_bb = split_edge (exit);
>>>> +  gcond *skip_stmt;
>>>> +  gimple_stmt_iterator gsi;
>>>> +  edge new_e, skip_e;
>>>> +
>>>> +  gimple *stmt = last_stmt (exit->src);
>>>> +  skip_stmt = gimple_build_cond (gimple_cond_code (stmt),
>>>> +                                gimple_cond_lhs (stmt),
>>>> +                                gimple_cond_rhs (stmt),
>>>> +                                NULL_TREE, NULL_TREE);
>>>> +  gsi = gsi_last_bb (skip_bb);
>>>> +  gsi_insert_after (&gsi, skip_stmt, GSI_NEW_STMT);
>>>> +
>>>> +  skip_e = EDGE_SUCC (skip_bb, 0);
>>>> +  skip_e->flags &= ~EDGE_FALLTHRU;
>>>> +  new_e = make_edge (skip_bb, loop_preheader_edge (loop2)->src, 0);
>>>> +  if (exit->flags & EDGE_TRUE_VALUE)
>>>> +    {
>>>> +      skip_e->flags |= EDGE_TRUE_VALUE;
>>>> +      new_e->flags |= EDGE_FALSE_VALUE;
>>>> +    }
>>>> +  else
>>>> +    {
>>>> +      skip_e->flags |= EDGE_FALSE_VALUE;
>>>> +      new_e->flags |= EDGE_TRUE_VALUE;
>>>> +    }
>>>> +
>>>> +  new_e->count = skip_bb->count;
>>>> +  new_e->probability = PROB_LIKELY;
>>>> +  new_e->count = apply_probability (skip_e->count, PROB_LIKELY);
>>>> +  skip_e->count -= new_e->count;
>>>> +  skip_e->probability = inverse_probability (PROB_LIKELY);
>>>> +
>>>> +  return new_e;
>>>> +}
>>>> +
>>>> +/* This returns the new bound for iterations given the original iteration
>>>> +   space in NITER, an arbitrary new bound BORDER, assumed to be some
>>>> +   comparison value with a different IV, the initial value GUARD_INIT of
>>>> +   that other IV, and the comparison code GUARD_CODE that compares
>>>> +   that other IV with BORDER.  We return an SSA name, and place any
>>>> +   necessary statements for that computation into *STMTS.
>>>> +
>>>> +   For example for such a loop:
>>>> +
>>>> +     for (i = beg, j = guard_init; i < end; i++, j++)
>>>> +       if (j < border)  // this is supposed to be true/false
>>>> +         ...
>>>> +
>>>> +   we want to return a new bound (on j) that makes the loop iterate
>>>> +   as long as the condition j < border stays true.  We also don't want
>>>> +   to iterate more often than the original loop, so we have to introduce
>>>> +   some cut-off as well (via min/max), effectively resulting in:
>>>> +
>>>> +     newend = min (end+guard_init-beg, border)
>>>> +     for (i = beg; j = guard_init; j < newend; i++, j++)
>>>> +       if (j < c)
>>>> +         ...
>>>> +
>>>> +   Depending on the direction of the IVs and if the exit tests
>>>> +   are strict or non-strict we need to use MIN or MAX,
>>>> +   and add or subtract 1.  This routine computes newend above.  */
>>>> +
>>>> +static tree
>>>> +compute_new_first_bound (gimple_seq *stmts, struct tree_niter_desc *niter,
>>>> +                        tree border,
>>>> +                        enum tree_code guard_code, tree guard_init)
>>>> +{
>>>> +  /* The niter structure contains the after-increment IV, we need
>>>> +     the loop-enter base, so subtract STEP once.  */
>>>> +  tree controlbase = force_gimple_operand (niter->control.base,
>>>> +                                          stmts, true, NULL_TREE);
>>>> +  tree controlstep = niter->control.step;
>>>> +  tree enddiff;
>>>> +  if (POINTER_TYPE_P (TREE_TYPE (controlbase)))
>>>> +    {
>>>> +      controlstep = gimple_build (stmts, NEGATE_EXPR,
>>>> +                                 TREE_TYPE (controlstep), controlstep);
>>>> +      enddiff = gimple_build (stmts, POINTER_PLUS_EXPR,
>>>> +                             TREE_TYPE (controlbase),
>>>> +                             controlbase, controlstep);
>>>> +    }
