diff mbox

[v2,2/2] mtd: nand: Add support for Arasan Nand Flash Controller

Message ID 1432043357-558-2-git-send-email-punnaia@xilinx.com
State Changes Requested
Headers show

Commit Message

Punnaiah Choudary Kalluri May 19, 2015, 1:49 p.m. UTC
Added the basic driver for Arasan Nand Flash Controller used in
Zynq UltraScale+ MPSoC. It supports only Hw Ecc and upto 24bit
correction.

Signed-off-by: Punnaiah Choudary Kalluri <punnaia@xilinx.com>
Tested-by: Michal Simek <michal.simek@xilinx.com>
---
Changes in v2:
- Added missing of.h to avoid kbuild system report error
---
 drivers/mtd/nand/Kconfig      |    7 +
 drivers/mtd/nand/Makefile     |    1 +
 drivers/mtd/nand/arasan_nfc.c |  862 +++++++++++++++++++++++++++++++++++++++++
 3 files changed, 870 insertions(+), 0 deletions(-)
 create mode 100644 drivers/mtd/nand/arasan_nfc.c

Comments

Brian Norris May 20, 2015, 8:49 p.m. UTC | #1
On Tue, May 19, 2015 at 07:19:17PM +0530, Punnaiah Choudary Kalluri wrote:
> Added the basic driver for Arasan Nand Flash Controller used in
> Zynq UltraScale+ MPSoC. It supports only Hw Ecc and upto 24bit
> correction.
> 
> Signed-off-by: Punnaiah Choudary Kalluri <punnaia@xilinx.com>
> Tested-by: Michal Simek <michal.simek@xilinx.com>
> ---
> Changes in v2:
> - Added missing of.h to avoid kbuild system report error
> ---
>  drivers/mtd/nand/Kconfig      |    7 +
>  drivers/mtd/nand/Makefile     |    1 +
>  drivers/mtd/nand/arasan_nfc.c |  862 +++++++++++++++++++++++++++++++++++++++++
>  3 files changed, 870 insertions(+), 0 deletions(-)
>  create mode 100644 drivers/mtd/nand/arasan_nfc.c
> 
> diff --git a/drivers/mtd/nand/Kconfig b/drivers/mtd/nand/Kconfig
> index 5897d8d..64e497c 100644
> --- a/drivers/mtd/nand/Kconfig
> +++ b/drivers/mtd/nand/Kconfig
> @@ -530,4 +530,11 @@ config MTD_NAND_HISI504
>  	help
>  	  Enables support for NAND controller on Hisilicon SoC Hip04.
>  
> +config MTD_NAND_ARASAN
> +	tristate "Support for Arasan Nand Flash controller"
> +	depends on MTD_NAND
> +	help
> +	  Enables the driver for the Arasan Nand Flash controller on
> +	  Zynq UltraScale+ MPSoC.
> +
>  endif # MTD_NAND
> diff --git a/drivers/mtd/nand/Makefile b/drivers/mtd/nand/Makefile
> index 582bbd05..fd863ea 100644
> --- a/drivers/mtd/nand/Makefile
> +++ b/drivers/mtd/nand/Makefile
> @@ -52,5 +52,6 @@ obj-$(CONFIG_MTD_NAND_XWAY)		+= xway_nand.o
>  obj-$(CONFIG_MTD_NAND_BCM47XXNFLASH)	+= bcm47xxnflash/
>  obj-$(CONFIG_MTD_NAND_SUNXI)		+= sunxi_nand.o
>  obj-$(CONFIG_MTD_NAND_HISI504)	        += hisi504_nand.o
> +obj-$(CONFIG_MTD_NAND_ARASAN)		+= arasan_nfc.o
>  
>  nand-objs := nand_base.o nand_bbt.o nand_timings.o
> diff --git a/drivers/mtd/nand/arasan_nfc.c b/drivers/mtd/nand/arasan_nfc.c
> new file mode 100644
> index 0000000..5736864
> --- /dev/null
> +++ b/drivers/mtd/nand/arasan_nfc.c
> @@ -0,0 +1,862 @@
> +/*
> + * Arasan Nand Flash Controller Driver
> + *
> + * Copyright (C) 2014 - 2015 Xilinx, Inc.
> + *
> + * This program is free software; you can redistribute it and/or modify it under
> + * the terms of the GNU General Public License version 2 as published by the
> + * Free Software Foundation; either version 2 of the License, or (at your
> + * option) any later version.
> + */
> +
> +#include <linux/delay.h>
> +#include <linux/dma-mapping.h>
> +#include <linux/interrupt.h>
> +#include <linux/module.h>
> +#include <linux/mtd/mtd.h>
> +#include <linux/mtd/nand.h>
> +#include <linux/mtd/partitions.h>
> +#include <linux/of.h>
> +#include <linux/of_mtd.h>
> +#include <linux/platform_device.h>
> +
> +#define DRIVER_NAME			"arasan_nfc"
> +#define EVNT_TIMEOUT			1000
> +#define STATUS_TIMEOUT			2000
> +
> +#define PKT_OFST			0x00
> +#define MEM_ADDR1_OFST			0x04
> +#define MEM_ADDR2_OFST			0x08
> +#define CMD_OFST			0x0C
> +#define PROG_OFST			0x10
> +#define INTR_STS_EN_OFST		0x14
> +#define INTR_SIG_EN_OFST		0x18
> +#define INTR_STS_OFST			0x1C
> +#define READY_STS_OFST			0x20
> +#define DMA_ADDR1_OFST			0x24
> +#define FLASH_STS_OFST			0x28
> +#define DATA_PORT_OFST			0x30
> +#define ECC_OFST			0x34
> +#define ECC_ERR_CNT_OFST		0x38
> +#define ECC_SPR_CMD_OFST		0x3C
> +#define ECC_ERR_CNT_1BIT_OFST		0x40
> +#define ECC_ERR_CNT_2BIT_OFST		0x44
> +#define DMA_ADDR0_OFST			0x50
> +
> +#define PKT_CNT_SHIFT			12
> +
> +#define ECC_ENABLE			BIT(31)
> +#define DMA_EN_MASK			GENMASK(27, 26)
> +#define DMA_ENABLE			0x2
> +#define DMA_EN_SHIFT			26
> +#define PAGE_SIZE_MASK			GENMASK(25, 23)
> +#define PAGE_SIZE_SHIFT			23
> +#define PAGE_SIZE_512			0
> +#define PAGE_SIZE_1K			5
> +#define PAGE_SIZE_2K			1
> +#define PAGE_SIZE_4K			2
> +#define PAGE_SIZE_8K			3
> +#define PAGE_SIZE_16K			4
> +#define CMD2_SHIFT			8
> +#define ADDR_CYCLES_SHIFT		28
> +
> +#define XFER_COMPLETE			BIT(2)
> +#define READ_READY			BIT(1)
> +#define WRITE_READY			BIT(0)
> +#define MBIT_ERROR			BIT(3)
> +#define ERR_INTRPT			BIT(4)
> +
> +#define PROG_PGRD			BIT(0)
> +#define PROG_ERASE			BIT(2)
> +#define PROG_STATUS			BIT(3)
> +#define PROG_PGPROG			BIT(4)
> +#define PROG_RDID			BIT(6)
> +#define PROG_RDPARAM			BIT(7)
> +#define PROG_RST			BIT(8)
> +
> +#define ONFI_STATUS_FAIL		BIT(0)
> +#define ONFI_STATUS_READY		BIT(6)
> +
> +#define PG_ADDR_SHIFT			16
> +#define BCH_MODE_SHIFT			25
> +#define BCH_EN_SHIFT			27
> +#define ECC_SIZE_SHIFT			16
> +
> +#define MEM_ADDR_MASK			GENMASK(7, 0)
> +#define BCH_MODE_MASK			GENMASK(27, 25)
> +
> +#define CS_MASK				GENMASK(31, 30)
> +#define CS_SHIFT			30
> +
> +#define PAGE_ERR_CNT_MASK		GENMASK(16, 8)
> +#define PKT_ERR_CNT_MASK		GENMASK(7, 0)
> +
> +#define ONFI_ID_LEN			8
> +#define TEMP_BUF_SIZE			512
> +
> +/**
> + * struct anfc_ecc_matrix - Defines ecc information storage format
> + * @pagesize:		Page size in bytes.
> + * @codeword_size:	Code word size information.
> + * @eccbits:		Number of ecc bits.
> + * @bch:		Bch / Hamming mode enable/disable.
> + * @eccsize:		Ecc size information.
> + */
> +struct anfc_ecc_matrix {
> +	u32 pagesize;
> +	u32 codeword_size;
> +	u8 eccbits;
> +	u8 bch;
> +	u16 eccsize;
> +};
> +
> +static const struct anfc_ecc_matrix ecc_matrix[] = {
> +	{512,	512,	1,	0,	0x3},
> +	{512,	512,	4,	1,	0x7},
> +	{512,	512,	8,	1,	0xD},
> +	/* 2K byte page */
> +	{2048,	512,	1,	0,	0xC},
> +	{2048,	512,	4,	1,	0x1A},
> +	{2048,	512,	8,	1,	0x34},
> +	{2048,	512,	12,	1,	0x4E},
> +	{2048,	1024,	24,	1,	0x54},
> +	/* 4K byte page */
> +	{4096,	512,	1,	0,	0x18},
> +	{4096,	512,	4,	1,	0x34},
> +	{4096,	512,	8,	1,	0x68},
> +	{4096,	512,	12,	1,	0x9C},
> +	{4096,	1024,	4,	1,	0xA8},
> +	/* 8K byte page */
> +	{8192,	512,	1,	0,	0x30},
> +	{8192,	512,	4,	1,	0x68},
> +	{8192,	512,	8,	1,	0xD0},
> +	{8192,	512,	12,	1,	0x138},
> +	{8192,	1024,	24,	1,	0x150},
> +	/* 16K byte page */
> +	{16384,	512,	1,	0,	0x60},
> +	{16384,	512,	4,	1,	0xD0},
> +	{16384,	512,	8,	1,	0x1A0},
> +	{16384,	512,	12,	1,	0x270},
> +	{16384,	1024,	24,	1,	0x2A0}
> +};
> +
> +/**
> + * struct anfc - Defines the Arasan NAND flash driver instance
> + * @chip:		NAND chip information structure.
> + * @mtd:		MTD information structure.
> + * @parts:		Pointer to the mtd_partition structure.
> + * @dev:		Pointer to the device structure.
> + * @base:		Virtual address of the NAND flash device.
> + * @curr_cmd:		Current command issued.
> + * @dma:		Dma enable/disable.
> + * @bch:		Bch / Hamming mode enable/disable.
> + * @err:		Error identifier.
> + * @iswriteoob:		Identifies if oob write operation is required.
> + * @buf:		Buffer used for read/write byte operations.
> + * @raddr_cycles:	Row address cycle information.
> + * @caddr_cycles:	Column address cycle information.
> + * @irq:		irq number
> + * @page:		Page address to be use for write oob operations.
> + * @pktsize:		Packet size for read / write operation.
> + * @bufshift:		Variable used for indexing buffer operation
> + * @rdintrmask:		Interrupt mask value for read operation.
> + * @bufrdy:		Completion event for buffer ready.
> + * @xfercomp:		Completion event for transfer complete.
> + * @ecclayout:		Ecc layout object
> + */
> +struct anfc {
> +	struct nand_chip chip;
> +	struct mtd_info mtd;
> +	struct mtd_partition *parts;

^^ This field is unused.

> +	struct device *dev;
> +
> +	void __iomem *base;
> +	int curr_cmd;
> +
> +	bool dma;
> +	bool bch;
> +	bool err;
> +	bool iswriteoob;
> +
> +	u8 buf[TEMP_BUF_SIZE];
> +
> +	u16 raddr_cycles;
> +	u16 caddr_cycles;
> +
> +	u32 irq;
> +	u32 page;
> +	u32 pktsize;
> +	u32 bufshift;
> +	u32 rdintrmask;
> +
> +	struct completion bufrdy;
> +	struct completion xfercomp;
> +	struct nand_ecclayout ecclayout;
> +};
> +
> +static u8 anfc_page(u32 pagesize)
> +{
> +	switch (pagesize) {
> +	case 512:
> +		return PAGE_SIZE_512;
> +	case 2048:
> +		return PAGE_SIZE_2K;
> +	case 4096:
> +		return PAGE_SIZE_4K;
> +	case 8192:
> +		return PAGE_SIZE_8K;
> +	case 16384:
> +		return PAGE_SIZE_16K;
> +	case 1024:
> +		return PAGE_SIZE_1K;
> +	default:
> +		break;
> +	}
> +
> +	return 0;
> +}
> +
> +static inline void anfc_enable_intrs(struct anfc *nfc, u32 val)
> +{
> +	writel(val, nfc->base + INTR_STS_EN_OFST);
> +	writel(val, nfc->base + INTR_SIG_EN_OFST);
> +}
> +
> +static int anfc_wait_for_event(struct anfc *nfc, u32 event)
> +{
> +	struct completion *comp;
> +	int ret;
> +
> +	if (event == XFER_COMPLETE)
> +		comp = &nfc->xfercomp;
> +	else
> +		comp = &nfc->bufrdy;
> +
> +	ret = wait_for_completion_timeout(comp, msecs_to_jiffies(EVNT_TIMEOUT));
> +
> +	return ret;
> +}
> +
> +static inline void anfc_setpktszcnt(struct anfc *nfc, u32 pktsize,
> +				    u32 pktcount)
> +{
> +	writel(pktsize | (pktcount << PKT_CNT_SHIFT), nfc->base + PKT_OFST);
> +}
> +
> +static inline void anfc_set_eccsparecmd(struct anfc *nfc, u8 cmd1, u8 cmd2)
> +{
> +	writel(cmd1 | (cmd2 << CMD2_SHIFT) |
> +	       (nfc->caddr_cycles << ADDR_CYCLES_SHIFT),
> +	       nfc->base + ECC_SPR_CMD_OFST);
> +}
> +
> +static void anfc_setpagecoladdr(struct anfc *nfc, u32 page, u16 col)
> +{
> +	u32 val;
> +
> +	writel(col | (page << PG_ADDR_SHIFT), nfc->base + MEM_ADDR1_OFST);
> +
> +	val = readl(nfc->base + MEM_ADDR2_OFST);
> +	val = (val & ~MEM_ADDR_MASK) |
> +	      ((page >> PG_ADDR_SHIFT) & MEM_ADDR_MASK);
> +	writel(val, nfc->base + MEM_ADDR2_OFST);
> +}
> +
> +static void anfc_prepare_cmd(struct anfc *nfc, u8 cmd1, u8 cmd2,
> +			     u8 dmamode, u32 pagesize, u8 addrcycles)
> +{
> +	u32 regval;
> +
> +	regval = cmd1 | (cmd2 << CMD2_SHIFT);
> +	if (dmamode && nfc->dma)
> +		regval |= DMA_ENABLE << DMA_EN_SHIFT;
> +	if (addrcycles)
> +		regval |= addrcycles << ADDR_CYCLES_SHIFT;
> +	if (pagesize)
> +		regval |= anfc_page(pagesize) << PAGE_SIZE_SHIFT;
> +	writel(regval, nfc->base + CMD_OFST);
> +}
> +
> +static int anfc_device_ready(struct mtd_info *mtd,
> +			     struct nand_chip *chip)
> +{
> +	u8 status;
> +	u32 timeout = STATUS_TIMEOUT;
> +
> +	while (timeout--) {
> +		chip->cmdfunc(mtd, NAND_CMD_STATUS, 0, 0);
> +		status = chip->read_byte(mtd);
> +		if (status & ONFI_STATUS_READY) {
> +			if (status & ONFI_STATUS_FAIL)
> +				return NAND_STATUS_FAIL;
> +			return 0;
> +		}
> +	}

No, we can't just do a busy-wait loop at an arbitrary count of 2000
cycles. Can you do something that's interrupt-based? Or at least time
yourself with jiffies or something similar.

