diff mbox

[4/7] cxgb4: Add packet queues and packet DMA code

Message ID 1267373385-1665-5-git-send-email-dm@chelsio.com
State Accepted, archived
Delegated to: David Miller
Headers show

Commit Message

Dimitris Michailidis Feb. 28, 2010, 4:09 p.m. UTC
Signed-off-by: Dimitris Michailidis <dm@chelsio.com>
---
 drivers/net/cxgb4/sge.c | 2438 +++++++++++++++++++++++++++++++++++++++++++++++
 1 files changed, 2438 insertions(+), 0 deletions(-)
 create mode 100644 drivers/net/cxgb4/sge.c
diff mbox

Patch

diff --git a/drivers/net/cxgb4/sge.c b/drivers/net/cxgb4/sge.c
new file mode 100644
index 0000000..eb81d73
--- /dev/null
+++ b/drivers/net/cxgb4/sge.c
@@ -0,0 +1,2438 @@ 
+/*
+ * This file is part of the Chelsio T4 Ethernet driver for Linux.
+ *
+ * Copyright (c) 2003-2010 Chelsio Communications, Inc. All rights reserved.
+ *
+ * This software is available to you under a choice of one of two
+ * licenses.  You may choose to be licensed under the terms of the GNU
+ * General Public License (GPL) Version 2, available from the file
+ * COPYING in the main directory of this source tree, or the
+ * OpenIB.org BSD license below:
+ *
+ *     Redistribution and use in source and binary forms, with or
+ *     without modification, are permitted provided that the following
+ *     conditions are met:
+ *
+ *      - Redistributions of source code must retain the above
+ *        copyright notice, this list of conditions and the following
+ *        disclaimer.
+ *
+ *      - Redistributions in binary form must reproduce the above
+ *        copyright notice, this list of conditions and the following
+ *        disclaimer in the documentation and/or other materials
+ *        provided with the distribution.
+ *
+ * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
+ * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
+ * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
+ * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
+ * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
+ * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
+ * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
+ * SOFTWARE.
+ */
+
+#include <linux/skbuff.h>
+#include <linux/netdevice.h>
+#include <linux/etherdevice.h>
+#include <linux/if_vlan.h>
+#include <linux/ip.h>
+#include <linux/dma-mapping.h>
+#include <net/ipv6.h>
+#include <net/tcp.h>
+#include "cxgb4.h"
+#include "t4_regs.h"
+#include "t4_msg.h"
+#include "t4fw_api.h"
+
+/*
+ * Rx buffer size.  We use largish buffers if possible but settle for single
+ * pages under memory shortage.
+ */
+#if PAGE_SHIFT >= 16
+# define FL_PG_ORDER 0
+#else
+# define FL_PG_ORDER (16 - PAGE_SHIFT)
+#endif
+
+/* RX_PULL_LEN should be <= RX_COPY_THRES */
+#define RX_COPY_THRES    256
+#define RX_PULL_LEN      128
+
+/*
+ * Main body length for sk_buffs used for Rx Ethernet packets with fragments.
+ * Should be >= RX_PULL_LEN but possibly bigger to give pskb_may_pull some room.
+ */
+#define RX_PKT_SKB_LEN   512
+
+/* Ethernet header padding prepended to RX_PKTs */
+#define RX_PKT_PAD 2
+
+/*
+ * Max number of Tx descriptors we clean up at a time.  Should be modest as
+ * freeing skbs isn't cheap and it happens while holding locks.  We just need
+ * to free packets faster than they arrive, we eventually catch up and keep
+ * the amortized cost reasonable.  Must be >= 2 * TXQ_STOP_THRES.
+ */
+#define MAX_TX_RECLAIM 16
+
+/*
+ * Max number of Rx buffers we replenish at a time.  Again keep this modest,
+ * allocating buffers isn't cheap either.
+ */
+#define MAX_RX_REFILL 16U
+
+/*
+ * Period of the Rx queue check timer.  This timer is infrequent as it has
+ * something to do only when the system experiences severe memory shortage.
+ */
+#define RX_QCHECK_PERIOD (HZ / 2)
+
+/*
+ * Period of the Tx queue check timer.
+ */
+#define TX_QCHECK_PERIOD (HZ / 2)
+
+/*
+ * Timer index used when backing off due to memory shortage.
+ */
+#define NOMEM_TMR_IDX (SGE_NTIMERS - 1)
+
+/*
+ * An FL with <= FL_STARVE_THRES buffers is starving and a periodic timer will
+ * attempt to refill it.
+ */
+#define FL_STARVE_THRES 4
+
+/*
+ * Suspend an Ethernet Tx queue with fewer available descriptors than this.
+ * This is the same as calc_tx_descs() for a TSO packet with
+ * nr_frags == MAX_SKB_FRAGS.
+ */
+#define ETHTXQ_STOP_THRES \
+	(1 + DIV_ROUND_UP((3 * MAX_SKB_FRAGS) / 2 + (MAX_SKB_FRAGS & 1), 8))
+
+/*
+ * Suspension threshold for non-Ethernet Tx queues.  We require enough room
+ * for a full sized WR.
+ */
+#define TXQ_STOP_THRES (SGE_MAX_WR_LEN / sizeof(struct tx_desc))
+
+/*
+ * Max Tx descriptor space we allow for an Ethernet packet to be inlined
+ * into a WR.
+ */
+#define MAX_IMM_TX_PKT_LEN 128
+
+/*
+ * Max size of a WR sent through a control Tx queue.
+ */
+#define MAX_CTRL_WR_LEN SGE_MAX_WR_LEN
+
+enum {
+	/* packet alignment in FL buffers */
+	FL_ALIGN = L1_CACHE_BYTES < 32 ? 32 : L1_CACHE_BYTES,
+	/* egress status entry size */
+	STAT_LEN = L1_CACHE_BYTES > 64 ? 128 : 64
+};
+
+struct tx_sw_desc {                /* SW state per Tx descriptor */
+	struct sk_buff *skb;
+	struct ulptx_sgl *sgl;
+};
+
+struct rx_sw_desc {                /* SW state per Rx descriptor */
+	struct page *page;
+	dma_addr_t dma_addr;
+};
+
+/*
+ * The low bits of rx_sw_desc.dma_addr have special meaning.