>>>> +  else
>>>> +    enddiff = gimple_build (stmts, MINUS_EXPR,
>>>> +                           TREE_TYPE (controlbase),
>>>> +                           controlbase, controlstep);
>>>> +
>>>> +  /* Compute beg-guard_init.  */
>>>> +  if (POINTER_TYPE_P (TREE_TYPE (enddiff)))
>>>> +    {
>>>> +      tree tem = gimple_convert (stmts, sizetype, guard_init);
>>>> +      tem = gimple_build (stmts, NEGATE_EXPR, sizetype, tem);
>>>> +      enddiff = gimple_build (stmts, POINTER_PLUS_EXPR,
>>>> +                             TREE_TYPE (enddiff),
>>>> +                             enddiff, tem);
>>>> +    }
>>>> +  else
>>>> +    enddiff = gimple_build (stmts, MINUS_EXPR, TREE_TYPE (enddiff),
>>>> +                           enddiff, guard_init);
>>>> +
>>>> +  /* Compute end-(beg-guard_init).  */
>>>> +  gimple_seq stmts2;
>>>> +  tree newbound = force_gimple_operand (niter->bound, &stmts2,
>>>> +                                       true, NULL_TREE);
>>>> +  gimple_seq_add_seq_without_update (stmts, stmts2);
>>>> +
>>>> +  if (POINTER_TYPE_P (TREE_TYPE (enddiff))
>>>> +      || POINTER_TYPE_P (TREE_TYPE (newbound)))
>>>> +    {
>>>> +      enddiff = gimple_convert (stmts, sizetype, enddiff);
>>>> +      enddiff = gimple_build (stmts, NEGATE_EXPR, sizetype, enddiff);
>>>> +      newbound = gimple_build (stmts, POINTER_PLUS_EXPR,
>>>> +                              TREE_TYPE (newbound),
>>>> +                              newbound, enddiff);
>>>> +    }
>>>> +  else
>>>> +    newbound = gimple_build (stmts, MINUS_EXPR, TREE_TYPE (enddiff),
>>>> +                            newbound, enddiff);
>>>> +
>>>> +  /* Depending on the direction of the IVs the new bound for the first
>>>> +     loop is the minimum or maximum of old bound and border.
>>>> +     Also, if the guard condition isn't strictly less or greater,
>>>> +     we need to adjust the bound.  */
>>>> +  int addbound = 0;
>>>> +  enum tree_code minmax;
>>>> +  if (niter->cmp == LT_EXPR)
>>>> +    {
>>>> +      /* GT and LE are the same, inverted.  */
>>>> +      if (guard_code == GT_EXPR || guard_code == LE_EXPR)
>>>> +       addbound = -1;
>>>> +      minmax = MIN_EXPR;
>>>> +    }
>>>> +  else
>>>> +    {
>>>> +      gcc_assert (niter->cmp == GT_EXPR);
>>>> +      if (guard_code == GE_EXPR || guard_code == LT_EXPR)
>>>> +       addbound = 1;
>>>> +      minmax = MAX_EXPR;
>>>> +    }
>>>> +
>>>> +  if (addbound)
>>>> +    {
>>>> +      tree type2 = TREE_TYPE (newbound);
>>>> +      if (POINTER_TYPE_P (type2))
>>>> +       type2 = sizetype;
>>>> +      newbound = gimple_build (stmts,
>>>> +                              POINTER_TYPE_P (TREE_TYPE (newbound))
>>>> +                              ? POINTER_PLUS_EXPR : PLUS_EXPR,
>>>> +                              TREE_TYPE (newbound),
>>>> +                              newbound,
>>>> +                              build_int_cst (type2, addbound));
>>>> +    }
>>>> +
>>>> +  tree newend = gimple_build (stmts, minmax, TREE_TYPE (border),
>>>> +                             border, newbound);
>>>> +  return newend;
>>>> +}
>>>> +
>>>> +/* Checks if LOOP contains an conditional block whose condition
>>>> +   depends on which side in the iteration space it is, and if so
>>>> +   splits the iteration space into two loops.  Returns true if the
>>>> +   loop was split.  NITER must contain the iteration descriptor for the
>>>> +   single exit of LOOP.  */
>>>> +
>>>> +static bool
>>>> +split_loop (struct loop *loop1, struct tree_niter_desc *niter)
>>>> +{
>>>> +  basic_block *bbs;
>>>> +  unsigned i;