> +
> +	pr_err("%s timed out\n", __func__);
> +	return -ETIMEDOUT;
> +}
> +
> +static int anfc_read_oob(struct mtd_info *mtd, struct nand_chip *chip,
> +			 int page)
> +{
> +	struct anfc *nfc = container_of(mtd, struct anfc, mtd);
> +
> +	chip->cmdfunc(mtd, NAND_CMD_READOOB, 0, page);
> +	if (nfc->dma)
> +		nfc->rdintrmask = XFER_COMPLETE;
> +	else
> +		nfc->rdintrmask = READ_READY;
> +	chip->read_buf(mtd, chip->oob_poi, mtd->oobsize);
> +
> +	return 0;
> +}
> +
> +static int anfc_write_oob(struct mtd_info *mtd, struct nand_chip *chip,
> +			  int page)
> +{
> +	struct anfc *nfc = container_of(mtd, struct anfc, mtd);
> +
> +	nfc->iswriteoob = true;
> +	chip->cmdfunc(mtd, NAND_CMD_SEQIN, mtd->writesize, page);
> +	chip->write_buf(mtd, chip->oob_poi, mtd->oobsize);
> +	nfc->iswriteoob = false;
> +
> +	return 0;
> +}
> +
> +static void anfc_read_buf(struct mtd_info *mtd, uint8_t *buf, int len)
> +{
> +	u32 i, pktcount, buf_rd_cnt = 0, pktsize;
> +	u32 *bufptr = (u32 *)buf;
> +	struct anfc *nfc = container_of(mtd, struct anfc, mtd);
> +	dma_addr_t paddr = 0;
> +
> +	if (nfc->curr_cmd == NAND_CMD_READ0) {
> +		pktsize = nfc->pktsize;
> +		if (mtd->writesize % pktsize)
> +			pktcount = mtd->writesize / pktsize + 1;
> +		else
> +			pktcount = mtd->writesize / pktsize;
> +	} else {
> +		pktsize = len;
> +		pktcount = 1;
> +	}
> +
> +	anfc_setpktszcnt(nfc, pktsize, pktcount);
> +
> +	if (nfc->dma) {
> +		paddr = dma_map_single(nfc->dev, buf, len, DMA_FROM_DEVICE);
> +		if (dma_mapping_error(nfc->dev, paddr)) {
> +			dev_err(nfc->dev, "Read buffer mapping error");
> +			return;
> +		}
> +		writel(paddr, nfc->base + DMA_ADDR0_OFST);
> +		writel(paddr >> 32, nfc->base + DMA_ADDR1_OFST);

drivers/mtd/nand/arasan_nfc.c: In function ‘anfc_read_buf’:
drivers/mtd/nand/arasan_nfc.c:355:3: warning: right shift count >= width of type [enabled by default]
   writel(paddr >> 32, nfc->base + DMA_ADDR1_OFST);
   ^

How about using upper_32_bits() and lower_32_bits()?

> +		anfc_enable_intrs(nfc, nfc->rdintrmask);
> +		writel(PROG_PGRD, nfc->base + PROG_OFST);
> +		anfc_wait_for_event(nfc, XFER_COMPLETE);
> +		dma_unmap_single(nfc->dev, paddr, len, DMA_FROM_DEVICE);
> +		return;
> +	}
> +
> +	anfc_enable_intrs(nfc, nfc->rdintrmask);
> +	writel(PROG_PGRD, nfc->base + PROG_OFST);
> +
> +	while (buf_rd_cnt < pktcount) {
> +
> +		anfc_wait_for_event(nfc, READ_READY);
> +		buf_rd_cnt++;
> +
> +		if (buf_rd_cnt == pktcount)
> +			anfc_enable_intrs(nfc, XFER_COMPLETE);
> +
> +		for (i = 0; i < pktsize / 4; i++)
> +			bufptr[i] = readl(nfc->base + DATA_PORT_OFST);
> +
> +		bufptr += (pktsize / 4);
> +
> +		if (buf_rd_cnt < pktcount)
> +			anfc_enable_intrs(nfc, nfc->rdintrmask);
> +	}
> +
> +	anfc_wait_for_event(nfc, XFER_COMPLETE);
> +}
> +
> +static void anfc_write_buf(struct mtd_info *mtd, const uint8_t *buf, int len)
> +{
> +	u32 buf_wr_cnt = 0, pktcount = 1, i, pktsize;
> +	u32 *bufptr = (u32 *)buf;
> +	struct anfc *nfc = container_of(mtd, struct anfc, mtd);
> +	dma_addr_t paddr = 0;
> +
> +	if (nfc->iswriteoob) {
> +		pktsize = len;
> +		pktcount = 1;
> +	} else {
> +		pktsize = nfc->pktsize;
> +		pktcount = mtd->writesize / pktsize;
> +	}
> +
> +	anfc_setpktszcnt(nfc, pktsize, pktcount);
> +
> +	if (nfc->dma) {
> +		paddr = dma_map_single(nfc->dev, (void *)buf, len,
> +				       DMA_TO_DEVICE);
> +		if (dma_mapping_error(nfc->dev, paddr)) {
> +			dev_err(nfc->dev, "Write buffer mapping error");
> +			return;
> +		}
> +		writel(paddr, nfc->base + DMA_ADDR0_OFST);
> +		writel(paddr >> 32, nfc->base + DMA_ADDR1_OFST);

Same problem as in read_buf().

> +		anfc_enable_intrs(nfc, XFER_COMPLETE);
> +		writel(PROG_PGPROG, nfc->base + PROG_OFST);
> +		anfc_wait_for_event(nfc, XFER_COMPLETE);
> +		dma_unmap_single(nfc->dev, paddr, len, DMA_TO_DEVICE);
> +		return;
> +	}
> +
> +	anfc_enable_intrs(nfc, WRITE_READY);
> +	writel(PROG_PGPROG, nfc->base + PROG_OFST);
> +
> +	while (buf_wr_cnt < pktcount) {
> +		anfc_wait_for_event(nfc, WRITE_READY);
> +
> +		buf_wr_cnt++;
> +		if (buf_wr_cnt == pktcount)
> +			anfc_enable_intrs(nfc, XFER_COMPLETE);
> +
> +		for (i = 0; i < (pktsize / 4); i++)
> +			writel(bufptr[i], nfc->base + DATA_PORT_OFST);
> +
> +		bufptr += (pktsize / 4);
> +
> +		if (buf_wr_cnt < pktcount)
> +			anfc_enable_intrs(nfc, WRITE_READY);
> +	}
> +
> +	anfc_wait_for_event(nfc, XFER_COMPLETE);
> +}
> +
> +static int anfc_read_page_hwecc(struct mtd_info *mtd,
> +				struct nand_chip *chip, uint8_t *buf,
> +				int oob_required, int page)
> +{
> +	u32 val;
> +	struct anfc *nfc = container_of(mtd, struct anfc, mtd);
> +
> +	anfc_set_eccsparecmd(nfc, NAND_CMD_RNDOUT, NAND_CMD_RNDOUTSTART);
> +
> +	val = readl(nfc->base + CMD_OFST);
> +	val = val | ECC_ENABLE;
> +	writel(val, nfc->base + CMD_OFST);
> +
> +	if (nfc->dma)
> +		nfc->rdintrmask = XFER_COMPLETE;
> +	else
> +		nfc->rdintrmask = READ_READY;
> +
> +	if (!nfc->bch)
> +		nfc->rdintrmask = MBIT_ERROR;
> +
> +	chip->read_buf(mtd, buf, mtd->writesize);
> +
> +	val = readl(nfc->base + ECC_ERR_CNT_OFST);
> +	if (nfc->bch) {
> +		mtd->ecc_stats.corrected += val & PAGE_ERR_CNT_MASK;
> +	} else {
> +		val = readl(nfc->base + ECC_ERR_CNT_1BIT_OFST);
> +		mtd->ecc_stats.corrected += val;
> +		val = readl(nfc->base + ECC_ERR_CNT_2BIT_OFST);
> +		mtd->ecc_stats.failed += val;
> +		/* Clear ecc error count register 1Bit, 2Bit */
> +		writel(0x0, nfc->base + ECC_ERR_CNT_1BIT_OFST);
> +		writel(0x0, nfc->base + ECC_ERR_CNT_2BIT_OFST);
> +	}
> +	nfc->err = false;
> +
> +	if (oob_required)
> +		chip->ecc.read_oob(mtd, chip, page);
> +
> +	return 0;
> +}
> +
> +static int anfc_write_page_hwecc(struct mtd_info *mtd,
> +				 struct nand_chip *chip, const uint8_t *buf,
> +				 int oob_required)
> +{
> +	u32 val, i;
> +	struct anfc *nfc = container_of(mtd, struct anfc, mtd);
> +	uint8_t *ecc_calc = chip->buffers->ecccalc;
> +	uint32_t *eccpos = chip->ecc.layout->eccpos;
> +
> +	anfc_set_eccsparecmd(nfc, NAND_CMD_RNDIN, 0);
> +
> +	val = readl(nfc->base + CMD_OFST);
> +	val = val | ECC_ENABLE;
> +	writel(val, nfc->base + CMD_OFST);
> +
> +	chip->write_buf(mtd, buf, mtd->writesize);
> +
> +	if (oob_required) {
> +		anfc_device_ready(mtd, chip);
> +		chip->cmdfunc(mtd, NAND_CMD_READOOB, 0, nfc->page);
> +		if (nfc->dma)
> +			nfc->rdintrmask = XFER_COMPLETE;
> +		else
> +			nfc->rdintrmask = READ_READY;
> +		chip->read_buf(mtd, ecc_calc, mtd->oobsize);
> +		for (i = 0; i < chip->ecc.total; i++)
> +			chip->oob_poi[eccpos[i]] = ecc_calc[eccpos[i]];
> +		chip->ecc.write_oob(mtd, chip, nfc->page);
> +	}
> +
> +	return 0;
> +}
> +
> +static u8 anfc_read_byte(struct mtd_info *mtd)
> +{
> +	struct anfc *nfc = container_of(mtd, struct anfc, mtd);
> +
> +	return nfc->buf[nfc->bufshift++];
> +}
> +
> +static void anfc_readfifo(struct anfc *nfc, u32 prog, u32 size)
> +{
> +	u32 i, *bufptr = (u32 *)&nfc->buf[0];
> +
> +	anfc_enable_intrs(nfc, READ_READY);
> +
> +	writel(prog, nfc->base + PROG_OFST);
> +	anfc_wait_for_event(nfc, READ_READY);
> +
> +	anfc_enable_intrs(nfc, XFER_COMPLETE);
> +
> +	for (i = 0; i < size / 4; i++)
> +		bufptr[i] = readl(nfc->base + DATA_PORT_OFST);
> +
> +	anfc_wait_for_event(nfc, XFER_COMPLETE);
> +}
> +
> +static int anfc_ecc_init(struct mtd_info *mtd,
> +			 struct nand_ecc_ctrl *ecc)
> +{
> +	u32 oob_index, i, ecc_addr, regval, bchmode = 0;
> +	struct nand_chip *nand_chip = mtd->priv;
> +	struct anfc *nfc = container_of(mtd, struct anfc, mtd);
> +	int found = -1;
> +
> +	nand_chip->ecc.mode = NAND_ECC_HW;
> +	nand_chip->ecc.read_page = anfc_read_page_hwecc;
> +	nand_chip->ecc.write_page = anfc_write_page_hwecc;
> +	nand_chip->ecc.write_oob = anfc_write_oob;
> +	nand_chip->ecc.read_oob = anfc_read_oob;
> +
> +	for (i = 0; i < sizeof(ecc_matrix) / sizeof(struct anfc_ecc_matrix);
> +	     i++) {
> +		if ((ecc_matrix[i].pagesize == mtd->writesize) &&
> +		    (ecc_matrix[i].codeword_size >= nand_chip->ecc_step_ds)) {
> +			if (ecc_matrix[i].eccbits >=
> +			    nand_chip->ecc_strength_ds) {
> +				found = i;
> +				break;
> +			}
> +			found = i;
> +		}
> +	}
> +
> +	if (found < 0) {
> +		dev_err(nfc->dev, "ECC scheme not supported");
> +		return 1;
> +	}
> +	if (ecc_matrix[found].bch) {
> +		switch (ecc_matrix[found].eccbits) {
> +		case 12:
> +			bchmode = 0x1;
> +			break;
> +		case 8:
> +			bchmode = 0x2;
> +			break;
> +		case 4:
> +			bchmode = 0x3;
> +			break;
> +		case 24:
> +			bchmode = 0x4;
> +			break;
> +		default:
> +			bchmode = 0x0;
> +		}
> +	}
> +
> +	nand_chip->ecc.strength = ecc_matrix[found].eccbits;
> +	nand_chip->ecc.size = ecc_matrix[found].codeword_size;
> +	nand_chip->ecc.steps = ecc_matrix[found].pagesize /
> +			       ecc_matrix[found].codeword_size;
> +	nand_chip->ecc.bytes = ecc_matrix[found].eccsize /
> +			       nand_chip->ecc.steps;
> +	nfc->ecclayout.eccbytes = ecc_matrix[found].eccsize;
> +	nfc->bch = ecc_matrix[found].bch;
> +	oob_index = nand_chip->onfi_params.spare_bytes_per_page -
> +		    nfc->ecclayout.eccbytes;

sparse doesn't like this:

drivers/mtd/nand/arasan_nfc.c:599:43: warning: restricted __le16 degrades to integer [sparse]

You need to use __le16_to_cpu() when accessing ONFI params. But really,
you should be using mtd->oobsize, not onfi_params.