+ */
+enum {
+	RX_LARGE_BUF    = 1 << 0, /* buffer is larger than PAGE_SIZE */
+	RX_UNMAPPED_BUF = 1 << 1, /* buffer is not mapped */
+};
+
+static inline dma_addr_t get_buf_addr(const struct rx_sw_desc *d)
+{
+	return d->dma_addr & ~(dma_addr_t)(RX_LARGE_BUF | RX_UNMAPPED_BUF);
+}
+
+static inline bool is_buf_mapped(const struct rx_sw_desc *d)
+{
+	return !(d->dma_addr & RX_UNMAPPED_BUF);
+}
+
+/**
+ *	txq_avail - return the number of available slots in a Tx queue
+ *	@q: the Tx queue
+ *
+ *	Returns the number of descriptors in a Tx queue available to write new
+ *	packets.
+ */
+static inline unsigned int txq_avail(const struct sge_txq *q)
+{
+	return q->size - 1 - q->in_use;
+}
+
+/**
+ *	fl_cap - return the capacity of a free-buffer list
+ *	@fl: the FL
+ *
+ *	Returns the capacity of a free-buffer list.  The capacity is less than
+ *	the size because one descriptor needs to be left unpopulated, otherwise
+ *	HW will think the FL is empty.
+ */
+static inline unsigned int fl_cap(const struct sge_fl *fl)
+{
+	return fl->size - 8;   /* 1 descriptor = 8 buffers */
+}
+
+static inline bool fl_starving(const struct sge_fl *fl)
+{
+	return fl->avail - fl->pend_cred <= FL_STARVE_THRES;
+}
+
+static int map_skb(struct device *dev, const struct sk_buff *skb,
+		   dma_addr_t *addr)
+{
+	const skb_frag_t *fp, *end;
+	const struct skb_shared_info *si;
+
+	*addr = dma_map_single(dev, skb->data, skb_headlen(skb), DMA_TO_DEVICE);
+	if (dma_mapping_error(dev, *addr))
+		goto out_err;
+
+	si = skb_shinfo(skb);
+	end = &si->frags[si->nr_frags];
+
+	for (fp = si->frags; fp < end; fp++) {
+		*++addr = dma_map_page(dev, fp->page, fp->page_offset, fp->size,
+				       DMA_TO_DEVICE);
+		if (dma_mapping_error(dev, *addr))
+			goto unwind;
+	}
+	return 0;
+
+unwind:
+	while (fp-- > si->frags)
+		dma_unmap_page(dev, *--addr, fp->size, DMA_TO_DEVICE);
+
+	dma_unmap_single(dev, addr[-1], skb_headlen(skb), DMA_TO_DEVICE);
+out_err:
+	return -ENOMEM;
+}
+
+static void unmap_skb(struct device *dev, const struct sk_buff *skb,
+		      const dma_addr_t *addr)
+{
+	const skb_frag_t *fp, *end;
+	const struct skb_shared_info *si;
+
+	dma_unmap_single(dev, *addr++, skb_headlen(skb), DMA_TO_DEVICE);
+
+	si = skb_shinfo(skb);
+	end = &si->frags[si->nr_frags];
+	for (fp = si->frags; fp < end; fp++)
+		dma_unmap_page(dev, *addr++, fp->size, DMA_TO_DEVICE);
+}
+
+static void unmap_sgl(struct device *dev, const struct sk_buff *skb,
+		      const struct ulptx_sgl *sgl, const struct sge_txq *q)
+{
+	const struct ulptx_sge_pair *p;
+	unsigned int nfrags = skb_shinfo(skb)->nr_frags;
+
+	if (likely(skb_headlen(skb)))
+		dma_unmap_single(dev, be64_to_cpu(sgl->addr0), ntohl(sgl->len0),
+				 DMA_TO_DEVICE);
+	else {
+		dma_unmap_page(dev, be64_to_cpu(sgl->addr0), ntohl(sgl->len0),
+			       DMA_TO_DEVICE);
+		nfrags--;
+	}
+
+	/*
+	 * the complexity below is because of the possibility of a wrap-around
+	 * in the middle of an SGL
+	 */
+	for (p = sgl->sge; nfrags >= 2; nfrags -= 2) {
+		if (likely((u8 *)(p + 1) <= (u8 *)q->stat)) {
+unmap:			dma_unmap_page(dev, be64_to_cpu(p->addr[0]),
+				       ntohl(p->len[0]), DMA_TO_DEVICE);
+			dma_unmap_page(dev, be64_to_cpu(p->addr[1]),
+				       ntohl(p->len[1]), DMA_TO_DEVICE);
+			p++;
+		} else if ((u8 *)p == (u8 *)q->stat) {
+			p = (const struct ulptx_sge_pair *)q->desc;
+			goto unmap;
+		} else if ((u8 *)p + 8 == (u8 *)q->stat) {
+			const __be64 *addr = (const __be64 *)q->desc;
+
+			dma_unmap_page(dev, be64_to_cpu(addr[0]),
+				       ntohl(p->len[0]), DMA_TO_DEVICE);
+			dma_unmap_page(dev, be64_to_cpu(addr[1]),
+				       ntohl(p->len[1]), DMA_TO_DEVICE);
+			p = (const struct ulptx_sge_pair *)&addr[2];
+		} else {
+			const __be64 *addr = (const __be64 *)q->desc;
+
+			dma_unmap_page(dev, be64_to_cpu(p->addr[0]),
+				       ntohl(p->len[0]), DMA_TO_DEVICE);
+			dma_unmap_page(dev, be64_to_cpu(addr[0]),
+				       ntohl(p->len[1]), DMA_TO_DEVICE);
+			p = (const struct ulptx_sge_pair *)&addr[1];
+		}
+	}
+	if (nfrags) {
+		__be64 addr;
+
+		if ((u8 *)p == (u8 *)q->stat)
+			p = (const struct ulptx_sge_pair *)q->desc;
+		addr = (u8 *)p + 16 <= (u8 *)q->stat ? p->addr[0] :
+						       *(const __be64 *)q->desc;
+		dma_unmap_page(dev, be64_to_cpu(addr), ntohl(p->len[0]),
+			       DMA_TO_DEVICE);
+	}
+}
+
+/**
+ *	free_tx_desc - reclaims Tx descriptors and their buffers
+ *	@adapter: the adapter
+ *	@q: the Tx queue to reclaim descriptors from
+ *	@n: the number of descriptors to reclaim
+ *	@unmap: whether the buffers should be unmapped for DMA
+ *
+ *	Reclaims Tx descriptors from an SGE Tx queue and frees the associated
+ *	Tx buffers.  Called with the Tx queue lock held.