>>>> +  bool changed = false;
>>>> +  tree guard_iv;
>>>> +  tree border;
>>>> +  affine_iv iv;
>>>> +
>>>> +  bbs = get_loop_body (loop1);
>>>> +
>>>> +  /* Find a splitting opportunity.  */
>>>> +  for (i = 0; i < loop1->num_nodes; i++)
>>>> +    if ((guard_iv = split_at_bb_p (loop1, bbs[i], &border, &iv)))
>>>> +      {
>>>> +       /* Handling opposite steps is not implemented yet.  Neither
>>>> +          is handling different step sizes.  */
>>>> +       if ((tree_int_cst_sign_bit (iv.step)
>>>> +            != tree_int_cst_sign_bit (niter->control.step))
>>>> +           || !tree_int_cst_equal (iv.step, niter->control.step))
>>>> +         continue;
>>>> +
>>>> +       /* Find a loop PHI node that defines guard_iv directly,
>>>> +          or create one doing that.  */
>>>> +       gphi *phi = find_or_create_guard_phi (loop1, guard_iv, &iv);
>>>> +       if (!phi)
>>>> +         continue;
>>>> +       gcond *guard_stmt = as_a<gcond *> (last_stmt (bbs[i]));
>>>> +       tree guard_init = PHI_ARG_DEF_FROM_EDGE (phi,
>>>> +                                                loop_preheader_edge (loop1));
>>>> +       enum tree_code guard_code = gimple_cond_code (guard_stmt);
>>>> +
>>>> +       /* Loop splitting is implemented by versioning the loop, placing
>>>> +          the new loop after the old loop, make the first loop iterate
>>>> +          as long as the conditional stays true (or false) and let the
>>>> +          second (new) loop handle the rest of the iterations.
>>>> +
>>>> +          First we need to determine if the condition will start being true
>>>> +          or false in the first loop.  */
>>>> +       bool initial_true;
>>>> +       switch (guard_code)
>>>> +         {
>>>> +           case LT_EXPR:
>>>> +           case LE_EXPR:
>>>> +             initial_true = !tree_int_cst_sign_bit (iv.step);
>>>> +             break;
>>>> +           case GT_EXPR:
>>>> +           case GE_EXPR:
>>>> +             initial_true = tree_int_cst_sign_bit (iv.step);
>>>> +             break;
>>>> +           default:
>>>> +             gcc_unreachable ();
>>>> +         }
>>>> +
>>>> +       /* Build a condition that will skip the first loop when the
>>>> +          guard condition won't ever be true (or false).  */
>>>> +       gimple_seq stmts2;
>>>> +       border = force_gimple_operand (border, &stmts2, true, NULL_TREE);
>>>> +       if (stmts2)
>>>> +         gsi_insert_seq_on_edge_immediate (loop_preheader_edge (loop1),
>>>> +                                           stmts2);
>>>> +       tree cond = build2 (guard_code, boolean_type_node, guard_init, border);
>>>> +       if (!initial_true)
>>>> +         cond = fold_build1 (TRUTH_NOT_EXPR, boolean_type_node, cond);
>>>> +
>>>> +       /* Now version the loop, placing loop2 after loop1 connecting
>>>> +          them, and fix up SSA form for that.  */
>>>> +       initialize_original_copy_tables ();
>>>> +       basic_block cond_bb;
>>>> +       struct loop *loop2 = loop_version (loop1, cond, &cond_bb,
>>>> +                                          REG_BR_PROB_BASE, REG_BR_PROB_BASE,
>>>> +                                          REG_BR_PROB_BASE, true);
>>>> +       gcc_assert (loop2);
>>>> +       update_ssa (TODO_update_ssa);
>>>> +
>>>> +       edge new_e = connect_loops (loop1, loop2);
>>>> +       connect_loop_phis (loop1, loop2, new_e);
>>>> +
>>>> +       /* The iterations of the second loop is now already
>>>> +          exactly those that the first loop didn't do, but the
>>>> +          iteration space of the first loop is still the original one.