> +	ecc_addr = mtd->writesize + oob_index;
> +
> +	for (i = 0; i < nand_chip->ecc.size; i++)
> +		nfc->ecclayout.eccpos[i] = oob_index + i;
> +
> +	nfc->ecclayout.oobfree->offset = 2;
> +	nfc->ecclayout.oobfree->length = oob_index -
> +					 nfc->ecclayout.oobfree->offset;
> +
> +	nand_chip->ecc.layout = &(nfc->ecclayout);
> +	regval = ecc_addr | (ecc_matrix[found].eccsize << ECC_SIZE_SHIFT) |
> +		 (ecc_matrix[found].bch << BCH_EN_SHIFT);
> +	writel(regval, nfc->base + ECC_OFST);
> +
> +	regval = readl(nfc->base + MEM_ADDR2_OFST);
> +	regval = (regval & ~(BCH_MODE_MASK)) | (bchmode << BCH_MODE_SHIFT);
> +	writel(regval, nfc->base + MEM_ADDR2_OFST);
> +
> +	if (nand_chip->ecc_step_ds >= 1024)
> +		nfc->pktsize = 1024;
> +	else
> +		nfc->pktsize = 512;
> +
> +	return 0;
> +}
> +
> +static void anfc_cmd_function(struct mtd_info *mtd,
> +			      unsigned int cmd, int column, int page_addr)
> +{
> +	struct anfc *nfc = container_of(mtd, struct anfc, mtd);
> +	bool wait = false, read = false;
> +	u32 addrcycles, prog;
> +	u32 *bufptr = (u32 *)&nfc->buf[0];
> +
> +	nfc->bufshift = 0;
> +	nfc->curr_cmd = cmd;
> +
> +	if (page_addr == -1)
> +		page_addr = 0;
> +	if (column == -1)
> +		column = 0;
> +
> +	switch (cmd) {
> +	case NAND_CMD_RESET:
> +		anfc_prepare_cmd(nfc, cmd, 0, 0, 0, 0);
> +		prog = PROG_RST;
> +		wait = true;
> +		break;
> +	case NAND_CMD_SEQIN:
> +		addrcycles = nfc->raddr_cycles + nfc->caddr_cycles;
> +		nfc->page = page_addr;
> +		anfc_prepare_cmd(nfc, cmd, NAND_CMD_PAGEPROG, 1,
> +				 mtd->writesize, addrcycles);
> +		anfc_setpagecoladdr(nfc, page_addr, column);
> +		break;
> +	case NAND_CMD_READOOB:
> +		column += mtd->writesize;
> +	case NAND_CMD_READ0:
> +	case NAND_CMD_READ1:
> +		addrcycles = nfc->raddr_cycles + nfc->caddr_cycles;
> +		anfc_prepare_cmd(nfc, NAND_CMD_READ0, NAND_CMD_READSTART, 1,
> +				 mtd->writesize, addrcycles);
> +		anfc_setpagecoladdr(nfc, page_addr, column);
> +		break;
> +	case NAND_CMD_RNDOUT:
> +		anfc_prepare_cmd(nfc, cmd, NAND_CMD_RNDOUTSTART, 1,
> +				 mtd->writesize, 2);
> +		anfc_setpagecoladdr(nfc, page_addr, column);
> +		if (nfc->dma)
> +			nfc->rdintrmask = XFER_COMPLETE;
> +		else
> +			nfc->rdintrmask = READ_READY;
> +		break;
> +	case NAND_CMD_PARAM:
> +		anfc_prepare_cmd(nfc, cmd, 0, 0, 0, 1);
> +		anfc_setpagecoladdr(nfc, page_addr, column);
> +		anfc_setpktszcnt(nfc, sizeof(struct nand_onfi_params), 1);
> +		anfc_readfifo(nfc, PROG_RDPARAM,
> +				sizeof(struct nand_onfi_params));
> +		break;
> +	case NAND_CMD_READID:
> +		anfc_prepare_cmd(nfc, cmd, 0, 0, 0, 1);
> +		anfc_setpagecoladdr(nfc, page_addr, column);
> +		anfc_setpktszcnt(nfc, ONFI_ID_LEN, 1);
> +		anfc_readfifo(nfc, PROG_RDID, ONFI_ID_LEN);
> +		break;
> +	case NAND_CMD_ERASE1:
> +		addrcycles = nfc->raddr_cycles;
> +		prog = PROG_ERASE;
> +		anfc_prepare_cmd(nfc, cmd, NAND_CMD_ERASE2, 0, 0, addrcycles);
> +		column = page_addr & 0xffff;
> +		page_addr = (page_addr >> PG_ADDR_SHIFT) & 0xffff;
> +		anfc_setpagecoladdr(nfc, page_addr, column);
> +		wait = true;
> +		break;
> +	case NAND_CMD_STATUS:
> +		anfc_prepare_cmd(nfc, cmd, 0, 0, 0, 0);
> +		anfc_setpktszcnt(nfc, 1, 1);
> +		anfc_setpagecoladdr(nfc, page_addr, column);
> +		prog = PROG_STATUS;
> +		wait = read = true;
> +		break;
> +	default:
> +		return;
> +	}
> +
> +	if (wait) {
> +		anfc_enable_intrs(nfc, XFER_COMPLETE);
> +		writel(prog, nfc->base + PROG_OFST);
> +		anfc_wait_for_event(nfc, XFER_COMPLETE);
> +	}
> +
> +	if (read)
> +		bufptr[0] = readl(nfc->base + FLASH_STS_OFST);
> +}
> +
> +static void anfc_select_chip(struct mtd_info *mtd, int num)
> +{
> +	u32 val;
> +	struct anfc *nfc = container_of(mtd, struct anfc, mtd);
> +
> +	if (num == -1)
> +		return;
> +
> +	val = readl(nfc->base + MEM_ADDR2_OFST);
> +	val = (val & ~(CS_MASK)) | (num << CS_SHIFT);
> +	writel(val, nfc->base + MEM_ADDR2_OFST);
> +}
> +
> +static irqreturn_t anfc_irq_handler(int irq, void *ptr)
> +{
> +	struct anfc *nfc = ptr;
> +	u32 regval = 0, status;
> +
> +	status = readl(nfc->base + INTR_STS_OFST);
> +	if (status & XFER_COMPLETE) {
> +		complete(&nfc->xfercomp);
> +		regval |= XFER_COMPLETE;
> +	}
> +
> +	if (status & READ_READY) {
> +		complete(&nfc->bufrdy);
> +		regval |= READ_READY;
> +	}
> +
> +	if (status & WRITE_READY) {
> +		complete(&nfc->bufrdy);
> +		regval |= WRITE_READY;
> +	}
> +
> +	if (status & MBIT_ERROR) {
> +		nfc->err = true;
> +		complete(&nfc->bufrdy);
> +		regval |= MBIT_ERROR;
> +	}
> +
> +	if (regval) {
> +		writel(regval, nfc->base + INTR_STS_OFST);
> +		writel(0, nfc->base + INTR_STS_EN_OFST);
> +		writel(0, nfc->base + INTR_SIG_EN_OFST);
> +
> +		return IRQ_HANDLED;
> +	}
> +
> +	return IRQ_NONE;
> +}
> +
> +static int anfc_probe(struct platform_device *pdev)
> +{
> +	struct anfc *nfc;
> +	struct mtd_info *mtd;
> +	struct nand_chip *nand_chip;
> +	struct resource *res;
> +	struct mtd_part_parser_data ppdata;
> +	int err;
> +
> +	nfc = devm_kzalloc(&pdev->dev, sizeof(*nfc), GFP_KERNEL);
> +	if (!nfc)
> +		return -ENOMEM;
> +
> +	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
> +	nfc->base = devm_ioremap_resource(&pdev->dev, res);
> +	if (IS_ERR(nfc->base))
> +		return PTR_ERR(nfc->base);
> +
> +	mtd = &nfc->mtd;
> +	nand_chip = &nfc->chip;
> +	nand_chip->priv = nfc;
> +	mtd->priv = nand_chip;
> +	mtd->owner = THIS_MODULE;
> +	mtd->name = DRIVER_NAME;
> +	nfc->dev = &pdev->dev;

You should set mtd->dev.parent too.

> +
> +	nand_chip->cmdfunc = anfc_cmd_function;
> +	nand_chip->waitfunc = anfc_device_ready;
> +	nand_chip->chip_delay = 30;
> +	nand_chip->read_buf = anfc_read_buf;
> +	nand_chip->write_buf = anfc_write_buf;
> +	nand_chip->read_byte = anfc_read_byte;
> +	nand_chip->bbt_options = NAND_BBT_USE_FLASH;
> +	nand_chip->select_chip = anfc_select_chip;
> +	mtd->size = nand_chip->chipsize;

This line looks superfluous. chipsize isn't even set at this point.

> +	nfc->dma = of_property_read_bool(pdev->dev.of_node,
> +					 "arasan,has-mdma");
> +	platform_set_drvdata(pdev, nfc);
> +	init_completion(&nfc->bufrdy);
> +	init_completion(&nfc->xfercomp);
> +	nfc->irq = platform_get_irq(pdev, 0);

Check for errors?

> +	err = devm_request_irq(&pdev->dev, nfc->irq, anfc_irq_handler,
> +			       0, "arasannfc", nfc);
> +	if (err)
> +		return err;
> +
> +	if (nand_scan_ident(mtd, 1, NULL)) {
> +		dev_err(&pdev->dev, "nand_scan_ident for NAND failed\n");
> +		return -ENXIO;
> +	}
> +	nfc->raddr_cycles = nand_chip->onfi_params.addr_cycles & 0xF;
> +	nfc->caddr_cycles = (nand_chip->onfi_params.addr_cycles >> 4) & 0xF;

Do you *have* to get this from ONFI? What if someone uses non-ONFI
flash? You should at least check if this is an ONFI flash before using
these param values.

> +
> +	if (anfc_ecc_init(mtd, &nand_chip->ecc))
> +		return -ENXIO;
> +
> +	if (nand_scan_tail(mtd)) {
> +		dev_err(&pdev->dev, "nand_scan_tail for NAND failed\n");
> +		return -ENXIO;
> +	}
> +
> +	ppdata.of_node = pdev->dev.of_node;
> +
> +	mtd_device_parse_register(&nfc->mtd, NULL, &ppdata, NULL, 0);
> +	return 0;

You're ignoring the return value from mtd_device_parse_register(). How
about:

	return mtd_device_parse_register(&nfc->mtd, NULL, &ppdata, NULL, 0);

> +}
> +
> +static int anfc_remove(struct platform_device *pdev)
> +{
> +	struct anfc *nfc = platform_get_drvdata(pdev);
> +
> +	nand_release(&nfc->mtd);
> +
> +	return 0;
> +}
> +
> +static const struct of_device_id anfc_ids[] = {
> +	{ .compatible = "arasan,nfc-v3p10" },
> +	{  }
> +};
> +MODULE_DEVICE_TABLE(of, anfc_ids);
> +
> +static struct platform_driver anfc_driver = {
> +	.driver = {
> +		.name = DRIVER_NAME,
> +		.of_match_table = anfc_ids,
> +	},
> +	.probe = anfc_probe,
> +	.remove = anfc_remove,
> +};
> +module_platform_driver(anfc_driver);
> +
> +MODULE_LICENSE("GPL");
> +MODULE_AUTHOR("Xilinx, Inc");
> +MODULE_DESCRIPTION("Arasan NAND Flash Controller Driver");