+ */
+static void free_tx_desc(struct adapter *adap, struct sge_txq *q,
+			 unsigned int n, bool unmap)
+{
+	struct tx_sw_desc *d;
+	unsigned int cidx = q->cidx;
+	struct device *dev = adap->pdev_dev;
+
+	d = &q->sdesc[cidx];
+	while (n--) {
+		if (d->skb) {                       /* an SGL is present */
+			if (unmap)
+				unmap_sgl(dev, d->skb, d->sgl, q);
+			kfree_skb(d->skb);
+			d->skb = NULL;
+		}
+		++d;
+		if (++cidx == q->size) {
+			cidx = 0;
+			d = q->sdesc;
+		}
+	}
+	q->cidx = cidx;
+}
+
+/*
+ * Return the number of reclaimable descriptors in a Tx queue.
+ */
+static inline int reclaimable(const struct sge_txq *q)
+{
+	int hw_cidx = ntohs(q->stat->cidx);
+	hw_cidx -= q->cidx;
+	return hw_cidx < 0 ? hw_cidx + q->size : hw_cidx;
+}
+
+/**
+ *	reclaim_completed_tx - reclaims completed Tx descriptors
+ *	@adap: the adapter
+ *	@q: the Tx queue to reclaim completed descriptors from
+ *	@unmap: whether the buffers should be unmapped for DMA
+ *
+ *	Reclaims Tx descriptors that the SGE has indicated it has processed,
+ *	and frees the associated buffers if possible.  Called with the Tx
+ *	queue locked.
+ */
+static inline void reclaim_completed_tx(struct adapter *adap, struct sge_txq *q,
+					bool unmap)
+{
+	int avail = reclaimable(q);
+
+	if (avail) {
+		/*
+		 * Limit the amount of clean up work we do at a time to keep
+		 * the Tx lock hold time O(1).
+		 */
+		if (avail > MAX_TX_RECLAIM)
+			avail = MAX_TX_RECLAIM;
+
+		free_tx_desc(adap, q, avail, unmap);
+		q->in_use -= avail;
+	}
+}
+
+static inline int get_buf_size(const struct rx_sw_desc *d)
+{
+#if FL_PG_ORDER > 0
+	return (d->dma_addr & RX_LARGE_BUF) ? (PAGE_SIZE << FL_PG_ORDER) :
+					      PAGE_SIZE;
+#else
+	return PAGE_SIZE;
+#endif
+}
+
+/**
+ *	free_rx_bufs - free the Rx buffers on an SGE free list
+ *	@adap: the adapter
+ *	@q: the SGE free list to free buffers from
+ *	@n: how many buffers to free
+ *
+ *	Release the next @n buffers on an SGE free-buffer Rx queue.   The
+ *	buffers must be made inaccessible to HW before calling this function.
+ */
+static void free_rx_bufs(struct adapter *adap, struct sge_fl *q, int n)
+{
+	while (n--) {
+		struct rx_sw_desc *d = &q->sdesc[q->cidx];
+
+		if (is_buf_mapped(d))
+			dma_unmap_page(adap->pdev_dev, get_buf_addr(d),
+				       get_buf_size(d), PCI_DMA_FROMDEVICE);
+		put_page(d->page);
+		d->page = NULL;
+		if (++q->cidx == q->size)
+			q->cidx = 0;
+		q->avail--;
+	}
+}
+
+/**
+ *	unmap_rx_buf - unmap the current Rx buffer on an SGE free list
+ *	@adap: the adapter
+ *	@q: the SGE free list
+ *
+ *	Unmap the current buffer on an SGE free-buffer Rx queue.   The
+ *	buffer must be made inaccessible to HW before calling this function.
+ *
+ *	This is similar to @free_rx_bufs above but does not free the buffer.
+ *	Do note that the FL still loses any further access to the buffer.
+ */
+static void unmap_rx_buf(struct adapter *adap, struct sge_fl *q)
+{
+	struct rx_sw_desc *d = &q->sdesc[q->cidx];
+
+	if (is_buf_mapped(d))
+		dma_unmap_page(adap->pdev_dev, get_buf_addr(d),
+			       get_buf_size(d), PCI_DMA_FROMDEVICE);
+	d->page = NULL;
+	if (++q->cidx == q->size)
+		q->cidx = 0;
+	q->avail--;
+}
+
+static inline void ring_fl_db(struct adapter *adap, struct sge_fl *q)
+{
+	if (q->pend_cred >= 8) {
+		t4_write_reg(adap, MYPF_REG(SGE_PF_KDOORBELL), DBPRIO |
+			     QID(q->cntxt_id) | PIDX(q->pend_cred / 8));
+		q->pend_cred &= 7;
+	}
+}
+
+static inline void set_rx_sw_desc(struct rx_sw_desc *sd, struct page *pg,
+				  dma_addr_t mapping)
+{
+	sd->page = pg;
+	sd->dma_addr = mapping;      /* includes size low bits */
+}
+
+/**
+ *	refill_fl - refill an SGE Rx buffer ring
+ *	@adap: the adapter
+ *	@q: the ring to refill
+ *	@n: the number of new buffers to allocate
+ *	@gfp: the gfp flags for the allocations
+ *
+ *	(Re)populate an SGE free-buffer queue with up to @n new packet buffers,
+ *	allocated with the supplied gfp flags.  The caller must assure that
+ *	@n does not exceed the queue's capacity.  Returns the number of buffers
+ *	allocated.