>>>> +          Compute the new bound for the guarding IV and patch the
>>>> +          loop exit to use it instead of original IV and bound.  */
>>>> +       gimple_seq stmts = NULL;
>>>> +       tree newend = compute_new_first_bound (&stmts, niter, border,
>>>> +                                              guard_code, guard_init);
>>>> +       if (stmts)
>>>> +         gsi_insert_seq_on_edge_immediate (loop_preheader_edge (loop1),
>>>> +                                           stmts);
>>>> +       tree guard_next = PHI_ARG_DEF_FROM_EDGE (phi, loop_latch_edge (loop1));
>>>> +       patch_loop_exit (loop1, guard_stmt, guard_next, newend, initial_true);
>>>> +
>>>> +       /* Finally patch out the two copies of the condition to be always
>>>> +          true/false (or opposite).  */
>>>> +       gcond *force_true = as_a<gcond *> (last_stmt (bbs[i]));
>>>> +       gcond *force_false = as_a<gcond *> (last_stmt (get_bb_copy (bbs[i])));
>>>> +       if (!initial_true)
>>>> +         std::swap (force_true, force_false);
>>>> +       gimple_cond_make_true (force_true);
>>>> +       gimple_cond_make_false (force_false);
>>>> +       update_stmt (force_true);
>>>> +       update_stmt (force_false);
>>>> +
>>>> +       free_original_copy_tables ();
>>>> +
>>>> +       /* We destroyed LCSSA form above.  Eventually we might be able
>>>> +          to fix it on the fly, for now simply punt and use the helper.  */
>>>> +       rewrite_into_loop_closed_ssa_1 (NULL, 0, SSA_OP_USE, loop1);
>>>> +
>>>> +       changed = true;
>>>> +       if (dump_file && (dump_flags & TDF_DETAILS))
>>>> +         fprintf (dump_file, ";; Loop split.\n");
>>>> +
>>>> +       /* Only deal with the first opportunity.  */
>>>> +       break;
>>>> +      }
>>>> +
>>>> +  free (bbs);
>>>> +  return changed;
>>>> +}
>>>> +
>>>> +/* Main entry point.  Perform loop splitting on all suitable loops.  */
>>>> +
>>>> +static unsigned int
>>>> +tree_ssa_split_loops (void)
>>>> +{
>>>> +  struct loop *loop;
>>>> +  bool changed = false;
>>>> +
>>>> +  gcc_assert (scev_initialized_p ());
>>>> +  FOR_EACH_LOOP (loop, 0)
>>>> +    loop->aux = NULL;
>>>> +
>>>> +  /* Go through all loops starting from innermost.  */
>>>> +  FOR_EACH_LOOP (loop, LI_FROM_INNERMOST)
>>>> +    {
>>>> +      struct tree_niter_desc niter;
>>>> +      if (loop->aux)
>>>> +       {
>>>> +         /* If any of our inner loops was split, don't split us,
>>>> +            and mark our containing loop as having had splits as well.  */
>>>> +         loop_outer (loop)->aux = loop;
>>>> +         continue;
>>>> +       }
>>>> +
>>>> +      if (single_exit (loop)
>>>> +         /* ??? We could handle non-empty latches when we split
>>>> +            the latch edge (not the exit edge), and put the new
>>>> +            exit condition in the new block.  OTOH this executes some
>>>> +            code unconditionally that might have been skipped by the
>>>> +            original exit before.  */
>>>> +         && empty_block_p (loop->latch)
>>>> +         && !optimize_loop_for_size_p (loop)
>>>> +         && number_of_iterations_exit (loop, single_exit (loop), &niter,
>>>> +                                       false, true)
>>>> +         && niter.cmp != ERROR_MARK
>>>> +         /* We can't yet handle loops controlled by a != predicate.  */
>>>> +         && niter.cmp != NE_EXPR)
>>>> +       {
>>>> +         if (split_loop (loop, &niter))
>>>> +           {
>>>> +             /* Mark our containing loop as having had some split inner
>>>> +                loops.  */
>>>> +             loop_outer (loop)->aux = loop;
>>>> +             changed = true;
>>>> +           }
>>>> +       }
>>>> +    }
>>>> +
>>>> +  FOR_EACH_LOOP (loop, 0)
>>>> +    loop->aux = NULL;
>>>> +
>>>> +  if (changed)
>>>> +    return TODO_cleanup_cfg;
>>>> +  return 0;
>>>> +}
>>>> +
>>>> +/* Loop splitting pass.  */
>>>> +
>>>> +namespace {
>>>> +
>>>> +const pass_data pass_data_loop_split =