Brian
punnaiah choudary kalluri May 21, 2015, 3:22 a.m. UTC | #2
On Thu, May 21, 2015 at 2:19 AM, Brian Norris
<computersforpeace@gmail.com> wrote:
> On Tue, May 19, 2015 at 07:19:17PM +0530, Punnaiah Choudary Kalluri wrote:
>> Added the basic driver for Arasan Nand Flash Controller used in
>> Zynq UltraScale+ MPSoC. It supports only Hw Ecc and upto 24bit
>> correction.
>>
>> Signed-off-by: Punnaiah Choudary Kalluri <punnaia@xilinx.com>
>> Tested-by: Michal Simek <michal.simek@xilinx.com>
>> ---
>> Changes in v2:
>> - Added missing of.h to avoid kbuild system report error
>> ---
>>  drivers/mtd/nand/Kconfig      |    7 +
>>  drivers/mtd/nand/Makefile     |    1 +
>>  drivers/mtd/nand/arasan_nfc.c |  862 +++++++++++++++++++++++++++++++++++++++++
>>  3 files changed, 870 insertions(+), 0 deletions(-)
>>  create mode 100644 drivers/mtd/nand/arasan_nfc.c
>>
>> diff --git a/drivers/mtd/nand/Kconfig b/drivers/mtd/nand/Kconfig
>> index 5897d8d..64e497c 100644
>> --- a/drivers/mtd/nand/Kconfig
>> +++ b/drivers/mtd/nand/Kconfig
>> @@ -530,4 +530,11 @@ config MTD_NAND_HISI504
>>       help
>>         Enables support for NAND controller on Hisilicon SoC Hip04.
>>
>> +config MTD_NAND_ARASAN
>> +     tristate "Support for Arasan Nand Flash controller"
>> +     depends on MTD_NAND
>> +     help
>> +       Enables the driver for the Arasan Nand Flash controller on
>> +       Zynq UltraScale+ MPSoC.
>> +
>>  endif # MTD_NAND
>> diff --git a/drivers/mtd/nand/Makefile b/drivers/mtd/nand/Makefile
>> index 582bbd05..fd863ea 100644
>> --- a/drivers/mtd/nand/Makefile
>> +++ b/drivers/mtd/nand/Makefile
>> @@ -52,5 +52,6 @@ obj-$(CONFIG_MTD_NAND_XWAY)         += xway_nand.o
>>  obj-$(CONFIG_MTD_NAND_BCM47XXNFLASH) += bcm47xxnflash/
>>  obj-$(CONFIG_MTD_NAND_SUNXI)         += sunxi_nand.o
>>  obj-$(CONFIG_MTD_NAND_HISI504)               += hisi504_nand.o
>> +obj-$(CONFIG_MTD_NAND_ARASAN)                += arasan_nfc.o
>>
>>  nand-objs := nand_base.o nand_bbt.o nand_timings.o
>> diff --git a/drivers/mtd/nand/arasan_nfc.c b/drivers/mtd/nand/arasan_nfc.c
>> new file mode 100644
>> index 0000000..5736864
>> --- /dev/null
>> +++ b/drivers/mtd/nand/arasan_nfc.c
>> @@ -0,0 +1,862 @@
>> +/*
>> + * Arasan Nand Flash Controller Driver
>> + *
>> + * Copyright (C) 2014 - 2015 Xilinx, Inc.
>> + *
>> + * This program is free software; you can redistribute it and/or modify it under
>> + * the terms of the GNU General Public License version 2 as published by the
>> + * Free Software Foundation; either version 2 of the License, or (at your
>> + * option) any later version.
>> + */
>> +
>> +#include <linux/delay.h>
>> +#include <linux/dma-mapping.h>
>> +#include <linux/interrupt.h>
>> +#include <linux/module.h>
>> +#include <linux/mtd/mtd.h>
>> +#include <linux/mtd/nand.h>
>> +#include <linux/mtd/partitions.h>
>> +#include <linux/of.h>
>> +#include <linux/of_mtd.h>
>> +#include <linux/platform_device.h>
>> +
>> +#define DRIVER_NAME                  "arasan_nfc"
>> +#define EVNT_TIMEOUT                 1000
>> +#define STATUS_TIMEOUT                       2000
>> +
>> +#define PKT_OFST                     0x00
>> +#define MEM_ADDR1_OFST                       0x04
>> +#define MEM_ADDR2_OFST                       0x08
>> +#define CMD_OFST                     0x0C
>> +#define PROG_OFST                    0x10
>> +#define INTR_STS_EN_OFST             0x14
>> +#define INTR_SIG_EN_OFST             0x18
>> +#define INTR_STS_OFST                        0x1C
>> +#define READY_STS_OFST                       0x20
>> +#define DMA_ADDR1_OFST                       0x24
>> +#define FLASH_STS_OFST                       0x28
>> +#define DATA_PORT_OFST                       0x30
>> +#define ECC_OFST                     0x34
>> +#define ECC_ERR_CNT_OFST             0x38
>> +#define ECC_SPR_CMD_OFST             0x3C
>> +#define ECC_ERR_CNT_1BIT_OFST                0x40
>> +#define ECC_ERR_CNT_2BIT_OFST                0x44
>> +#define DMA_ADDR0_OFST                       0x50
>> +
>> +#define PKT_CNT_SHIFT                        12
>> +
>> +#define ECC_ENABLE                   BIT(31)
>> +#define DMA_EN_MASK                  GENMASK(27, 26)
>> +#define DMA_ENABLE                   0x2
>> +#define DMA_EN_SHIFT                 26
>> +#define PAGE_SIZE_MASK                       GENMASK(25, 23)
>> +#define PAGE_SIZE_SHIFT                      23
>> +#define PAGE_SIZE_512                        0
>> +#define PAGE_SIZE_1K                 5
>> +#define PAGE_SIZE_2K                 1
>> +#define PAGE_SIZE_4K                 2
>> +#define PAGE_SIZE_8K                 3
>> +#define PAGE_SIZE_16K                        4
>> +#define CMD2_SHIFT                   8
>> +#define ADDR_CYCLES_SHIFT            28
>> +
>> +#define XFER_COMPLETE                        BIT(2)
>> +#define READ_READY                   BIT(1)
>> +#define WRITE_READY                  BIT(0)
>> +#define MBIT_ERROR                   BIT(3)
>> +#define ERR_INTRPT                   BIT(4)
>> +
>> +#define PROG_PGRD                    BIT(0)
>> +#define PROG_ERASE                   BIT(2)
>> +#define PROG_STATUS                  BIT(3)
>> +#define PROG_PGPROG                  BIT(4)
>> +#define PROG_RDID                    BIT(6)
>> +#define PROG_RDPARAM                 BIT(7)
>> +#define PROG_RST                     BIT(8)
>> +
>> +#define ONFI_STATUS_FAIL             BIT(0)
>> +#define ONFI_STATUS_READY            BIT(6)
>> +
>> +#define PG_ADDR_SHIFT                        16
>> +#define BCH_MODE_SHIFT                       25
>> +#define BCH_EN_SHIFT                 27
>> +#define ECC_SIZE_SHIFT                       16
>> +
>> +#define MEM_ADDR_MASK                        GENMASK(7, 0)
>> +#define BCH_MODE_MASK                        GENMASK(27, 25)
>> +
>> +#define CS_MASK                              GENMASK(31, 30)
>> +#define CS_SHIFT                     30
>> +
>> +#define PAGE_ERR_CNT_MASK            GENMASK(16, 8)
>> +#define PKT_ERR_CNT_MASK             GENMASK(7, 0)
>> +
>> +#define ONFI_ID_LEN                  8
>> +#define TEMP_BUF_SIZE                        512
>> +
>> +/**
>> + * struct anfc_ecc_matrix - Defines ecc information storage format
>> + * @pagesize:                Page size in bytes.
>> + * @codeword_size:   Code word size information.
>> + * @eccbits:         Number of ecc bits.
>> + * @bch:             Bch / Hamming mode enable/disable.
>> + * @eccsize:         Ecc size information.
>> + */
>> +struct anfc_ecc_matrix {
>> +     u32 pagesize;
>> +     u32 codeword_size;
>> +     u8 eccbits;
>> +     u8 bch;
>> +     u16 eccsize;
>> +};
>> +
>> +static const struct anfc_ecc_matrix ecc_matrix[] = {
>> +     {512,   512,    1,      0,      0x3},
>> +     {512,   512,    4,      1,      0x7},
>> +     {512,   512,    8,      1,      0xD},
>> +     /* 2K byte page */
>> +     {2048,  512,    1,      0,      0xC},
>> +     {2048,  512,    4,      1,      0x1A},
>> +     {2048,  512,    8,      1,      0x34},
>> +     {2048,  512,    12,     1,      0x4E},
>> +     {2048,  1024,   24,     1,      0x54},
>> +     /* 4K byte page */
>> +     {4096,  512,    1,      0,      0x18},
>> +     {4096,  512,    4,      1,      0x34},
>> +     {4096,  512,    8,      1,      0x68},
>> +     {4096,  512,    12,     1,      0x9C},
>> +     {4096,  1024,   4,      1,      0xA8},
>> +     /* 8K byte page */
>> +     {8192,  512,    1,      0,      0x30},
>> +     {8192,  512,    4,      1,      0x68},
>> +     {8192,  512,    8,      1,      0xD0},
>> +     {8192,  512,    12,     1,      0x138},
>> +     {8192,  1024,   24,     1,      0x150},
>> +     /* 16K byte page */
>> +     {16384, 512,    1,      0,      0x60},
>> +     {16384, 512,    4,      1,      0xD0},
>> +     {16384, 512,    8,      1,      0x1A0},
>> +     {16384, 512,    12,     1,      0x270},
>> +     {16384, 1024,   24,     1,      0x2A0}
>> +};
>> +
>> +/**
>> + * struct anfc - Defines the Arasan NAND flash driver instance
>> + * @chip:            NAND chip information structure.
>> + * @mtd:             MTD information structure.
>> + * @parts:           Pointer to the mtd_partition structure.
>> + * @dev:             Pointer to the device structure.
>> + * @base:            Virtual address of the NAND flash device.
>> + * @curr_cmd:                Current command issued.
>> + * @dma:             Dma enable/disable.
>> + * @bch:             Bch / Hamming mode enable/disable.
>> + * @err:             Error identifier.
>> + * @iswriteoob:              Identifies if oob write operation is required.
>> + * @buf:             Buffer used for read/write byte operations.
>> + * @raddr_cycles:    Row address cycle information.
>> + * @caddr_cycles:    Column address cycle information.
>> + * @irq:             irq number
>> + * @page:            Page address to be use for write oob operations.
>> + * @pktsize:         Packet size for read / write operation.
>> + * @bufshift:                Variable used for indexing buffer operation
>> + * @rdintrmask:              Interrupt mask value for read operation.
>> + * @bufrdy:          Completion event for buffer ready.
>> + * @xfercomp:                Completion event for transfer complete.
>> + * @ecclayout:               Ecc layout object
>> + */
>> +struct anfc {
>> +     struct nand_chip chip;
>> +     struct mtd_info mtd;
>> +     struct mtd_partition *parts;
>
> ^^ This field is unused.

yaa. i will remove

>
>> +     struct device *dev;
>> +
>> +     void __iomem *base;
>> +     int curr_cmd;
>> +
>> +     bool dma;
>> +     bool bch;
>> +     bool err;
>> +     bool iswriteoob;
>> +
>> +     u8 buf[TEMP_BUF_SIZE];
>> +
>> +     u16 raddr_cycles;)
>> +     u16 caddr_cycles;
>> +
>> +     u32 irq;
>> +     u32 page;
>> +     u32 pktsize;
>> +     u32 bufshift;
>> +     u32 rdintrmask;
>> +
>> +     struct completion bufrdy;
>> +     struct completion xfercomp;
>> +     struct nand_ecclayout ecclayout;
>> +};
>> +
>> +static u8 anfc_page(u32 pagesize)
>> +{
>> +     switch (pagesize) {
>> +     case 512:
>> +             return PAGE_SIZE_512;
>> +     case 2048:
>> +             return PAGE_SIZE_2K;
>> +     case 4096:
>> +             return PAGE_SIZE_4K;
>> +     case 8192:
>> +             return PAGE_SIZE_8K;
>> +     case 16384:
>> +             return PAGE_SIZE_16K;
>> +     case 1024:
>> +             return PAGE_SIZE_1K;
>> +     default:
>> +             break;
>> +     }
>> +
>> +     return 0;
>> +}
>> +
>> +static inline void anfc_enable_intrs(struct anfc *nfc, u32 val)
>> +{
>> +     writel(val, nfc->base + INTR_STS_EN_OFST);
>> +     writel(val, nfc->base + INTR_SIG_EN_OFST);
>> +}
>> +
>> +static int anfc_wait_for_event(struct anfc *nfc, u32 event)
>> +{
>> +     struct completion *comp;
>> +     int ret;
>> +
>> +     if (event == XFER_COMPLETE)
>> +             comp = &nfc->xfercomp;
>> +     else
>> +             comp = &nfc->bufrdy;
>> +
>> +     ret = wait_for_completion_timeout(comp, msecs_to_jiffies(EVNT_TIMEOUT));
>> +
>> +     return ret;
>> +}
>> +
>> +static inline void anfc_setpktszcnt(struct anfc *nfc, u32 pktsize,
>> +                                 u32 pktcount)
>> +{
>> +     writel(pktsize | (pktcount << PKT_CNT_SHIFT), nfc->base + PKT_OFST);
>> +}
>> +
>> +static inline void anfc_set_eccsparecmd(struct anfc *nfc, u8 cmd1, u8 cmd2)
>> +{
>> +     writel(cmd1 | (cmd2 << CMD2_SHIFT) |
>> +            (nfc->caddr_cycles << ADDR_CYCLES_SHIFT),
>> +            nfc->base + ECC_SPR_CMD_OFST);
>> +}
>> +
>> +static void anfc_setpagecoladdr(struct anfc *nfc, u32 page, u16 col)
>> +{
>> +     u32 val;
>> +
>> +     writel(col | (page << PG_ADDR_SHIFT), nfc->base + MEM_ADDR1_OFST);
>> +
>> +     val = readl(nfc->base + MEM_ADDR2_OFST);
>> +     val = (val & ~MEM_ADDR_MASK) |
>> +           ((page >> PG_ADDR_SHIFT) & MEM_ADDR_MASK);
>> +     writel(val, nfc->base + MEM_ADDR2_OFST);
>> +}
>> +
>> +static void anfc_prepare_cmd(struct anfc *nfc, u8 cmd1, u8 cmd2,
>> +                          u8 dmamode, u32 pagesize, u8 addrcycles)
>> +{
>> +     u32 regval;
>> +
>> +     regval = cmd1 | (cmd2 << CMD2_SHIFT);
>> +     if (dmamode && nfc->dma)
>> +             regval |= DMA_ENABLE << DMA_EN_SHIFT;
>> +     if (addrcycles)
>> +             regval |= addrcycles << ADDR_CYCLES_SHIFT;
>> +     if (pagesize)
>> +             regval |= anfc_page(pagesize) << PAGE_SIZE_SHIFT;
>> +     writel(regval, nfc->base + CMD_OFST);
>> +}
>> +
>> +static int anfc_device_ready(struct mtd_info *mtd,
>> +                          struct nand_chip *chip)
>> +{
>> +     u8 status;
>> +     u32 timeout = STATUS_TIMEOUT;
>> +
>> +     while (timeout--) {
>> +             chip->cmdfunc(mtd, NAND_CMD_STATUS, 0, 0);
>> +             status = chip->read_byte(mtd);
>> +             if (status & ONFI_STATUS_READY) {
>> +                     if (status & ONFI_STATUS_FAIL)
>> +                             return NAND_STATUS_FAIL;
>> +                     return 0;
>> +             }
>> +     }
>
> No, we can't just do a busy-wait loop at an arbitrary count of 2000
> cycles. Can you do something that's interrupt-based? Or at least time
> yourself with jiffies or something similar.

I will Jiffies as there is no interrupt status for this.

>
>> +
>> +     pr_err("%s timed out\n", __func__);
>> +     return -ETIMEDOUT;
>> +}
>> +
>> +static int anfc_read_oob(struct mtd_info *mtd, struct nand_chip *chip,
>> +                      int page)
>> +{
>> +     struct anfc *nfc = container_of(mtd, struct anfc, mtd);
>> +
>> +     chip->cmdfunc(mtd, NAND_CMD_READOOB, 0, page);
>> +     if (nfc->dma)
>> +             nfc->rdintrmask = XFER_COMPLETE;
>> +     else
>> +             nfc->rdintrmask = READ_READY;
>> +     chip->read_buf(mtd, chip->oob_poi, mtd->oobsize);
>> +
>> +     return 0;
>> +}
>> +
>> +static int anfc_write_oob(struct mtd_info *mtd, struct nand_chip *chip,
>> +                       int page)
>> +{
>> +     struct anfc *nfc = container_of(mtd, struct anfc, mtd);
>> +
>> +     nfc->iswriteoob = true;
>> +     chip->cmdfunc(mtd, NAND_CMD_SEQIN, mtd->writesize, page);
>> +     chip->write_buf(mtd, chip->oob_poi, mtd->oobsize);
>> +     nfc->iswriteoob = false;
>> +
>> +     return 0;
>> +}
>> +
>> +static void anfc_read_buf(struct mtd_info *mtd, uint8_t *buf, int len)
>> +{
>> +     u32 i, pktcount, buf_rd_cnt = 0, pktsize;
>> +     u32 *bufptr = (u32 *)buf;
>> +     struct anfc *nfc = container_of(mtd, struct anfc, mtd);
>> +     dma_addr_t paddr = 0;
>> +
>> +     if (nfc->curr_cmd == NAND_CMD_READ0) {
>> +             pktsize = nfc->pktsize;
>> +             if (mtd->writesize % pktsize)
>> +                     pktcount = mtd->writesize / pktsize + 1;
>> +             else
>> +                     pktcount = mtd->writesize / pktsize;
>> +     } else {
>> +             pktsize = len;
>> +             pktcount = 1;
>> +     }
>> +
>> +     anfc_setpktszcnt(nfc, pktsize, pktcount);
>> +
>> +     if (nfc->dma) {
>> +             paddr = dma_map_single(nfc->dev, buf, len, DMA_FROM_DEVICE);
>> +             if (dma_mapping_error(nfc->dev, paddr)) {
>> +                     dev_err(nfc->dev, "Read buffer mapping error");
>> +                     return;
>> +             }
>> +             writel(paddr, nfc->base + DMA_ADDR0_OFST);
>> +             writel(paddr >> 32, nfc->base + DMA_ADDR1_OFST);
>
> drivers/mtd/nand/arasan_nfc.c: In function ‘anfc_read_buf’:
> drivers/mtd/nand/arasan_nfc.c:355:3: warning: right shift count >= width of type [enabled by default]
>    writel(paddr >> 32, nfc->base + DMA_ADDR1_OFST);
>    ^
>
> How about using upper_32_bits() and lower_32_bits()?