+ */
+static unsigned int refill_fl(struct adapter *adap, struct sge_fl *q, int n,
+			      gfp_t gfp)
+{
+	struct page *pg;
+	dma_addr_t mapping;
+	unsigned int cred = q->avail;
+	__be64 *d = &q->desc[q->pidx];
+	struct rx_sw_desc *sd = &q->sdesc[q->pidx];
+
+	gfp |= __GFP_NOWARN;         /* failures are expected */
+
+#if FL_PG_ORDER > 0
+	/*
+	 * Prefer large buffers
+	 */
+	while (n) {
+		pg = alloc_pages(gfp | __GFP_COMP, FL_PG_ORDER);
+		if (unlikely(!pg)) {
+			q->large_alloc_failed++;
+			break;       /* fall back to single pages */
+		}
+
+		mapping = dma_map_page(adap->pdev_dev, pg, 0,
+				       PAGE_SIZE << FL_PG_ORDER,
+				       PCI_DMA_FROMDEVICE);
+		if (unlikely(dma_mapping_error(adap->pdev_dev, mapping))) {
+			__free_pages(pg, FL_PG_ORDER);
+			goto out;   /* do not try small pages for this error */
+		}
+		mapping |= RX_LARGE_BUF;
+		*d++ = cpu_to_be64(mapping);
+
+		set_rx_sw_desc(sd, pg, mapping);
+		sd++;
+
+		q->avail++;
+		if (++q->pidx == q->size) {
+			q->pidx = 0;
+			sd = q->sdesc;
+			d = q->desc;
+		}
+		n--;
+	}
+#endif
+
+	while (n--) {
+		pg = __netdev_alloc_page(adap->port[0], gfp);
+		if (unlikely(!pg)) {
+			q->alloc_failed++;
+			break;
+		}
+
+		mapping = dma_map_page(adap->pdev_dev, pg, 0, PAGE_SIZE,
+				       PCI_DMA_FROMDEVICE);
+		if (unlikely(dma_mapping_error(adap->pdev_dev, mapping))) {
+			netdev_free_page(adap->port[0], pg);
+			break;
+		}
+		*d++ = cpu_to_be64(mapping);
+
+		set_rx_sw_desc(sd, pg, mapping);
+		sd++;
+
+		q->avail++;
+		if (++q->pidx == q->size) {
+			q->pidx = 0;
+			sd = q->sdesc;
+			d = q->desc;
+		}
+	}
+
+out:	cred = q->avail - cred;
+	q->pend_cred += cred;
+	ring_fl_db(adap, q);
+	return cred;
+}
+
+static inline void __refill_fl(struct adapter *adap, struct sge_fl *fl)
+{
+	refill_fl(adap, fl, min(MAX_RX_REFILL, fl_cap(fl) - fl->avail),
+		  GFP_ATOMIC);
+}
+
+/**
+ *	replenish_fl - refill an SGE Rx buffer ring and check for starvation
+ *	@adap: the adapter
+ *	@fl: the ring to refill
+ *	@gfp: the gfp flags for the allocations
+ *
+ *	Attempt to refill an FL to capacity.  If afterwards the queue is found
+ *	critically low mark it as starving in the bitmap of starving FLs.
+ */
+static void replenish_fl(struct adapter *adap, struct sge_fl *fl, gfp_t gfp)
+{
+	refill_fl(adap, fl, fl_cap(fl) - fl->avail, gfp);
+	if (unlikely(fl_starving(fl)))
+		set_bit(fl->cntxt_id, adap->sge.starving_fl);
+}
+
+/**
+ *	alloc_ring - allocate resources for an SGE descriptor ring
+ *	@dev: the PCI device's core device
+ *	@nelem: the number of descriptors
+ *	@elem_size: the size of each descriptor
+ *	@sw_size: the size of the SW state associated with each ring element
+ *	@phys: the physical address of the allocated ring
+ *	@metadata: address of the array holding the SW state for the ring
+ *	@stat_size: extra space in HW ring for status information
+ *
+ *	Allocates resources for an SGE descriptor ring, such as Tx queues,
+ *	free buffer lists, or response queues.  Each SGE ring requires
+ *	space for its HW descriptors plus, optionally, space for the SW state
+ *	associated with each HW entry (the metadata).  The function returns
+ *	three values: the virtual address for the HW ring (the return value
+ *	of the function), the bus address of the HW ring, and the address
+ *	of the SW ring.
+ */
+static void *alloc_ring(struct device *dev, size_t nelem, size_t elem_size,
+			size_t sw_size, dma_addr_t *phys, void *metadata,
+			size_t stat_size)
+{
+	size_t len = nelem * elem_size + stat_size;
+	void *s = NULL;
+	void *p = dma_alloc_coherent(dev, len, phys, GFP_KERNEL);
+
+	if (!p)
+		return NULL;
+	if (sw_size) {
+		s = kcalloc(nelem, sw_size, GFP_KERNEL);
+
+		if (!s) {
+			dma_free_coherent(dev, len, p, *phys);
+			return NULL;
+		}
+	}
+	if (metadata)
+		*(void **)metadata = s;
+	memset(p, 0, len);
+	return p;
+}
+
+/**
+ *	sgl_len - calculates the size of an SGL of the given capacity
+ *	@n: the number of SGL entries
+ *
+ *	Calculates the number of flits needed for a scatter/gather list that
+ *	can hold the given number of entries.
+ */
+static inline unsigned int sgl_len(unsigned int n)
+{
+	n--;
+	return (3 * n) / 2 + (n & 1) + 2;
+}
+
+/**
+ *	flits_to_desc - returns the num of Tx descriptors for the given flits
+ *	@n: the number of flits
+ *
+ *	Returns the number of Tx descriptors needed for the supplied number
+ *	of flits.
+ */
+static inline unsigned int flits_to_desc(unsigned int n)
+{
+	BUG_ON(n > SGE_MAX_WR_LEN / 8);
+	return DIV_ROUND_UP(n, 8);
+}
+
+/**
+ *	is_eth_imm - can an Ethernet packet be sent as immediate data?
+ *	@skb: the packet
+ *
+ *	Returns whether an Ethernet packet is small enough to fit as
+ *	immediate data.
+ */
+static inline int is_eth_imm(const struct sk_buff *skb)
+{
+	return skb->len <= MAX_IMM_TX_PKT_LEN - sizeof(struct cpl_tx_pkt);
+}
+
+/**
+ *	calc_tx_flits - calculate the number of flits for a packet Tx WR
+ *	@skb: the packet
+ *
+ * 	Returns the number of flits needed for a Tx WR for the given Ethernet
+ * 	packet, including the needed WR and CPL headers.
+ */
+static inline unsigned int calc_tx_flits(const struct sk_buff *skb)
+{
+	unsigned int flits;
+
+	if (is_eth_imm(skb))
+		return DIV_ROUND_UP(skb->len + sizeof(struct cpl_tx_pkt), 8);
+
+	flits = sgl_len(skb_shinfo(skb)->nr_frags + 1) + 4;
+	if (skb_shinfo(skb)->gso_size)
+		flits += 2;
+	return flits;
+}
+
+/**
+ *	calc_tx_descs - calculate the number of Tx descriptors for a packet
+ *	@skb: the packet
+ *
+ * 	Returns the number of Tx descriptors needed for the given Ethernet
+ * 	packet, including the needed WR and CPL headers.
+ */
+static inline unsigned int calc_tx_descs(const struct sk_buff *skb)
+{
+	return flits_to_desc(calc_tx_flits(skb));
+}
+
+/**
+ *	write_sgl - populate a scatter/gather list for a packet
+ *	@skb: the packet
+ *	@q: the Tx queue we are writing into
+ *	@sgl: starting location for writing the SGL
+ *	@end: points right after the end of the SGL
+ *	@start: start offset into skb main-body data to include in the SGL
+ *	@addr: the list of bus addresses for the SGL elements
+ *
+ *	Generates a gather list for the buffers that make up a packet.