>>>> +{
>>>> +  GIMPLE_PASS, /* type */
>>>> +  "lsplit", /* name */
>>>> +  OPTGROUP_LOOP, /* optinfo_flags */
>>>> +  TV_LOOP_SPLIT, /* tv_id */
>>>> +  PROP_cfg, /* properties_required */
>>>> +  0, /* properties_provided */
>>>> +  0, /* properties_destroyed */
>>>> +  0, /* todo_flags_start */
>>>> +  0, /* todo_flags_finish */
>>>> +};
>>>> +
>>>> +class pass_loop_split : public gimple_opt_pass
>>>> +{
>>>> +public:
>>>> +  pass_loop_split (gcc::context *ctxt)
>>>> +    : gimple_opt_pass (pass_data_loop_split, ctxt)
>>>> +  {}
>>>> +
>>>> +  /* opt_pass methods: */
>>>> +  virtual bool gate (function *) { return flag_split_loops != 0; }
>>>> +  virtual unsigned int execute (function *);
>>>> +
>>>> +}; // class pass_loop_split
>>>> +
>>>> +unsigned int
>>>> +pass_loop_split::execute (function *fun)
>>>> +{
>>>> +  if (number_of_loops (fun) <= 1)
>>>> +    return 0;
>>>> +
>>>> +  return tree_ssa_split_loops ();
>>>> +}
>>>> +
>>>> +} // anon namespace
>>>> +
>>>> +gimple_opt_pass *
>>>> +make_pass_loop_split (gcc::context *ctxt)
>>>> +{
>>>> +  return new pass_loop_split (ctxt);
>>>> +}
>>>> Index: doc/invoke.texi
>>>> ===================================================================
>>>> --- doc/invoke.texi     (revision 231115)
>>>> +++ doc/invoke.texi     (working copy)
>>>> @@ -446,7 +446,7 @@ Objective-C and Objective-C++ Dialects}.
>>>>  -fselective-scheduling -fselective-scheduling2 @gol
>>>>  -fsel-sched-pipelining -fsel-sched-pipelining-outer-loops @gol
>>>>  -fsemantic-interposition -fshrink-wrap -fsignaling-nans @gol
>>>> --fsingle-precision-constant -fsplit-ivs-in-unroller @gol
>>>> +-fsingle-precision-constant -fsplit-ivs-in-unroller -fsplit-loops@gol
>>>>  -fsplit-paths @gol
>>>>  -fsplit-wide-types -fssa-backprop -fssa-phiopt @gol
>>>>  -fstack-protector -fstack-protector-all -fstack-protector-strong @gol
>>>> @@ -10197,6 +10197,11 @@ Enabled with @option{-fprofile-use}.
>>>>  Enables the loop invariant motion pass in the RTL loop optimizer.  Enabled
>>>>  at level @option{-O1}
>>>>
>>>> +@item -fsplit-loops
>>>> +@opindex fsplit-loops
>>>> +Split a loop into two if it contains a condition that's always true
>>>> +for one side of the iteration space and false for the other.
>>>> +
>>>>  @item -funswitch-loops
>>>>  @opindex funswitch-loops
>>>>  Move branches with loop invariant conditions out of the loop, with duplicates
>>>> Index: doc/passes.texi
>>>> ===================================================================
>>>> --- doc/passes.texi     (revision 231115)
>>>> +++ doc/passes.texi     (working copy)
>>>> @@ -484,6 +484,12 @@ out of the loops.  To achieve this, a du
>>>>  each possible outcome of conditional jump(s).  The pass is implemented in
>>>>  @file{tree-ssa-loop-unswitch.c}.
>>>>
>>>> +Loop splitting.  If a loop contains a conditional statement that is
>>>> +always true for one part of the iteration space and false for the other
>>>> +this pass splits the loop into two, one dealing with one side the other
>>>> +only with the other, thereby removing one inner-loop conditional.  The
>>>> +pass is implemented in @file{tree-ssa-loop-split.c}.
>>>> +
>>>>  The optimizations also use various utility functions contained in
>>>>  @file{tree-ssa-loop-manip.c}, @file{cfgloop.c}, @file{cfgloopanal.c} and
>>>>  @file{cfgloopmanip.c}.
>>>> Index: testsuite/gcc.dg/loop-split.c
>>>> ===================================================================
>>>> --- testsuite/gcc.dg/loop-split.c       (revision 0)
>>>> +++ testsuite/gcc.dg/loop-split.c       (working copy)
>>>> @@ -0,0 +1,147 @@
>>>> +/* { dg-do run } */
>>>> +/* { dg-options "-O2 -fsplit-loops -fdump-tree-lsplit-details" } */
>>>> +
>>>> +#ifdef __cplusplus
>>>> +extern "C" int printf (const char *, ...);
>>>> +extern "C" void abort (void);
>>>> +#else
>>>> +extern int printf (const char *, ...);
>>>> +extern void abort (void);
>>>> +#endif
>>>> +
>>>> +/* Define TRACE to 1 or 2 to get detailed tracing.