I just tried and it works. Thanks.

>
>> +             anfc_enable_intrs(nfc, nfc->rdintrmask);
>> +             writel(PROG_PGRD, nfc->base + PROG_OFST);
>> +             anfc_wait_for_event(nfc, XFER_COMPLETE);
>> +             dma_unmap_single(nfc->dev, paddr, len, DMA_FROM_DEVICE);
>> +             return;
>> +     }
>> +
>> +     anfc_enable_intrs(nfc, nfc->rdintrmask);
>> +     writel(PROG_PGRD, nfc->base + PROG_OFST);
>> +
>> +     while (buf_rd_cnt < pktcount) {
>> +
>> +             anfc_wait_for_event(nfc, READ_READY);
>> +             buf_rd_cnt++;
>> +
>> +             if (buf_rd_cnt == pktcount)
>> +                     anfc_enable_intrs(nfc, XFER_COMPLETE);
>> +
>> +             for (i = 0; i < pktsize / 4; i++)
>> +                     bufptr[i] = readl(nfc->base + DATA_PORT_OFST);
>> +
>> +             bufptr += (pktsize / 4);
>> +
>> +             if (buf_rd_cnt < pktcount)
>> +                     anfc_enable_intrs(nfc, nfc->rdintrmask);
>> +     }
>> +
>> +     anfc_wait_for_event(nfc, XFER_COMPLETE);
>> +}
>> +
>> +static void anfc_write_buf(struct mtd_info *mtd, const uint8_t *buf, int len)
>> +{
>> +     u32 buf_wr_cnt = 0, pktcount = 1, i, pktsize;
>> +     u32 *bufptr = (u32 *)buf;
>> +     struct anfc *nfc = container_of(mtd, struct anfc, mtd);
>> +     dma_addr_t paddr = 0;
>> +
>> +     if (nfc->iswriteoob) {
>> +             pktsize = len;
>> +             pktcount = 1;
>> +     } else {
>> +             pktsize = nfc->pktsize;
>> +             pktcount = mtd->writesize / pktsize;
>> +     }
>> +
>> +     anfc_setpktszcnt(nfc, pktsize, pktcount);
>> +
>> +     if (nfc->dma) {
>> +             paddr = dma_map_single(nfc->dev, (void *)buf, len,
>> +                                    DMA_TO_DEVICE);
>> +             if (dma_mapping_error(nfc->dev, paddr)) {
>> +                     dev_err(nfc->dev, "Write buffer mapping error");
>> +                     return;
>> +             }
>> +             writel(paddr, nfc->base + DMA_ADDR0_OFST);
>> +             writel(paddr >> 32, nfc->base + DMA_ADDR1_OFST);
>
> Same problem as in read_buf().
>
>> +             anfc_enable_intrs(nfc, XFER_COMPLETE);
>> +             writel(PROG_PGPROG, nfc->base + PROG_OFST);
>> +             anfc_wait_for_event(nfc, XFER_COMPLETE);
>> +             dma_unmap_single(nfc->dev, paddr, len, DMA_TO_DEVICE);
>> +             return;
>> +     }
>> +
>> +     anfc_enable_intrs(nfc, WRITE_READY);
>> +     writel(PROG_PGPROG, nfc->base + PROG_OFST);
>> +
>> +     while (buf_wr_cnt < pktcount) {
>> +             anfc_wait_for_event(nfc, WRITE_READY);
>> +
>> +             buf_wr_cnt++;
>> +             if (buf_wr_cnt == pktcount)
>> +                     anfc_enable_intrs(nfc, XFER_COMPLETE);
>> +
>> +             for (i = 0; i < (pktsize / 4); i++)
>> +                     writel(bufptr[i], nfc->base + DATA_PORT_OFST);
>> +
>> +             bufptr += (pktsize / 4);
>> +
>> +             if (buf_wr_cnt < pktcount)
>> +                     anfc_enable_intrs(nfc, WRITE_READY);
>> +     }
>> +
>> +     anfc_wait_for_event(nfc, XFER_COMPLETE);
>> +}
>> +
>> +static int anfc_read_page_hwecc(struct mtd_info *mtd,
>> +                             struct nand_chip *chip, uint8_t *buf,
>> +                             int oob_required, int page)
>> +{
>> +     u32 val;
>> +     struct anfc *nfc = container_of(mtd, struct anfc, mtd);
>> +
>> +     anfc_set_eccsparecmd(nfc, NAND_CMD_RNDOUT, NAND_CMD_RNDOUTSTART);
>> +
>> +     val = readl(nfc->base + CMD_OFST);
>> +     val = val | ECC_ENABLE;
>> +     writel(val, nfc->base + CMD_OFST);
>> +
>> +     if (nfc->dma)
>> +             nfc->rdintrmask = XFER_COMPLETE;
>> +     else
>> +             nfc->rdintrmask = READ_READY;
>> +
>> +     if (!nfc->bch)
>> +             nfc->rdintrmask = MBIT_ERROR;
>> +
>> +     chip->read_buf(mtd, buf, mtd->writesize);
>> +
>> +     val = readl(nfc->base + ECC_ERR_CNT_OFST);
>> +     if (nfc->bch) {
>> +             mtd->ecc_stats.corrected += val & PAGE_ERR_CNT_MASK;
>> +     } else {
>> +             val = readl(nfc->base + ECC_ERR_CNT_1BIT_OFST);
>> +             mtd->ecc_stats.corrected += val;
>> +             val = readl(nfc->base + ECC_ERR_CNT_2BIT_OFST);
>> +             mtd->ecc_stats.failed += val;
>> +             /* Clear ecc error count register 1Bit, 2Bit */
>> +             writel(0x0, nfc->base + ECC_ERR_CNT_1BIT_OFST);
>> +             writel(0x0, nfc->base + ECC_ERR_CNT_2BIT_OFST);
>> +     }
>> +     nfc->err = false;
>> +
>> +     if (oob_required)
>> +             chip->ecc.read_oob(mtd, chip, page);
>> +
>> +     return 0;
>> +}
>> +
>> +static int anfc_write_page_hwecc(struct mtd_info *mtd,
>> +                              struct nand_chip *chip, const uint8_t *buf,
>> +                              int oob_required)
>> +{
>> +     u32 val, i;
>> +     struct anfc *nfc = container_of(mtd, struct anfc, mtd);
>> +     uint8_t *ecc_calc = chip->buffers->ecccalc;
>> +     uint32_t *eccpos = chip->ecc.layout->eccpos;
>> +
>> +     anfc_set_eccsparecmd(nfc, NAND_CMD_RNDIN, 0);
>> +
>> +     val = readl(nfc->base + CMD_OFST);
>> +     val = val | ECC_ENABLE;
>> +     writel(val, nfc->base + CMD_OFST);
>> +
>> +     chip->write_buf(mtd, buf, mtd->writesize);
>> +
>> +     if (oob_required) {
>> +             anfc_device_ready(mtd, chip);
>> +             chip->cmdfunc(mtd, NAND_CMD_READOOB, 0, nfc->page);
>> +             if (nfc->dma)
>> +                     nfc->rdintrmask = XFER_COMPLETE;
>> +             else
>> +                     nfc->rdintrmask = READ_READY;
>> +             chip->read_buf(mtd, ecc_calc, mtd->oobsize);
>> +             for (i = 0; i < chip->ecc.total; i++)
>> +                     chip->oob_poi[eccpos[i]] = ecc_calc[eccpos[i]];
>> +             chip->ecc.write_oob(mtd, chip, nfc->page);
>> +     }
>> +
>> +     return 0;
>> +}
>> +
>> +static u8 anfc_read_byte(struct mtd_info *mtd)
>> +{
>> +     struct anfc *nfc = container_of(mtd, struct anfc, mtd);
>> +
>> +     return nfc->buf[nfc->bufshift++];
>> +}
>> +
>> +static void anfc_readfifo(struct anfc *nfc, u32 prog, u32 size)
>> +{
>> +     u32 i, *bufptr = (u32 *)&nfc->buf[0];
>> +
>> +     anfc_enable_intrs(nfc, READ_READY);
>> +
>> +     writel(prog, nfc->base + PROG_OFST);
>> +     anfc_wait_for_event(nfc, READ_READY);
>> +
>> +     anfc_enable_intrs(nfc, XFER_COMPLETE);
>> +
>> +     for (i = 0; i < size / 4; i++)
>> +             bufptr[i] = readl(nfc->base + DATA_PORT_OFST);
>> +
>> +     anfc_wait_for_event(nfc, XFER_COMPLETE);
>> +}
>> +
>> +static int anfc_ecc_init(struct mtd_info *mtd,
>> +                      struct nand_ecc_ctrl *ecc)
>> +{
>> +     u32 oob_index, i, ecc_addr, regval, bchmode = 0;
>> +     struct nand_chip *nand_chip = mtd->priv;
>> +     struct anfc *nfc = container_of(mtd, struct anfc, mtd);
>> +     int found = -1;
>> +
>> +     nand_chip->ecc.mode = NAND_ECC_HW;
>> +     nand_chip->ecc.read_page = anfc_read_page_hwecc;
>> +     nand_chip->ecc.write_page = anfc_write_page_hwecc;
>> +     nand_chip->ecc.write_oob = anfc_write_oob;
>> +     nand_chip->ecc.read_oob = anfc_read_oob;
>> +
>> +     for (i = 0; i < sizeof(ecc_matrix) / sizeof(struct anfc_ecc_matrix);
>> +          i++) {
>> +             if ((ecc_matrix[i].pagesize == mtd->writesize) &&
>> +                 (ecc_matrix[i].codeword_size >= nand_chip->ecc_step_ds)) {
>> +                     if (ecc_matrix[i].eccbits >=
>> +                         nand_chip->ecc_strength_ds) {
>> +                             found = i;
>> +                             break;
>> +                     }
>> +                     found = i;
>> +             }
>> +     }
>> +
>> +     if (found < 0) {
>> +             dev_err(nfc->dev, "ECC scheme not supported");
>> +             return 1;
>> +     }
>> +     if (ecc_matrix[found].bch) {
>> +             switch (ecc_matrix[found].eccbits) {
>> +             case 12:
>> +                     bchmode = 0x1;
>> +                     break;
>> +             case 8:
>> +                     bchmode = 0x2;
>> +                     break;
>> +             case 4:
>> +                     bchmode = 0x3;
>> +                     break;
>> +             case 24:
>> +                     bchmode = 0x4;
>> +                     break;
>> +             default:
>> +                     bchmode = 0x0;
>> +             }
>> +     }
>> +
>> +     nand_chip->ecc.strength = ecc_matrix[found].eccbits;
>> +     nand_chip->ecc.size = ecc_matrix[found].codeword_size;
>> +     nand_chip->ecc.steps = ecc_matrix[found].pagesize /
>> +                            ecc_matrix[found].codeword_size;
>> +     nand_chip->ecc.bytes = ecc_matrix[found].eccsize /
>> +                            nand_chip->ecc.steps;
>> +     nfc->ecclayout.eccbytes = ecc_matrix[found].eccsize;
>> +     nfc->bch = ecc_matrix[found].bch;
>> +     oob_index = nand_chip->onfi_params.spare_bytes_per_page -
>> +                 nfc->ecclayout.eccbytes;
>
> sparse doesn't like this:
>
> drivers/mtd/nand/arasan_nfc.c:599:43: warning: restricted __le16 degrades to integer [sparse]
>
> You need to use __le16_to_cpu() when accessing ONFI params. But really,
> you should be using mtd->oobsize, not onfi_params

Correct. I can use mtd->oobsize.