+ *	The caller must provide adequate space for the SGL that will be written.
+ *	The SGL includes all of the packet's page fragments and the data in its
+ *	main body except for the first @start bytes.  @sgl must be 16-byte
+ *	aligned and within a Tx descriptor with available space.  @end points
+ *	right after the end of the SGL but does not account for any potential
+ *	wrap around, i.e., @end > @sgl.
+ */
+static void write_sgl(const struct sk_buff *skb, struct sge_txq *q,
+		      struct ulptx_sgl *sgl, u64 *end, unsigned int start,
+		      const dma_addr_t *addr)
+{
+	unsigned int i, len;
+	struct ulptx_sge_pair *to;
+	const struct skb_shared_info *si = skb_shinfo(skb);
+	unsigned int nfrags = si->nr_frags;
+	struct ulptx_sge_pair buf[MAX_SKB_FRAGS / 2 + 1];
+
+	len = skb_headlen(skb) - start;
+	if (likely(len)) {
+		sgl->len0 = htonl(len);
+		sgl->addr0 = cpu_to_be64(addr[0] + start);
+		nfrags++;
+	} else {
+		sgl->len0 = htonl(si->frags[0].size);
+		sgl->addr0 = cpu_to_be64(addr[1]);
+	}
+
+	sgl->cmd_nsge = htonl(ULPTX_CMD(ULP_TX_SC_DSGL) | ULPTX_NSGE(nfrags));
+	if (likely(--nfrags == 0))
+		return;
+	/*
+	 * Most of the complexity below deals with the possibility we hit the
+	 * end of the queue in the middle of writing the SGL.  For this case
+	 * only we create the SGL in a temporary buffer and then copy it.
+	 */
+	to = (u8 *)end > (u8 *)q->stat ? buf : sgl->sge;
+
+	for (i = (nfrags != si->nr_frags); nfrags >= 2; nfrags -= 2, to++) {
+		to->len[0] = cpu_to_be32(si->frags[i].size);
+		to->len[1] = cpu_to_be32(si->frags[++i].size);
+		to->addr[0] = cpu_to_be64(addr[i]);
+		to->addr[1] = cpu_to_be64(addr[++i]);
+	}
+	if (nfrags) {
+		to->len[0] = cpu_to_be32(si->frags[i].size);
+		to->len[1] = cpu_to_be32(0);
+		to->addr[0] = cpu_to_be64(addr[i + 1]);
+	}
+	if (unlikely((u8 *)end > (u8 *)q->stat)) {
+		unsigned int part0 = (u8 *)q->stat - (u8 *)sgl->sge, part1;
+
+		if (likely(part0))
+			memcpy(sgl->sge, buf, part0);
+		part1 = (u8 *)end - (u8 *)q->stat;
+		memcpy(q->desc, (u8 *)buf + part0, part1);
+		end = (void *)q->desc + part1;
+	}
+	if ((uintptr_t)end & 8)           /* 0-pad to multiple of 16 */
+		*(u64 *)end = 0;
+}
+
+/**
+ *	ring_tx_db - check and potentially ring a Tx queue's doorbell
+ *	@adap: the adapter
+ *	@q: the Tx queue
+ *	@n: number of new descriptors to give to HW
+ *
+ *	Ring the doorbel for a Tx queue.
+ */
+static inline void ring_tx_db(struct adapter *adap, struct sge_txq *q, int n)
+{
+	wmb();            /* write descriptors before telling HW */
+	t4_write_reg(adap, MYPF_REG(SGE_PF_KDOORBELL),
+		     QID(q->cntxt_id) | PIDX(n));
+}
+
+/**
+ * 	inline_tx_skb - inline a packet's data into Tx descriptors
+ * 	@skb: the packet
+ * 	@q: the Tx queue where the packet will be inlined
+ * 	@pos: starting position in the Tx queue where to inline the packet
+ *
+ *	Inline a packet's contents directly into Tx descriptors, starting at
+ *	the given position within the Tx DMA ring.
+ *	Most of the complexity of this operation is dealing with wrap arounds
+ *	in the middle of the packet we want to inline.
+ */
+static void inline_tx_skb(const struct sk_buff *skb, const struct sge_txq *q,
+			  void *pos)
+{
+	u64 *p;
+	int left = (void *)q->stat - pos;
+
+	if (likely(skb->len <= left)) {
+		if (likely(!skb->data_len))
+			skb_copy_from_linear_data(skb, pos, skb->len);
+		else
+			skb_copy_bits(skb, 0, pos, skb->len);
+		pos += skb->len;
+	} else {
+		skb_copy_bits(skb, 0, pos, left);
+		skb_copy_bits(skb, left, q->desc, skb->len - left);
+		pos = (void *)q->desc + (skb->len - left);
+	}
+
+	/* 0-pad to multiple of 16 */
+	p = PTR_ALIGN(pos, 8);
+	if ((uintptr_t)p & 8)
+		*p = 0;
+}
+
+/*
+ * Figure out what HW csum a packet wants and return the appropriate control
+ * bits.
+ */
+static u64 hwcsum(const struct sk_buff *skb)
+{
+	int csum_type;
+	const struct iphdr *iph = ip_hdr(skb);
+
+	if (iph->version == 4) {
+		if (iph->protocol == IPPROTO_TCP)
+			csum_type = TX_CSUM_TCPIP;
+		else if (iph->protocol == IPPROTO_UDP)
+			csum_type = TX_CSUM_UDPIP;
+		else {
+nocsum:			/*
+			 * unknown protocol, disable HW csum
+			 * and hope a bad packet is detected
+			 */
+			return TXPKT_L4CSUM_DIS;
+		}
+	} else {
+		/*
+		 * this doesn't work with extension headers
+		 */
+		const struct ipv6hdr *ip6h = (const struct ipv6hdr *)iph;
+
+		if (ip6h->nexthdr == IPPROTO_TCP)
+			csum_type = TX_CSUM_TCPIP6;
+		else if (ip6h->nexthdr == IPPROTO_UDP)
+			csum_type = TX_CSUM_UDPIP6;
+		else
+			goto nocsum;
+	}
+
+	if (likely(csum_type >= TX_CSUM_TCPIP))
+		return TXPKT_CSUM_TYPE(csum_type) |
+			TXPKT_IPHDR_LEN(skb_network_header_len(skb)) |
+			TXPKT_ETHHDR_LEN(skb_network_offset(skb) - ETH_HLEN);
+	else {
+		int start = skb_transport_offset(skb);
+
+		return TXPKT_CSUM_TYPE(csum_type) | TXPKT_CSUM_START(start) |
+			TXPKT_CSUM_LOC(start + skb->csum_offset);
+	}
+}
+
+static void eth_txq_stop(struct sge_eth_txq *q)
+{
+	netif_tx_stop_queue(q->txq);
+	q->q.stops++;
+}
+
+static inline void txq_advance(struct sge_txq *q, unsigned int n)
+{
+	q->in_use += n;
+	q->pidx += n;
+	if (q->pidx >= q->size)
+		q->pidx -= q->size;
+}
+
+/**
+ *	t4_eth_xmit - add a packet to an Ethernet Tx queue
+ *	@skb: the packet
+ *	@dev: the egress net device
+ *
+ *	Add a packet to an SGE Ethernet Tx queue.  Runs with softirqs disabled.