>>>> +   Define SINGLE_TEST to 1 or 2 to get a simple routine with
>>>> +   just one loop, called only one time or with multiple parameters,
>>>> +   to make debugging easier.  */
>>>> +#ifndef TRACE
>>>> +#define TRACE 0
>>>> +#endif
>>>> +
>>>> +#define loop(beg,step,beg2,cond1,cond2) \
>>>> +    do \
>>>> +      { \
>>>> +       sum = 0; \
>>>> +        for (i = (beg), j = (beg2); (cond1); i+=(step),j+=(step)) \
>>>> +          { \
>>>> +            if (cond2) { \
>>>> +             if (TRACE > 1) printf ("a: %d %d\n", i, j); \
>>>> +              sum += a[i]; \
>>>> +           } else { \
>>>> +             if (TRACE > 1) printf ("b: %d %d\n", i, j); \
>>>> +              sum += b[i]; \
>>>> +           } \
>>>> +          } \
>>>> +       if (TRACE > 0) printf ("sum: %d\n", sum); \
>>>> +       check = check * 47 + sum; \
>>>> +      } while (0)
>>>> +
>>>> +#ifndef SINGLE_TEST
>>>> +unsigned __attribute__((noinline, noclone)) dotest (int beg, int end, int step,
>>>> +                                              int c, int *a, int *b, int beg2)
>>>> +{
>>>> +  unsigned check = 0;
>>>> +  int sum;
>>>> +  int i, j;
>>>> +  loop (beg, 1, beg2, i < end, j < c);
>>>> +  loop (beg, 1, beg2, i <= end, j < c);
>>>> +  loop (beg, 1, beg2, i < end, j <= c);
>>>> +  loop (beg, 1, beg2, i <= end, j <= c);
>>>> +  loop (beg, 1, beg2, i < end, j > c);
>>>> +  loop (beg, 1, beg2, i <= end, j > c);
>>>> +  loop (beg, 1, beg2, i < end, j >= c);
>>>> +  loop (beg, 1, beg2, i <= end, j >= c);
>>>> +  beg2 += end-beg;
>>>> +  loop (end, -1, beg2, i >= beg, j >= c);
>>>> +  loop (end, -1, beg2, i >= beg, j > c);
>>>> +  loop (end, -1, beg2, i > beg, j >= c);
>>>> +  loop (end, -1, beg2, i > beg, j > c);
>>>> +  loop (end, -1, beg2, i >= beg, j <= c);
>>>> +  loop (end, -1, beg2, i >= beg, j < c);
>>>> +  loop (end, -1, beg2, i > beg, j <= c);
>>>> +  loop (end, -1, beg2, i > beg, j < c);
>>>> +  return check;
>>>> +}
>>>> +
>>>> +#else
>>>> +
>>>> +int __attribute__((noinline, noclone)) f (int beg, int end, int step,
>>>> +                                         int c, int *a, int *b, int beg2)
>>>> +{
>>>> +  int sum = 0;
>>>> +  int i, j;
>>>> +  //for (i = beg, j = beg2; i < end; i += 1, j++ /*step*/)
>>>> +  for (i = end, j = beg2 + (end-beg); i > beg; i += -1, j-- /*step*/)
>>>> +    {
>>>> +      // i - j == X --> i = X + j
>>>> +      // --> i < end == X+j < end == j < end - X
>>>> +      // --> newend = end - (i_init - j_init)
>>>> +      // j < end-X && j < c --> j < min(end-X,c)
>>>> +      // j < end-X && j <= c --> j <= min(end-X-1,c) or j < min(end-X,c+1{OF!})
>>>> +      //if (j < c)
>>>> +      if (j >= c)
>>>> +       printf ("a: %d %d\n", i, j);
>>>> +      /*else
>>>> +       printf ("b: %d %d\n", i, j);*/
>>>> +       /*sum += a[i];
>>>> +      else
>>>> +       sum += b[i];*/
>>>> +    }
>>>> +  return sum;
>>>> +}
>>>> +
>>>> +int __attribute__((noinline, noclone)) f2 (int *beg, int *end, int step,