>
>> +     ecc_addr = mtd->writesize + oob_index;
>> +
>> +     for (i = 0; i < nand_chip->ecc.size; i++)
>> +             nfc->ecclayout.eccpos[i] = oob_index + i;
>> +
>> +     nfc->ecclayout.oobfree->offset = 2;
>> +     nfc->ecclayout.oobfree->length = oob_index -
>> +                                      nfc->ecclayout.oobfree->offset;
>> +
>> +     nand_chip->ecc.layout = &(nfc->ecclayout);
>> +     regval = ecc_addr | (ecc_matrix[found].eccsize << ECC_SIZE_SHIFT) |
>> +              (ecc_matrix[found].bch << BCH_EN_SHIFT);
>> +     writel(regval, nfc->base + ECC_OFST);
>> +
>> +     regval = readl(nfc->base + MEM_ADDR2_OFST);
>> +     regval = (regval & ~(BCH_MODE_MASK)) | (bchmode << BCH_MODE_SHIFT);
>> +     writel(regval, nfc->base + MEM_ADDR2_OFST);
>> +
>> +     if (nand_chip->ecc_step_ds >= 1024)
>> +             nfc->pktsize = 1024;
>> +     else
>> +             nfc->pktsize = 512;
>> +
>> +     return 0;
>> +}
>> +
>> +static void anfc_cmd_function(struct mtd_info *mtd,
>> +                           unsigned int cmd, int column, int page_addr)
>> +{
>> +     struct anfc *nfc = container_of(mtd, struct anfc, mtd);
>> +     bool wait = false, read = false;
>> +     u32 addrcycles, prog;
>> +     u32 *bufptr = (u32 *)&nfc->buf[0];
>> +
>> +     nfc->bufshift = 0;
>> +     nfc->curr_cmd = cmd;
>> +
>> +     if (page_addr == -1)
>> +             page_addr = 0;
>> +     if (column == -1)
>> +             column = 0;
>> +
>> +     switch (cmd) {
>> +     case NAND_CMD_RESET:
>> +             anfc_prepare_cmd(nfc, cmd, 0, 0, 0, 0);
>> +             prog = PROG_RST;
>> +             wait = true;
>> +             break;
>> +     case NAND_CMD_SEQIN:
>> +             addrcycles = nfc->raddr_cycles + nfc->caddr_cycles;
>> +             nfc->page = page_addr;
>> +             anfc_prepare_cmd(nfc, cmd, NAND_CMD_PAGEPROG, 1,
>> +                              mtd->writesize, addrcycles);
>> +             anfc_setpagecoladdr(nfc, page_addr, column);
>> +             break;
>> +     case NAND_CMD_READOOB:
>> +             column += mtd->writesize;
>> +     case NAND_CMD_READ0:
>> +     case NAND_CMD_READ1:
>> +             addrcycles = nfc->raddr_cycles + nfc->caddr_cycles;
>> +             anfc_prepare_cmd(nfc, NAND_CMD_READ0, NAND_CMD_READSTART, 1,
>> +                              mtd->writesize, addrcycles);
>> +             anfc_setpagecoladdr(nfc, page_addr, column);
>> +             break;
>> +     case NAND_CMD_RNDOUT:
>> +             anfc_prepare_cmd(nfc, cmd, NAND_CMD_RNDOUTSTART, 1,
>> +                              mtd->writesize, 2);
>> +             anfc_setpagecoladdr(nfc, page_addr, column);
>> +             if (nfc->dma)
>> +                     nfc->rdintrmask = XFER_COMPLETE;
>> +             else
>> +                     nfc->rdintrmask = READ_READY;
>> +             break;
>> +     case NAND_CMD_PARAM:
>> +             anfc_prepare_cmd(nfc, cmd, 0, 0, 0, 1);
>> +             anfc_setpagecoladdr(nfc, page_addr, column);
>> +             anfc_setpktszcnt(nfc, sizeof(struct nand_onfi_params), 1);
>> +             anfc_readfifo(nfc, PROG_RDPARAM,
>> +                             sizeof(struct nand_onfi_params));
>> +             break;
>> +     case NAND_CMD_READID:
>> +             anfc_prepare_cmd(nfc, cmd, 0, 0, 0, 1);
>> +             anfc_setpagecoladdr(nfc, page_addr, column);
>> +             anfc_setpktszcnt(nfc, ONFI_ID_LEN, 1);
>> +             anfc_readfifo(nfc, PROG_RDID, ONFI_ID_LEN);
>> +             break;
>> +     case NAND_CMD_ERASE1:
>> +             addrcycles = nfc->raddr_cycles;
>> +             prog = PROG_ERASE;
>> +             anfc_prepare_cmd(nfc, cmd, NAND_CMD_ERASE2, 0, 0, addrcycles);
>> +             column = page_addr & 0xffff;
>> +             page_addr = (page_addr >> PG_ADDR_SHIFT) & 0xffff;
>> +             anfc_setpagecoladdr(nfc, page_addr, column);
>> +             wait = true;
>> +             break;
>> +     case NAND_CMD_STATUS:
>> +             anfc_prepare_cmd(nfc, cmd, 0, 0, 0, 0);
>> +             anfc_setpktszcnt(nfc, 1, 1);
>> +             anfc_setpagecoladdr(nfc, page_addr, column);
>> +             prog = PROG_STATUS;
>> +             wait = read = true;
>> +             break;
>> +     default:
>> +             return;
>> +     }
>> +
>> +     if (wait) {
>> +             anfc_enable_intrs(nfc, XFER_COMPLETE);
>> +             writel(prog, nfc->base + PROG_OFST);
>> +             anfc_wait_for_event(nfc, XFER_COMPLETE);
>> +     }
>> +
>> +     if (read)
>> +             bufptr[0] = readl(nfc->base + FLASH_STS_OFST);
>> +}
>> +
>> +static void anfc_select_chip(struct mtd_info *mtd, int num)
>> +{
>> +     u32 val;
>> +     struct anfc *nfc = container_of(mtd, struct anfc, mtd);
>> +
>> +     if (num == -1)
>> +             return;
>> +
>> +     val = readl(nfc->base + MEM_ADDR2_OFST);
>> +     val = (val & ~(CS_MASK)) | (num << CS_SHIFT);
>> +     writel(val, nfc->base + MEM_ADDR2_OFST);
>> +}
>> +
>> +static irqreturn_t anfc_irq_handler(int irq, void *ptr)
>> +{
>> +     struct anfc *nfc = ptr;
>> +     u32 regval = 0, status;
>> +
>> +     status = readl(nfc->base + INTR_STS_OFST);
>> +     if (status & XFER_COMPLETE) {
>> +             complete(&nfc->xfercomp);
>> +             regval |= XFER_COMPLETE;
>> +     }
>> +
>> +     if (status & READ_READY) {
>> +             complete(&nfc->bufrdy);
>> +             regval |= READ_READY;
>> +     }
>> +
>> +     if (status & WRITE_READY) {
>> +             complete(&nfc->bufrdy);
>> +             regval |= WRITE_READY;
>> +     }
>> +
>> +     if (status & MBIT_ERROR) {
>> +             nfc->err = true;
>> +             complete(&nfc->bufrdy);
>> +             regval |= MBIT_ERROR;
>> +     }
>> +
>> +     if (regval) {
>> +             writel(regval, nfc->base + INTR_STS_OFST);
>> +             writel(0, nfc->base + INTR_STS_EN_OFST);
>> +             writel(0, nfc->base + INTR_SIG_EN_OFST);
>> +
>> +             return IRQ_HANDLED;
>> +     }
>> +
>> +     return IRQ_NONE;
>> +}
>> +
>> +static int anfc_probe(struct platform_device *pdev)
>> +{
>> +     struct anfc *nfc;
>> +     struct mtd_info *mtd;
>> +     struct nand_chip *nand_chip;
>> +     struct resource *res;
>> +     struct mtd_part_parser_data ppdata;
>> +     int err;
>> +
>> +     nfc = devm_kzalloc(&pdev->dev, sizeof(*nfc), GFP_KERNEL);
>> +     if (!nfc)
>> +             return -ENOMEM;
>> +
>> +     res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
>> +     nfc->base = devm_ioremap_resource(&pdev->dev, res);
>> +     if (IS_ERR(nfc->base))
>> +             return PTR_ERR(nfc->base);
>> +
>> +     mtd = &nfc->mtd;
>> +     nand_chip = &nfc->chip;
>> +     nand_chip->priv = nfc;
>> +     mtd->priv = nand_chip;
>> +     mtd->owner = THIS_MODULE;
>> +     mtd->name = DRIVER_NAME;
>> +     nfc->dev = &pdev->dev;
>
> You should set mtd->dev.parent too.


Ok.

>
>> +
>> +     nand_chip->cmdfunc = anfc_cmd_function;
>> +     nand_chip->waitfunc = anfc_device_ready;
>> +     nand_chip->chip_delay = 30;
>> +     nand_chip->read_buf = anfc_read_buf;
>> +     nand_chip->write_buf = anfc_write_buf;
>> +     nand_chip->read_byte = anfc_read_byte;
>> +     nand_chip->bbt_options = NAND_BBT_USE_FLASH;
>> +     nand_chip->select_chip = anfc_select_chip;
>> +     mtd->size = nand_chip->chipsize;
>
> This line looks superfluous. chipsize isn't even set at this point.

I will remove this.

>
>> +     nfc->dma = of_property_read_bool(pdev->dev.of_node,
>> +                                      "arasan,has-mdma");
>> +     platform_set_drvdata(pdev, nfc);
>> +     init_completion(&nfc->bufrdy);
>> +     init_completion(&nfc->xfercomp);
>> +     nfc->irq = platform_get_irq(pdev, 0);
>
> Check for errors?

I thought devm_request_irq will return error if an invalid irq number is passed.
i will cross check once again and add error check if required.

>
>> +     err = devm_request_irq(&pdev->dev, nfc->irq, anfc_irq_handler,
>> +                            0, "arasannfc", nfc);
>> +     if (err)
>> +             return err;
>> +
>> +     if (nand_scan_ident(mtd, 1, NULL)) {
>> +             dev_err(&pdev->dev, "nand_scan_ident for NAND failed\n");
>> +             return -ENXIO;
>> +     }
>> +     nfc->raddr_cycles = nand_chip->onfi_params.addr_cycles & 0xF;
>> +     nfc->caddr_cycles = (nand_chip->onfi_params.addr_cycles >> 4) & 0xF;
>
> Do you *have* to get this from ONFI? What if someone uses non-ONFI
> flash? You should at least check if this is an ONFI flash before using
> these param values.

Yes, i have to get this from onfi because though most of the flash
devices typically
using 5 address cycles (row + col) we have seen few spansion devices expecting
4 address cycles.

probably

   if (nand_chip->onfi_version) // or add an equivalent API in mtd/nand.h
      get the address cycles info from onfi
   else
       use default 5 address cycles.


Please let me know is it the correct implementation.

>
>> +
>> +     if (anfc_ecc_init(mtd, &nand_chip->ecc))
>> +             return -ENXIO;
>> +
>> +     if (nand_scan_tail(mtd)) {
>> +             dev_err(&pdev->dev, "nand_scan_tail for NAND failed\n");
>> +             return -ENXIO;
>> +     }
>> +
>> +     ppdata.of_node = pdev->dev.of_node;
>> +
>> +     mtd_device_parse_register(&nfc->mtd, NULL, &ppdata, NULL, 0);
>> +     return 0;
>
> You're ignoring the return value from mtd_device_parse_register(). How
> about:

Ok.

Thanks Brian for the review.

Regards,
Punnaiah
>
>         return mtd_device_parse_register(&nfc->mtd, NULL, &ppdata, NULL, 0);
>
>> +}
>> +
>> +static int anfc_remove(struct platform_device *pdev)
>> +{
>> +     struct anfc *nfc = platform_get_drvdata(pdev);
>> +
>> +     nand_release(&nfc->mtd);
>> +
>> +     return 0;
>> +}
>> +
>> +static const struct of_device_id anfc_ids[] = {
>> +     { .compatible = "arasan,nfc-v3p10" },
>> +     {  }
>> +};
>> +MODULE_DEVICE_TABLE(of, anfc_ids);
>> +
>> +static struct platform_driver anfc_driver = {
>> +     .driver = {
>> +             .name = DRIVER_NAME,
>> +             .of_match_table = anfc_ids,
>> +     },
>> +     .probe = anfc_probe,
>> +     .remove = anfc_remove,
>> +};
>> +module_platform_driver(anfc_driver);
>> +
>> +MODULE_LICENSE("GPL");
>> +MODULE_AUTHOR("Xilinx, Inc");
>> +MODULE_DESCRIPTION("Arasan NAND Flash Controller Driver");
>
> Brian
diff mbox

Patch

diff --git a/drivers/mtd/nand/Kconfig b/drivers/mtd/nand/Kconfig
index 5897d8d..64e497c 100644
--- a/drivers/mtd/nand/Kconfig
+++ b/drivers/mtd/nand/Kconfig
@@ -530,4 +530,11 @@  config MTD_NAND_HISI504
 	help
 	  Enables support for NAND controller on Hisilicon SoC Hip04.
 
+config MTD_NAND_ARASAN
+	tristate "Support for Arasan Nand Flash controller"
+	depends on MTD_NAND
+	help
+	  Enables the driver for the Arasan Nand Flash controller on
+	  Zynq UltraScale+ MPSoC.
+
 endif # MTD_NAND
diff --git a/drivers/mtd/nand/Makefile b/drivers/mtd/nand/Makefile
index 582bbd05..fd863ea 100644
--- a/drivers/mtd/nand/Makefile
+++ b/drivers/mtd/nand/Makefile
@@ -52,5 +52,6 @@  obj-$(CONFIG_MTD_NAND_XWAY)		+= xway_nand.o
 obj-$(CONFIG_MTD_NAND_BCM47XXNFLASH)	+= bcm47xxnflash/
 obj-$(CONFIG_MTD_NAND_SUNXI)		+= sunxi_nand.o
 obj-$(CONFIG_MTD_NAND_HISI504)	        += hisi504_nand.o
+obj-$(CONFIG_MTD_NAND_ARASAN)		+= arasan_nfc.o
 