+ */
+netdev_tx_t t4_eth_xmit(struct sk_buff *skb, struct net_device *dev)
+{
+	u32 wr_mid;
+	u64 cntrl, *end;
+	int qidx, credits;
+	unsigned int flits, ndesc;
+	struct adapter *adap;
+	struct sge_eth_txq *q;
+	const struct port_info *pi;
+	struct fw_eth_tx_pkt_wr *wr;
+	struct cpl_tx_pkt_core *cpl;
+	const struct skb_shared_info *ssi;
+	dma_addr_t addr[MAX_SKB_FRAGS + 1];
+
+	/*
+	 * The chip min packet length is 10 octets but play safe and reject
+	 * anything shorter than an Ethernet header.
+	 */
+	if (unlikely(skb->len < ETH_HLEN)) {
+out_free:	dev_kfree_skb(skb);
+		return NETDEV_TX_OK;
+	}
+
+	pi = netdev_priv(dev);
+	adap = pi->adapter;
+	qidx = skb_get_queue_mapping(skb);
+	q = &adap->sge.ethtxq[qidx + pi->first_qset];
+
+	reclaim_completed_tx(adap, &q->q, true);
+
+	flits = calc_tx_flits(skb);
+	ndesc = flits_to_desc(flits);
+	credits = txq_avail(&q->q) - ndesc;
+
+	if (unlikely(credits < 0)) {
+		eth_txq_stop(q);
+		dev_err(adap->pdev_dev,
+			"%s: Tx ring %u full while queue awake!\n",
+			dev->name, qidx);
+		return NETDEV_TX_BUSY;
+	}
+
+	if (!is_eth_imm(skb) &&
+	    unlikely(map_skb(adap->pdev_dev, skb, addr) < 0)) {
+		q->mapping_err++;
+		goto out_free;
+	}
+
+	wr_mid = FW_WR_LEN16(DIV_ROUND_UP(flits, 2));
+	if (unlikely(credits < ETHTXQ_STOP_THRES)) {
+		eth_txq_stop(q);
+		wr_mid |= FW_WR_EQUEQ | FW_WR_EQUIQ;
+	}
+
+	wr = (void *)&q->q.desc[q->q.pidx];
+	wr->equiq_to_len16 = htonl(wr_mid);
+	wr->r3 = cpu_to_be64(0);
+	end = (u64 *)wr + flits;
+
+	ssi = skb_shinfo(skb);
+	if (ssi->gso_size) {
+		struct cpl_tx_pkt_lso *lso = (void *)wr;
+		bool v6 = (ssi->gso_type & SKB_GSO_TCPV6) != 0;
+		int l3hdr_len = skb_network_header_len(skb);
+		int eth_xtra_len = skb_network_offset(skb) - ETH_HLEN;
+
+		wr->op_immdlen = htonl(FW_WR_OP(FW_ETH_TX_PKT_WR) |
+				       FW_WR_IMMDLEN(sizeof(*lso)));
+		lso->lso_ctrl = htonl(LSO_OPCODE(CPL_TX_PKT_LSO) |
+				      LSO_FIRST_SLICE | LSO_LAST_SLICE |
+				      LSO_IPV6(v6) |
+				      LSO_ETHHDR_LEN(eth_xtra_len / 4) |
+				      LSO_IPHDR_LEN(l3hdr_len / 4) |
+				      LSO_TCPHDR_LEN(tcp_hdr(skb)->doff));
+		lso->ipid_ofst = htons(0);
+		lso->mss = htons(ssi->gso_size);
+		lso->seqno_offset = htonl(0);
+		lso->len = htonl(skb->len);
+		cpl = (void *)(lso + 1);
+		cntrl = TXPKT_CSUM_TYPE(v6 ? TX_CSUM_TCPIP6 : TX_CSUM_TCPIP) |
+			TXPKT_IPHDR_LEN(l3hdr_len) |
+			TXPKT_ETHHDR_LEN(eth_xtra_len);
+		q->tso++;
+		q->tx_cso += ssi->gso_segs;
+	} else {
+		int len;
+
+		len = is_eth_imm(skb) ? skb->len + sizeof(*cpl) : sizeof(*cpl);
+		wr->op_immdlen = htonl(FW_WR_OP(FW_ETH_TX_PKT_WR) |
+				       FW_WR_IMMDLEN(len));
+		cpl = (void *)(wr + 1);
+		if (skb->ip_summed == CHECKSUM_PARTIAL) {
+			cntrl = hwcsum(skb) | TXPKT_IPCSUM_DIS;
+			q->tx_cso++;
+		} else
+			cntrl = TXPKT_L4CSUM_DIS | TXPKT_IPCSUM_DIS;
+	}
+
+	if (vlan_tx_tag_present(skb)) {
+		q->vlan_ins++;
+		cntrl |= TXPKT_VLAN_VLD | TXPKT_VLAN(vlan_tx_tag_get(skb));
+	}
+
+	cpl->ctrl0 = htonl(TXPKT_OPCODE(CPL_TX_PKT_XT) |
+			   TXPKT_INTF(pi->tx_chan) | TXPKT_PF(0));
+	cpl->pack = htons(0);
+	cpl->len = htons(skb->len);
+	cpl->ctrl1 = cpu_to_be64(cntrl);
+
+	if (is_eth_imm(skb)) {
+		inline_tx_skb(skb, &q->q, cpl + 1);
+		dev_kfree_skb(skb);
+	} else {
+		int last_desc;
+
+		write_sgl(skb, &q->q, (struct ulptx_sgl *)(cpl + 1), end, 0,
+			  addr);
+		skb_orphan(skb);
+
+		last_desc = q->q.pidx + ndesc - 1;
+		if (last_desc >= q->q.size)
+			last_desc -= q->q.size;
+		q->q.sdesc[last_desc].skb = skb;
+		q->q.sdesc[last_desc].sgl = (struct ulptx_sgl *)(cpl + 1);
+	}
+
+	txq_advance(&q->q, ndesc);
+
+	ring_tx_db(adap, &q->q, ndesc);
+	return NETDEV_TX_OK;
+}
+
+/**
+ *	reclaim_completed_tx_imm - reclaim completed control-queue Tx descs
+ *	@q: the SGE control Tx queue
+ *
+ *	This is a variant of reclaim_completed_tx() that is used for Tx queues
+ *	that send only immediate data (presently just the control queues) and
+ *	thus do not have any sk_buffs to release.