>>>> +                                         int *c, int *a, int *b, int *beg2)
>>>> +{
>>>> +  int sum = 0;
>>>> +  int *i, *j;
>>>> +  for (i = beg, j = beg2; i < end; i += 1, j++ /*step*/)
>>>> +    {
>>>> +      if (j <= c)
>>>> +       printf ("%d %d\n", i - beg, j - beg);
>>>> +       /*sum += a[i];
>>>> +      else
>>>> +       sum += b[i];*/
>>>> +    }
>>>> +  return sum;
>>>> +}
>>>> +#endif
>>>> +
>>>> +extern int printf (const char *, ...);
>>>> +
>>>> +int main ()
>>>> +{
>>>> +  int a[] = {0,0,0,0,0, 1,2,3,4,5,6,7,8,9,          0,0,0,0,0};
>>>> +  int b[] = {0,0,0,0,0, -1,-2,-3,-4,-5,-6,-7,-8,-9, 0,0,0,0,0,};
>>>> +  int c;
>>>> +  int diff = 0;
>>>> +  unsigned check = 0;
>>>> +#if defined(SINGLE_TEST) && (SINGLE_TEST == 1)
>>>> +  //dotest (0, 9, 1, -1, a+5, b+5, -1);
>>>> +  //return 0;
>>>> +  f (0, 9, 1, 5, a+5, b+5, -1);
>>>> +  return 0;
>>>> +#endif
>>>> +  for (diff = -5; diff <= 5; diff++)
>>>> +    {
>>>> +      for (c = -1; c <= 10; c++)
>>>> +       {
>>>> +#ifdef SINGLE_TEST
>>>> +         int s = f (0, 9, 1, c, a+5, b+5, diff);
>>>> +         //int s = f2 (a+0, a+9, 1, a+c, a+5, b+5, a+diff);
>>>> +         printf ("%d ", s);
>>>> +#else
>>>> +         if (TRACE > 0)
>>>> +           printf ("check %d %d\n", c, diff);
>>>> +         check = check * 51 + dotest (0, 9, 1, c, a+5, b+5, diff);
>>>> +#endif
>>>> +       }
>>>> +      //printf ("\n");
>>>> +    }
>>>> +  //printf ("%u\n", check);
>>>> +  if (check != 3213344948)
>>>> +    abort ();
>>>> +  return 0;
>>>> +}
>>>> +
>>>> +/* All 16 loops in dotest should be split.  */
>>>> +/* { dg-final { scan-tree-dump-times "Loop split" 16 "lsplit" } } */
diff mbox

Patch

diff --git a/gcc/passes.def b/gcc/passes.def
index c327900..e8d6ea6 100644
--- a/gcc/passes.def
+++ b/gcc/passes.def
@@ -262,8 +262,8 @@  along with GCC; see the file COPYING3.  If not see
          NEXT_PASS (pass_copy_prop);
          NEXT_PASS (pass_dce);
          NEXT_PASS (pass_tree_unswitch);
-         NEXT_PASS (pass_scev_cprop);
          NEXT_PASS (pass_loop_split);
+         NEXT_PASS (pass_scev_cprop);
          NEXT_PASS (pass_record_bounds);
          NEXT_PASS (pass_loop_distribution);
          NEXT_PASS (pass_copy_prop);
diff --git a/gcc/tree-ssa-loop-split.c b/gcc/tree-ssa-loop-split.c
index 5411530..e72ef19 100644
--- a/gcc/tree-ssa-loop-split.c
+++ b/gcc/tree-ssa-loop-split.c
@@ -592,7 +592,11 @@  tree_ssa_split_loops (void)

   gcc_assert (scev_initialized_p ());
   FOR_EACH_LOOP (loop, 0)
-    loop->aux = NULL;
+    {
+      loop->aux = NULL;
+      if (loop_outer (loop))
+       loop_outer (loop)->aux = NULL;
+    }

   /* Go through all loops starting from innermost.  */
   FOR_EACH_LOOP (loop, LI_FROM_INNERMOST)
@@ -631,7 +635,11 @@  tree_ssa_split_loops (void)
     }

   FOR_EACH_LOOP (loop, 0)
-    loop->aux = NULL;
+    {
+      loop->aux = NULL;
+      if (loop_outer (loop))
+       loop_outer (loop)->aux = NULL;
+    }

   if (changed)
     return TODO_cleanup_cfg;