 nand-objs := nand_base.o nand_bbt.o nand_timings.o
diff --git a/drivers/mtd/nand/arasan_nfc.c b/drivers/mtd/nand/arasan_nfc.c
new file mode 100644
index 0000000..5736864
--- /dev/null
+++ b/drivers/mtd/nand/arasan_nfc.c
@@ -0,0 +1,862 @@ 
+/*
+ * Arasan Nand Flash Controller Driver
+ *
+ * Copyright (C) 2014 - 2015 Xilinx, Inc.
+ *
+ * This program is free software; you can redistribute it and/or modify it under
+ * the terms of the GNU General Public License version 2 as published by the
+ * Free Software Foundation; either version 2 of the License, or (at your
+ * option) any later version.
+ */
+
+#include <linux/delay.h>
+#include <linux/dma-mapping.h>
+#include <linux/interrupt.h>
+#include <linux/module.h>
+#include <linux/mtd/mtd.h>
+#include <linux/mtd/nand.h>
+#include <linux/mtd/partitions.h>
+#include <linux/of.h>
+#include <linux/of_mtd.h>
+#include <linux/platform_device.h>
+
+#define DRIVER_NAME			"arasan_nfc"
+#define EVNT_TIMEOUT			1000
+#define STATUS_TIMEOUT			2000
+
+#define PKT_OFST			0x00
+#define MEM_ADDR1_OFST			0x04
+#define MEM_ADDR2_OFST			0x08
+#define CMD_OFST			0x0C
+#define PROG_OFST			0x10
+#define INTR_STS_EN_OFST		0x14
+#define INTR_SIG_EN_OFST		0x18
+#define INTR_STS_OFST			0x1C
+#define READY_STS_OFST			0x20
+#define DMA_ADDR1_OFST			0x24
+#define FLASH_STS_OFST			0x28
+#define DATA_PORT_OFST			0x30
+#define ECC_OFST			0x34
+#define ECC_ERR_CNT_OFST		0x38
+#define ECC_SPR_CMD_OFST		0x3C
+#define ECC_ERR_CNT_1BIT_OFST		0x40
+#define ECC_ERR_CNT_2BIT_OFST		0x44
+#define DMA_ADDR0_OFST			0x50
+
+#define PKT_CNT_SHIFT			12
+
+#define ECC_ENABLE			BIT(31)
+#define DMA_EN_MASK			GENMASK(27, 26)
+#define DMA_ENABLE			0x2
+#define DMA_EN_SHIFT			26
+#define PAGE_SIZE_MASK			GENMASK(25, 23)
+#define PAGE_SIZE_SHIFT			23
+#define PAGE_SIZE_512			0
+#define PAGE_SIZE_1K			5
+#define PAGE_SIZE_2K			1
+#define PAGE_SIZE_4K			2
+#define PAGE_SIZE_8K			3
+#define PAGE_SIZE_16K			4
+#define CMD2_SHIFT			8
+#define ADDR_CYCLES_SHIFT		28
+
+#define XFER_COMPLETE			BIT(2)
+#define READ_READY			BIT(1)
+#define WRITE_READY			BIT(0)
+#define MBIT_ERROR			BIT(3)
+#define ERR_INTRPT			BIT(4)
+
+#define PROG_PGRD			BIT(0)
+#define PROG_ERASE			BIT(2)
+#define PROG_STATUS			BIT(3)
+#define PROG_PGPROG			BIT(4)
+#define PROG_RDID			BIT(6)
+#define PROG_RDPARAM			BIT(7)
+#define PROG_RST			BIT(8)
+
+#define ONFI_STATUS_FAIL		BIT(0)
+#define ONFI_STATUS_READY		BIT(6)
+
+#define PG_ADDR_SHIFT			16
+#define BCH_MODE_SHIFT			25
+#define BCH_EN_SHIFT			27
+#define ECC_SIZE_SHIFT			16
+
+#define MEM_ADDR_MASK			GENMASK(7, 0)
+#define BCH_MODE_MASK			GENMASK(27, 25)
+
+#define CS_MASK				GENMASK(31, 30)
+#define CS_SHIFT			30
+
+#define PAGE_ERR_CNT_MASK		GENMASK(16, 8)
+#define PKT_ERR_CNT_MASK		GENMASK(7, 0)
+
+#define ONFI_ID_LEN			8
+#define TEMP_BUF_SIZE			512
+
+/**
+ * struct anfc_ecc_matrix - Defines ecc information storage format
+ * @pagesize:		Page size in bytes.
+ * @codeword_size:	Code word size information.
+ * @eccbits:		Number of ecc bits.
+ * @bch:		Bch / Hamming mode enable/disable.
+ * @eccsize:		Ecc size information.
+ */
+struct anfc_ecc_matrix {
+	u32 pagesize;
+	u32 codeword_size;
+	u8 eccbits;
+	u8 bch;
+	u16 eccsize;
+};
+
+static const struct anfc_ecc_matrix ecc_matrix[] = {
+	{512,	512,	1,	0,	0x3},
+	{512,	512,	4,	1,	0x7},
+	{512,	512,	8,	1,	0xD},
+	/* 2K byte page */
+	{2048,	512,	1,	0,	0xC},
+	{2048,	512,	4,	1,	0x1A},
+	{2048,	512,	8,	1,	0x34},
+	{2048,	512,	12,	1,	0x4E},
+	{2048,	1024,	24,	1,	0x54},
+	/* 4K byte page */
+	{4096,	512,	1,	0,	0x18},
+	{4096,	512,	4,	1,	0x34},
+	{4096,	512,	8,	1,	0x68},
+	{4096,	512,	12,	1,	0x9C},
+	{4096,	1024,	4,	1,	0xA8},
+	/* 8K byte page */
+	{8192,	512,	1,	0,	0x30},
+	{8192,	512,	4,	1,	0x68},
+	{8192,	512,	8,	1,	0xD0},
+	{8192,	512,	12,	1,	0x138},
+	{8192,	1024,	24,	1,	0x150},
+	/* 16K byte page */
+	{16384,	512,	1,	0,	0x60},
+	{16384,	512,	4,	1,	0xD0},
+	{16384,	512,	8,	1,	0x1A0},
+	{16384,	512,	12,	1,	0x270},
+	{16384,	1024,	24,	1,	0x2A0}
+};
+
+/**
+ * struct anfc - Defines the Arasan NAND flash driver instance
+ * @chip:		NAND chip information structure.
+ * @mtd:		MTD information structure.
+ * @parts:		Pointer to the mtd_partition structure.
+ * @dev:		Pointer to the device structure.
+ * @base:		Virtual address of the NAND flash device.
+ * @curr_cmd:		Current command issued.
+ * @dma:		Dma enable/disable.
+ * @bch:		Bch / Hamming mode enable/disable.
+ * @err:		Error identifier.
+ * @iswriteoob:		Identifies if oob write operation is required.
+ * @buf:		Buffer used for read/write byte operations.
+ * @raddr_cycles:	Row address cycle information.
+ * @caddr_cycles:	Column address cycle information.
+ * @irq:		irq number
+ * @page:		Page address to be use for write oob operations.
+ * @pktsize:		Packet size for read / write operation.
+ * @bufshift:		Variable used for indexing buffer operation
+ * @rdintrmask:		Interrupt mask value for read operation.
+ * @bufrdy:		Completion event for buffer ready.
+ * @xfercomp:		Completion event for transfer complete.
+ * @ecclayout:		Ecc layout object
+ */
+struct anfc {
+	struct nand_chip chip;
+	struct mtd_info mtd;
+	struct mtd_partition *parts;
+	struct device *dev;
+
+	void __iomem *base;
+	int curr_cmd;
+
+	bool dma;
+	bool bch;
+	bool err;
+	bool iswriteoob;
+
+	u8 buf[TEMP_BUF_SIZE];
+
+	u16 raddr_cycles;
+	u16 caddr_cycles;
+
+	u32 irq;
+	u32 page;
+	u32 pktsize;
+	u32 bufshift;
+	u32 rdintrmask;
+
+	struct completion bufrdy;
+	struct completion xfercomp;
+	struct nand_ecclayout ecclayout;
+};
+
+static u8 anfc_page(u32 pagesize)
+{
+	switch (pagesize) {
+	case 512:
+		return PAGE_SIZE_512;
+	case 2048:
+		return PAGE_SIZE_2K;
+	case 4096:
+		return PAGE_SIZE_4K;
+	case 8192:
+		return PAGE_SIZE_8K;
+	case 16384:
+		return PAGE_SIZE_16K;
+	case 1024:
+		return PAGE_SIZE_1K;
+	default:
+		break;
+	}
+
+	return 0;
+}
+
+static inline void anfc_enable_intrs(struct anfc *nfc, u32 val)
+{
+	writel(val, nfc->base + INTR_STS_EN_OFST);
+	writel(val, nfc->base + INTR_SIG_EN_OFST);
+}
+
+static int anfc_wait_for_event(struct anfc *nfc, u32 event)
+{
+	struct completion *comp;
+	int ret;
+
+	if (event == XFER_COMPLETE)
+		comp = &nfc->xfercomp;
+	else
+		comp = &nfc->bufrdy;
+
+	ret = wait_for_completion_timeout(comp, msecs_to_jiffies(EVNT_TIMEOUT));
+
+	return ret;
+}
+
+static inline void anfc_setpktszcnt(struct anfc *nfc, u32 pktsize,
+				    u32 pktcount)
+{
+	writel(pktsize | (pktcount << PKT_CNT_SHIFT), nfc->base + PKT_OFST);
+}
+
+static inline void anfc_set_eccsparecmd(struct anfc *nfc, u8 cmd1, u8 cmd2)
+{
+	writel(cmd1 | (cmd2 << CMD2_SHIFT) |
+	       (nfc->caddr_cycles << ADDR_CYCLES_SHIFT),
+	       nfc->base + ECC_SPR_CMD_OFST);
+}
+
+static void anfc_setpagecoladdr(struct anfc *nfc, u32 page, u16 col)
+{
+	u32 val;
+
+	writel(col | (page << PG_ADDR_SHIFT), nfc->base + MEM_ADDR1_OFST);
+
+	val = readl(nfc->base + MEM_ADDR2_OFST);
+	val = (val & ~MEM_ADDR_MASK) |
+	      ((page >> PG_ADDR_SHIFT) & MEM_ADDR_MASK);
+	writel(val, nfc->base + MEM_ADDR2_OFST);
+}
+
+static void anfc_prepare_cmd(struct anfc *nfc, u8 cmd1, u8 cmd2,
+			     u8 dmamode, u32 pagesize, u8 addrcycles)
+{
+	u32 regval;
+
+	regval = cmd1 | (cmd2 << CMD2_SHIFT);
+	if (dmamode && nfc->dma)
+		regval |= DMA_ENABLE << DMA_EN_SHIFT;
+	if (addrcycles)
+		regval |= addrcycles << ADDR_CYCLES_SHIFT;
+	if (pagesize)
+		regval |= anfc_page(pagesize) << PAGE_SIZE_SHIFT;
+	writel(regval, nfc->base + CMD_OFST);
+}
+
+static int anfc_device_ready(struct mtd_info *mtd,
+			     struct nand_chip *chip)
+{
+	u8 status;
+	u32 timeout = STATUS_TIMEOUT;
+
+	while (timeout--) {
+		chip->cmdfunc(mtd, NAND_CMD_STATUS, 0, 0);
+		status = chip->read_byte(mtd);
+		if (status & ONFI_STATUS_READY) {
+			if (status & ONFI_STATUS_FAIL)
+				return NAND_STATUS_FAIL;
+			return 0;
+		}
+	}
+
+	pr_err("%s timed out\n", __func__);
+	return -ETIMEDOUT;
+}
+
+static int anfc_read_oob(struct mtd_info *mtd, struct nand_chip *chip,
+			 int page)
+{
+	struct anfc *nfc = container_of(mtd, struct anfc, mtd);
+
+	chip->cmdfunc(mtd, NAND_CMD_READOOB, 0, page);
+	if (nfc->dma)
+		nfc->rdintrmask = XFER_COMPLETE;
+	else
+		nfc->rdintrmask = READ_READY;
+	chip->read_buf(mtd, chip->oob_poi, mtd->oobsize);
+
+	return 0;
+}
+
+static int anfc_write_oob(struct mtd_info *mtd, struct nand_chip *chip,
+			  int page)
+{
+	struct anfc *nfc = container_of(mtd, struct anfc, mtd);
+
+	nfc->iswriteoob = true;
+	chip->cmdfunc(mtd, NAND_CMD_SEQIN, mtd->writesize, page);
+	chip->write_buf(mtd, chip->oob_poi, mtd->oobsize);
+	nfc->iswriteoob = false;
+
+	return 0;
+}
+
+static void anfc_read_buf(struct mtd_info *mtd, uint8_t *buf, int len)
+{
+	u32 i, pktcount, buf_rd_cnt = 0, pktsize;
+	u32 *bufptr = (u32 *)buf;
+	struct anfc *nfc = container_of(mtd, struct anfc, mtd);
+	dma_addr_t paddr = 0;
+
+	if (nfc->curr_cmd == NAND_CMD_READ0) {
+		pktsize = nfc->pktsize;
+		if (mtd->writesize % pktsize)
+			pktcount = mtd->writesize / pktsize + 1;
+		else
+			pktcount = mtd->writesize / pktsize;
+	} else {
+		pktsize = len;
+		pktcount = 1;
+	}
+
+	anfc_setpktszcnt(nfc, pktsize, pktcount);
+
+	if (nfc->dma) {
+		paddr = dma_map_single(nfc->dev, buf, len, DMA_FROM_DEVICE);
+		if (dma_mapping_error(nfc->dev, paddr)) {
+			dev_err(nfc->dev, "Read buffer mapping error");
+			return;
+		}
+		writel(paddr, nfc->base + DMA_ADDR0_OFST);
+		writel(paddr >> 32, nfc->base + DMA_ADDR1_OFST);
+		anfc_enable_intrs(nfc, nfc->rdintrmask);
+		writel(PROG_PGRD, nfc->base + PROG_OFST);
+		anfc_wait_for_event(nfc, XFER_COMPLETE);
+		dma_unmap_single(nfc->dev, paddr, len, DMA_FROM_DEVICE);
+		return;
+	}
+
+	anfc_enable_intrs(nfc, nfc->rdintrmask);
+	writel(PROG_PGRD, nfc->base + PROG_OFST);
+
+	while (buf_rd_cnt < pktcount) {
+
+		anfc_wait_for_event(nfc, READ_READY);
+		buf_rd_cnt++;
+
+		if (buf_rd_cnt == pktcount)
+			anfc_enable_intrs(nfc, XFER_COMPLETE);
+
+		for (i = 0; i < pktsize / 4; i++)
+			bufptr[i] = readl(nfc->base + DATA_PORT_OFST);
+
+		bufptr += (pktsize / 4);
+
+		if (buf_rd_cnt < pktcount)
+			anfc_enable_intrs(nfc, nfc->rdintrmask);
+	}
+
+	anfc_wait_for_event(nfc, XFER_COMPLETE);
+}
+
+static void anfc_write_buf(struct mtd_info *mtd, const uint8_t *buf, int len)
+{
+	u32 buf_wr_cnt = 0, pktcount = 1, i, pktsize;
+	u32 *bufptr = (u32 *)buf;
+	struct anfc *nfc = container_of(mtd, struct anfc, mtd);
+	dma_addr_t paddr = 0;
+
+	if (nfc->iswriteoob) {
+		pktsize = len;
+		pktcount = 1;
+	} else {
+		pktsize = nfc->pktsize;
+		pktcount = mtd->writesize / pktsize;
+	}
+
+	anfc_setpktszcnt(nfc, pktsize, pktcount);
+
+	if (nfc->dma) {
+		paddr = dma_map_single(nfc->dev, (void *)buf, len,
+				       DMA_TO_DEVICE);
+		if (dma_mapping_error(nfc->dev, paddr)) {
+			dev_err(nfc->dev, "Write buffer mapping error");
+			return;
+		}
+		writel(paddr, nfc->base + DMA_ADDR0_OFST);
+		writel(paddr >> 32, nfc->base + DMA_ADDR1_OFST);
+		anfc_enable_intrs(nfc, XFER_COMPLETE);
+		writel(PROG_PGPROG, nfc->base + PROG_OFST);
+		anfc_wait_for_event(nfc, XFER_COMPLETE);
+		dma_unmap_single(nfc->dev, paddr, len, DMA_TO_DEVICE);
+		return;
+	}
+
+	anfc_enable_intrs(nfc, WRITE_READY);
+	writel(PROG_PGPROG, nfc->base + PROG_OFST);
+
+	while (buf_wr_cnt < pktcount) {
+		anfc_wait_for_event(nfc, WRITE_READY);
+
+		buf_wr_cnt++;
+		if (buf_wr_cnt == pktcount)
+			anfc_enable_intrs(nfc, XFER_COMPLETE);
+
+		for (i = 0; i < (pktsize / 4); i++)