+ */
+static inline void reclaim_completed_tx_imm(struct sge_txq *q)
+{
+	int hw_cidx = ntohs(q->stat->cidx);
+	int reclaim = hw_cidx - q->cidx;
+
+	if (reclaim < 0)
+		reclaim += q->size;
+
+	q->in_use -= reclaim;
+	q->cidx = hw_cidx;
+}
+
+/**
+ *	is_imm - check whether a packet can be sent as immediate data
+ *	@skb: the packet
+ *
+ *	Returns true if a packet can be sent as a WR with immediate data.
+ */
+static inline int is_imm(const struct sk_buff *skb)
+{
+	return skb->len <= MAX_CTRL_WR_LEN;
+}
+
+/**
+ *	ctrlq_check_stop - check if a control queue is full and should stop
+ *	@q: the queue
+ *	@wr: most recent WR written to the queue
+ *
+ *	Check if a control queue has become full and should be stopped.
+ *	We clean up control queue descriptors very lazily, only when we are out.
+ *	If the queue is still full after reclaiming any completed descriptors
+ *	we suspend it and have the last WR wake it up.
+ */
+static void ctrlq_check_stop(struct sge_ctrl_txq *q, struct fw_wr_hdr *wr)
+{
+	reclaim_completed_tx_imm(&q->q);
+	if (unlikely(txq_avail(&q->q) < TXQ_STOP_THRES)) {
+		wr->lo |= htonl(FW_WR_EQUEQ | FW_WR_EQUIQ);
+		q->q.stops++;
+		q->full = 1;
+	}
+}
+
+/**
+ *	ctrl_xmit - send a packet through an SGE control Tx queue
+ *	@q: the control queue
+ *	@skb: the packet
+ *
+ *	Send a packet through an SGE control Tx queue.  Packets sent through
+ *	a control queue must fit entirely as immediate data.
+ */
+static int ctrl_xmit(struct sge_ctrl_txq *q, struct sk_buff *skb)
+{
+	unsigned int ndesc;
+	struct fw_wr_hdr *wr;
+
+	if (unlikely(!is_imm(skb))) {
+		WARN_ON(1);
+		dev_kfree_skb(skb);
+		return NET_XMIT_DROP;
+	}
+
+	ndesc = DIV_ROUND_UP(skb->len, sizeof(struct tx_desc));
+	spin_lock(&q->sendq.lock);
+
+	if (unlikely(q->full)) {
+		skb->priority = ndesc;                  /* save for restart */
+		__skb_queue_tail(&q->sendq, skb);
+		spin_unlock(&q->sendq.lock);
+		return NET_XMIT_CN;
+	}
+
+	wr = (struct fw_wr_hdr *)&q->q.desc[q->q.pidx];
+	inline_tx_skb(skb, &q->q, wr);
+
+	txq_advance(&q->q, ndesc);
+	if (unlikely(txq_avail(&q->q) < TXQ_STOP_THRES))
+		ctrlq_check_stop(q, wr);
+
+	ring_tx_db(q->adap, &q->q, ndesc);
+	spin_unlock(&q->sendq.lock);
+
+	kfree_skb(skb);
+	return NET_XMIT_SUCCESS;
+}
+
+/**
+ *	restart_ctrlq - restart a suspended control queue
+ *	@data: the control queue to restart
+ *
+ *	Resumes transmission on a suspended Tx control queue.
+ */
+static void restart_ctrlq(unsigned long data)
+{
+	struct sk_buff *skb;
+	unsigned int written = 0;
+	struct sge_ctrl_txq *q = (struct sge_ctrl_txq *)data;
+
+	spin_lock(&q->sendq.lock);
+	reclaim_completed_tx_imm(&q->q);
+	BUG_ON(txq_avail(&q->q) < TXQ_STOP_THRES);  /* q should be empty */
+
+	while ((skb = __skb_dequeue(&q->sendq)) != NULL) {
+		struct fw_wr_hdr *wr;
+		unsigned int ndesc = skb->priority;     /* previously saved */
+
+		/*
+		 * Write descriptors and free skbs outside the lock to limit
+		 * wait times.  q->full is still set so new skbs will be queued.
+		 */
+		spin_unlock(&q->sendq.lock);
+
+		wr = (struct fw_wr_hdr *)&q->q.desc[q->q.pidx];
+		inline_tx_skb(skb, &q->q, wr);
+		kfree_skb(skb);
+
+		written += ndesc;
+		txq_advance(&q->q, ndesc);
+		if (unlikely(txq_avail(&q->q) < TXQ_STOP_THRES)) {
+			unsigned long old = q->q.stops;
+
+			ctrlq_check_stop(q, wr);
+			if (q->q.stops != old) {          /* suspended anew */
+				spin_lock(&q->sendq.lock);
+				goto ringdb;
+			}
+		}
+		if (written > 16) {
+			ring_tx_db(q->adap, &q->q, written);
+			written = 0;
+		}
+		spin_lock(&q->sendq.lock);
+	}
+	q->full = 0;
+ringdb: if (written)
+		ring_tx_db(q->adap, &q->q, written);
+	spin_unlock(&q->sendq.lock);
+}
+
+/**
+ *	t4_mgmt_tx - send a management message
+ *	@adap: the adapter
+ *	@skb: the packet containing the management message
+ *
+ *	Send a management message through control queue 0.