+			writel(bufptr[i], nfc->base + DATA_PORT_OFST);
+
+		bufptr += (pktsize / 4);
+
+		if (buf_wr_cnt < pktcount)
+			anfc_enable_intrs(nfc, WRITE_READY);
+	}
+
+	anfc_wait_for_event(nfc, XFER_COMPLETE);
+}
+
+static int anfc_read_page_hwecc(struct mtd_info *mtd,
+				struct nand_chip *chip, uint8_t *buf,
+				int oob_required, int page)
+{
+	u32 val;
+	struct anfc *nfc = container_of(mtd, struct anfc, mtd);
+
+	anfc_set_eccsparecmd(nfc, NAND_CMD_RNDOUT, NAND_CMD_RNDOUTSTART);
+
+	val = readl(nfc->base + CMD_OFST);
+	val = val | ECC_ENABLE;
+	writel(val, nfc->base + CMD_OFST);
+
+	if (nfc->dma)
+		nfc->rdintrmask = XFER_COMPLETE;
+	else
+		nfc->rdintrmask = READ_READY;
+
+	if (!nfc->bch)
+		nfc->rdintrmask = MBIT_ERROR;
+
+	chip->read_buf(mtd, buf, mtd->writesize);
+
+	val = readl(nfc->base + ECC_ERR_CNT_OFST);
+	if (nfc->bch) {
+		mtd->ecc_stats.corrected += val & PAGE_ERR_CNT_MASK;
+	} else {
+		val = readl(nfc->base + ECC_ERR_CNT_1BIT_OFST);
+		mtd->ecc_stats.corrected += val;
+		val = readl(nfc->base + ECC_ERR_CNT_2BIT_OFST);
+		mtd->ecc_stats.failed += val;
+		/* Clear ecc error count register 1Bit, 2Bit */
+		writel(0x0, nfc->base + ECC_ERR_CNT_1BIT_OFST);
+		writel(0x0, nfc->base + ECC_ERR_CNT_2BIT_OFST);
+	}
+	nfc->err = false;
+
+	if (oob_required)
+		chip->ecc.read_oob(mtd, chip, page);
+
+	return 0;
+}
+
+static int anfc_write_page_hwecc(struct mtd_info *mtd,
+				 struct nand_chip *chip, const uint8_t *buf,
+				 int oob_required)
+{
+	u32 val, i;
+	struct anfc *nfc = container_of(mtd, struct anfc, mtd);
+	uint8_t *ecc_calc = chip->buffers->ecccalc;
+	uint32_t *eccpos = chip->ecc.layout->eccpos;
+
+	anfc_set_eccsparecmd(nfc, NAND_CMD_RNDIN, 0);
+
+	val = readl(nfc->base + CMD_OFST);
+	val = val | ECC_ENABLE;
+	writel(val, nfc->base + CMD_OFST);
+
+	chip->write_buf(mtd, buf, mtd->writesize);
+
+	if (oob_required) {
+		anfc_device_ready(mtd, chip);
+		chip->cmdfunc(mtd, NAND_CMD_READOOB, 0, nfc->page);
+		if (nfc->dma)
+			nfc->rdintrmask = XFER_COMPLETE;
+		else
+			nfc->rdintrmask = READ_READY;
+		chip->read_buf(mtd, ecc_calc, mtd->oobsize);
+		for (i = 0; i < chip->ecc.total; i++)
+			chip->oob_poi[eccpos[i]] = ecc_calc[eccpos[i]];
+		chip->ecc.write_oob(mtd, chip, nfc->page);
+	}
+
+	return 0;
+}
+
+static u8 anfc_read_byte(struct mtd_info *mtd)
+{
+	struct anfc *nfc = container_of(mtd, struct anfc, mtd);
+
+	return nfc->buf[nfc->bufshift++];
+}
+
+static void anfc_readfifo(struct anfc *nfc, u32 prog, u32 size)
+{
+	u32 i, *bufptr = (u32 *)&nfc->buf[0];
+
+	anfc_enable_intrs(nfc, READ_READY);
+
+	writel(prog, nfc->base + PROG_OFST);
+	anfc_wait_for_event(nfc, READ_READY);
+
+	anfc_enable_intrs(nfc, XFER_COMPLETE);
+
+	for (i = 0; i < size / 4; i++)
+		bufptr[i] = readl(nfc->base + DATA_PORT_OFST);
+
+	anfc_wait_for_event(nfc, XFER_COMPLETE);
+}
+
+static int anfc_ecc_init(struct mtd_info *mtd,
+			 struct nand_ecc_ctrl *ecc)
+{
+	u32 oob_index, i, ecc_addr, regval, bchmode = 0;
+	struct nand_chip *nand_chip = mtd->priv;
+	struct anfc *nfc = container_of(mtd, struct anfc, mtd);
+	int found = -1;
+
+	nand_chip->ecc.mode = NAND_ECC_HW;
+	nand_chip->ecc.read_page = anfc_read_page_hwecc;
+	nand_chip->ecc.write_page = anfc_write_page_hwecc;
+	nand_chip->ecc.write_oob = anfc_write_oob;
+	nand_chip->ecc.read_oob = anfc_read_oob;
+
+	for (i = 0; i < sizeof(ecc_matrix) / sizeof(struct anfc_ecc_matrix);
+	     i++) {
+		if ((ecc_matrix[i].pagesize == mtd->writesize) &&
+		    (ecc_matrix[i].codeword_size >= nand_chip->ecc_step_ds)) {
+			if (ecc_matrix[i].eccbits >=
+			    nand_chip->ecc_strength_ds) {
+				found = i;
+				break;
+			}
+			found = i;
+		}
+	}
+
+	if (found < 0) {
+		dev_err(nfc->dev, "ECC scheme not supported");
+		return 1;
+	}
+	if (ecc_matrix[found].bch) {
+		switch (ecc_matrix[found].eccbits) {
+		case 12:
+			bchmode = 0x1;
+			break;
+		case 8:
+			bchmode = 0x2;
+			break;
+		case 4:
+			bchmode = 0x3;
+			break;
+		case 24:
+			bchmode = 0x4;
+			break;
+		default:
+			bchmode = 0x0;
+		}
+	}
+
+	nand_chip->ecc.strength = ecc_matrix[found].eccbits;
+	nand_chip->ecc.size = ecc_matrix[found].codeword_size;
+	nand_chip->ecc.steps = ecc_matrix[found].pagesize /
+			       ecc_matrix[found].codeword_size;
+	nand_chip->ecc.bytes = ecc_matrix[found].eccsize /
+			       nand_chip->ecc.steps;
+	nfc->ecclayout.eccbytes = ecc_matrix[found].eccsize;
+	nfc->bch = ecc_matrix[found].bch;
+	oob_index = nand_chip->onfi_params.spare_bytes_per_page -
+		    nfc->ecclayout.eccbytes;
+	ecc_addr = mtd->writesize + oob_index;
+
+	for (i = 0; i < nand_chip->ecc.size; i++)
+		nfc->ecclayout.eccpos[i] = oob_index + i;
+
+	nfc->ecclayout.oobfree->offset = 2;
+	nfc->ecclayout.oobfree->length = oob_index -
+					 nfc->ecclayout.oobfree->offset;
+
+	nand_chip->ecc.layout = &(nfc->ecclayout);
+	regval = ecc_addr | (ecc_matrix[found].eccsize << ECC_SIZE_SHIFT) |
+		 (ecc_matrix[found].bch << BCH_EN_SHIFT);
+	writel(regval, nfc->base + ECC_OFST);
+
+	regval = readl(nfc->base + MEM_ADDR2_OFST);
+	regval = (regval & ~(BCH_MODE_MASK)) | (bchmode << BCH_MODE_SHIFT);
+	writel(regval, nfc->base + MEM_ADDR2_OFST);
+
+	if (nand_chip->ecc_step_ds >= 1024)
+		nfc->pktsize = 1024;
+	else
+		nfc->pktsize = 512;
+
+	return 0;
+}
+
+static void anfc_cmd_function(struct mtd_info *mtd,
+			      unsigned int cmd, int column, int page_addr)
+{
+	struct anfc *nfc = container_of(mtd, struct anfc, mtd);
+	bool wait = false, read = false;
+	u32 addrcycles, prog;
+	u32 *bufptr = (u32 *)&nfc->buf[0];
+
+	nfc->bufshift = 0;
+	nfc->curr_cmd = cmd;
+
+	if (page_addr == -1)
+		page_addr = 0;
+	if (column == -1)
+		column = 0;
+
+	switch (cmd) {
+	case NAND_CMD_RESET:
+		anfc_prepare_cmd(nfc, cmd, 0, 0, 0, 0);
+		prog = PROG_RST;
+		wait = true;
+		break;
+	case NAND_CMD_SEQIN:
+		addrcycles = nfc->raddr_cycles + nfc->caddr_cycles;
+		nfc->page = page_addr;
+		anfc_prepare_cmd(nfc, cmd, NAND_CMD_PAGEPROG, 1,
+				 mtd->writesize, addrcycles);
+		anfc_setpagecoladdr(nfc, page_addr, column);
+		break;
+	case NAND_CMD_READOOB:
+		column += mtd->writesize;
+	case NAND_CMD_READ0:
+	case NAND_CMD_READ1:
+		addrcycles = nfc->raddr_cycles + nfc->caddr_cycles;
+		anfc_prepare_cmd(nfc, NAND_CMD_READ0, NAND_CMD_READSTART, 1,
+				 mtd->writesize, addrcycles);
+		anfc_setpagecoladdr(nfc, page_addr, column);
+		break;
+	case NAND_CMD_RNDOUT:
+		anfc_prepare_cmd(nfc, cmd, NAND_CMD_RNDOUTSTART, 1,
+				 mtd->writesize, 2);
+		anfc_setpagecoladdr(nfc, page_addr, column);
+		if (nfc->dma)
+			nfc->rdintrmask = XFER_COMPLETE;
+		else
+			nfc->rdintrmask = READ_READY;
+		break;
+	case NAND_CMD_PARAM:
+		anfc_prepare_cmd(nfc, cmd, 0, 0, 0, 1);
+		anfc_setpagecoladdr(nfc, page_addr, column);
+		anfc_setpktszcnt(nfc, sizeof(struct nand_onfi_params), 1);
+		anfc_readfifo(nfc, PROG_RDPARAM,
+				sizeof(struct nand_onfi_params));
+		break;
+	case NAND_CMD_READID:
+		anfc_prepare_cmd(nfc, cmd, 0, 0, 0, 1);
+		anfc_setpagecoladdr(nfc, page_addr, column);
+		anfc_setpktszcnt(nfc, ONFI_ID_LEN, 1);
+		anfc_readfifo(nfc, PROG_RDID, ONFI_ID_LEN);
+		break;
+	case NAND_CMD_ERASE1:
+		addrcycles = nfc->raddr_cycles;
+		prog = PROG_ERASE;
+		anfc_prepare_cmd(nfc, cmd, NAND_CMD_ERASE2, 0, 0, addrcycles);
+		column = page_addr & 0xffff;
+		page_addr = (page_addr >> PG_ADDR_SHIFT) & 0xffff;
+		anfc_setpagecoladdr(nfc, page_addr, column);
+		wait = true;
+		break;
+	case NAND_CMD_STATUS:
+		anfc_prepare_cmd(nfc, cmd, 0, 0, 0, 0);
+		anfc_setpktszcnt(nfc, 1, 1);
+		anfc_setpagecoladdr(nfc, page_addr, column);
+		prog = PROG_STATUS;
+		wait = read = true;
+		break;
+	default:
+		return;
+	}
+
+	if (wait) {
+		anfc_enable_intrs(nfc, XFER_COMPLETE);
+		writel(prog, nfc->base + PROG_OFST);
+		anfc_wait_for_event(nfc, XFER_COMPLETE);
+	}
+
+	if (read)
+		bufptr[0] = readl(nfc->base + FLASH_STS_OFST);
+}
+
+static void anfc_select_chip(struct mtd_info *mtd, int num)
+{
+	u32 val;
+	struct anfc *nfc = container_of(mtd, struct anfc, mtd);
+
+	if (num == -1)
+		return;
+
+	val = readl(nfc->base + MEM_ADDR2_OFST);
+	val = (val & ~(CS_MASK)) | (num << CS_SHIFT);
+	writel(val, nfc->base + MEM_ADDR2_OFST);
+}
+
+static irqreturn_t anfc_irq_handler(int irq, void *ptr)
+{
+	struct anfc *nfc = ptr;
+	u32 regval = 0, status;
+
+	status = readl(nfc->base + INTR_STS_OFST);
+	if (status & XFER_COMPLETE) {
+		complete(&nfc->xfercomp);
+		regval |= XFER_COMPLETE;
+	}
+
+	if (status & READ_READY) {
+		complete(&nfc->bufrdy);
+		regval |= READ_READY;
+	}
+
+	if (status & WRITE_READY) {
+		complete(&nfc->bufrdy);
+		regval |= WRITE_READY;
+	}
+
+	if (status & MBIT_ERROR) {
+		nfc->err = true;
+		complete(&nfc->bufrdy);
+		regval |= MBIT_ERROR;
+	}
+
+	if (regval) {
+		writel(regval, nfc->base + INTR_STS_OFST);
+		writel(0, nfc->base + INTR_STS_EN_OFST);
+		writel(0, nfc->base + INTR_SIG_EN_OFST);
+
+		return IRQ_HANDLED;
+	}
+
+	return IRQ_NONE;
+}
+
+static int anfc_probe(struct platform_device *pdev)
+{
+	struct anfc *nfc;
+	struct mtd_info *mtd;
+	struct nand_chip *nand_chip;
+	struct resource *res;
+	struct mtd_part_parser_data ppdata;
+	int err;
+
+	nfc = devm_kzalloc(&pdev->dev, sizeof(*nfc), GFP_KERNEL);
+	if (!nfc)
+		return -ENOMEM;
+
+	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
+	nfc->base = devm_ioremap_resource(&pdev->dev, res);
+	if (IS_ERR(nfc->base))
+		return PTR_ERR(nfc->base);
+
+	mtd = &nfc->mtd;
+	nand_chip = &nfc->chip;
+	nand_chip->priv = nfc;
+	mtd->priv = nand_chip;
+	mtd->owner = THIS_MODULE;
+	mtd->name = DRIVER_NAME;
+	nfc->dev = &pdev->dev;
+
+	nand_chip->cmdfunc = anfc_cmd_function;
+	nand_chip->waitfunc = anfc_device_ready;
+	nand_chip->chip_delay = 30;
+	nand_chip->read_buf = anfc_read_buf;
+	nand_chip->write_buf = anfc_write_buf;
+	nand_chip->read_byte = anfc_read_byte;
+	nand_chip->bbt_options = NAND_BBT_USE_FLASH;
+	nand_chip->select_chip = anfc_select_chip;
+	mtd->size = nand_chip->chipsize;
+	nfc->dma = of_property_read_bool(pdev->dev.of_node,
+					 "arasan,has-mdma");
+	platform_set_drvdata(pdev, nfc);
+	init_completion(&nfc->bufrdy);
+	init_completion(&nfc->xfercomp);
+	nfc->irq = platform_get_irq(pdev, 0);
+	err = devm_request_irq(&pdev->dev, nfc->irq, anfc_irq_handler,
+			       0, "arasannfc", nfc);
+	if (err)
+		return err;
+
+	if (nand_scan_ident(mtd, 1, NULL)) {
+		dev_err(&pdev->dev, "nand_scan_ident for NAND failed\n");
+		return -ENXIO;
+	}
+	nfc->raddr_cycles = nand_chip->onfi_params.addr_cycles & 0xF;
+	nfc->caddr_cycles = (nand_chip->onfi_params.addr_cycles >> 4) & 0xF;
+
+	if (anfc_ecc_init(mtd, &nand_chip->ecc))
+		return -ENXIO;
+
+	if (nand_scan_tail(mtd)) {
+		dev_err(&pdev->dev, "nand_scan_tail for NAND failed\n");
+		return -ENXIO;
+	}
+
+	ppdata.of_node = pdev->dev.of_node;
+
+	mtd_device_parse_register(&nfc->mtd, NULL, &ppdata, NULL, 0);
+	return 0;
+}
+
+static int anfc_remove(struct platform_device *pdev)
+{
+	struct anfc *nfc = platform_get_drvdata(pdev);
+
+	nand_release(&nfc->mtd);
+
+	return 0;
+}
+
+static const struct of_device_id anfc_ids[] = {
+	{ .compatible = "arasan,nfc-v3p10" },
+	{  }
+};
+MODULE_DEVICE_TABLE(of, anfc_ids);
+
+static struct platform_driver anfc_driver = {
+	.driver = {
+		.name = DRIVER_NAME,
+		.of_match_table = anfc_ids,
+	},
+	.probe = anfc_probe,
+	.remove = anfc_remove,
+};
+module_platform_driver(anfc_driver);
+
+MODULE_LICENSE("GPL");
+MODULE_AUTHOR("Xilinx, Inc");
+MODULE_DESCRIPTION("Arasan NAND Flash Controller Driver");