+ */
+int t4_mgmt_tx(struct adapter *adap, struct sk_buff *skb)
+{
+	int ret;
+
+	local_bh_disable();
+	ret = ctrl_xmit(&adap->sge.ctrlq[0], skb);
+	local_bh_enable();
+	return ret;
+}
+
+/**
+ *	deferred_unmap_destructor - unmap a packet when it is freed
+ *	@skb: the packet
+ *
+ *	This is the packet destructor used for Tx packets that need to remain
+ *	mapped until they are freed rather than until their Tx descriptors are
+ *	freed.
+ */
+static void deferred_unmap_destructor(struct sk_buff *skb)
+{
+	unmap_skb(skb->dev->dev.parent, skb, (dma_addr_t *)skb->head);
+}
+
+/**
+ *	is_ofld_imm - check whether a packet can be sent as immediate data
+ *	@skb: the packet
+ *
+ *	Returns true if a packet can be sent as an offload WR with immediate
+ *	data.  We currently use the same limit as for Ethernet packets.
+ */
+static inline int is_ofld_imm(const struct sk_buff *skb)
+{
+	return skb->len <= MAX_IMM_TX_PKT_LEN;
+}
+
+/**
+ *	calc_tx_flits_ofld - calculate # of flits for an offload packet
+ *	@skb: the packet
+ *
+ * 	Returns the number of flits needed for the given offload packet.
+ * 	These packets are already fully constructed and no additional headers
+ * 	will be added.
+ */
+static inline unsigned int calc_tx_flits_ofld(const struct sk_buff *skb)
+{
+	unsigned int flits, cnt;
+
+	if (is_ofld_imm(skb))
+		return DIV_ROUND_UP(skb->len, 8);
+
+	flits = skb_transport_offset(skb) / 8U;   /* headers */
+	cnt = skb_shinfo(skb)->nr_frags;
+	if (skb->tail != skb->transport_header)
+		cnt++;
+	return flits + sgl_len(cnt);
+}
+
+/**
+ *	txq_stop_maperr - stop a Tx queue due to I/O MMU exhaustion
+ *	@adap: the adapter
+ *	@q: the queue to stop
+ *
+ *	Mark a Tx queue stopped due to I/O MMU exhaustion and resulting
+ *	inability to map packets.  A periodic timer attempts to restart
+ *	queues so marked.
+ */
+static void txq_stop_maperr(struct sge_ofld_txq *q)
+{
+	q->mapping_err++;
+	q->q.stops++;
+	set_bit(q->q.cntxt_id, q->adap->sge.txq_maperr);
+}
+
+/**
+ *	ofldtxq_stop - stop an offload Tx queue that has become full
+ *	@q: the queue to stop
+ *	@skb: the packet causing the queue to become full
+ *
+ *	Stops an offload Tx queue that has become full and modifies the packet
+ *	being written to request a wakeup.
+ */
+static void ofldtxq_stop(struct sge_ofld_txq *q, struct sk_buff *skb)
+{
+	struct fw_wr_hdr *wr = (struct fw_wr_hdr *)skb->data;
+
+	wr->lo |= htonl(FW_WR_EQUEQ | FW_WR_EQUIQ);
+	q->q.stops++;
+	q->full = 1;
+}
+
+/**
+ *	service_ofldq - restart a suspended offload queue
+ *	@q: the offload queue
+ *
+ *	Services an offload Tx queue by moving packets from its packet queue
+ *	to the HW Tx ring.  The function starts and ends with the queue locked.
+ */
+static void service_ofldq(struct sge_ofld_txq *q)
+{
+	u64 *pos;
+	int credits;
+	struct sk_buff *skb;
+	unsigned int written = 0;
+	unsigned int flits, ndesc;
+
+	while ((skb = skb_peek(&q->sendq)) != NULL && !q->full) {
+		/*
+		 * We drop the lock but leave skb on sendq, thus retaining
+		 * exclusive access to the state of the queue.
+		 */
+		spin_unlock(&q->sendq.lock);
+
+		reclaim_completed_tx(q->adap, &q->q, false);
+
+		flits = skb->priority;                /* previously saved */
+		ndesc = flits_to_desc(flits);
+		credits = txq_avail(&q->q) - ndesc;
+		BUG_ON(credits < 0);
+		if (unlikely(credits < TXQ_STOP_THRES))
+			ofldtxq_stop(q, skb);
+
+		pos = (u64 *)&q->q.desc[q->q.pidx];
+		if (is_ofld_imm(skb))
+			inline_tx_skb(skb, &q->q, pos);
+		else if (map_skb(q->adap->pdev_dev, skb,
+				 (dma_addr_t *)skb->head)) {
+			txq_stop_maperr(q);
+			spin_lock(&q->sendq.lock);
+			break;
+		} else {
+			int last_desc, hdr_len = skb_transport_offset(skb);
+
+			memcpy(pos, skb->data, hdr_len);
+			write_sgl(skb, &q->q, (void *)pos + hdr_len,
+				  pos + flits, hdr_len,
+				  (dma_addr_t *)skb->head);
+
+			skb->dev = q->adap->port[0];
+			skb->destructor = deferred_unmap_destructor;
+
+			last_desc = q->q.pidx + ndesc - 1;
+			if (last_desc >= q->q.size)
+				last_desc -= q->q.size;
+			q->q.sdesc[last_desc].skb = skb;
+		}
+
+		txq_advance(&q->q, ndesc);
+		written += ndesc;
+		if (unlikely(written > 32)) {
+			ring_tx_db(q->adap, &q->q, written);
+			written = 0;
+		}
+
+		spin_lock(&q->sendq.lock);
+		__skb_unlink(skb, &q->sendq);
+		if (is_ofld_imm(skb))
+			kfree_skb(skb);
+	}
+	if (likely(written))
+		ring_tx_db(q->adap, &q->q, written);
+}
+
+/**
+ *	ofld_xmit - send a packet through an offload queue
+ *	@q: the Tx offload queue
+ *	@skb: the packet
+ *
+ *	Send an offload packet through an SGE offload queue.
+ */
+static int ofld_xmit(struct sge_ofld_txq *q, struct sk_buff *skb)
+{
+	skb->priority = calc_tx_flits_ofld(skb);       /* save for restart */
+	spin_lock(&q->sendq.lock);
+	__skb_queue_tail(&q->sendq, skb);
+	if (q->sendq.qlen == 1)
+		service_ofldq(q);
+	spin_unlock(&q->sendq.lock);
+	return NET_XMIT_SUCCESS;
+}
+
+/**
+ *	restart_ofldq - restart a suspended offload queue
+ *	@data: the offload queue to restart
+ *
+ *	Resumes transmission on a suspended Tx offload queue.
+ */
+static void restart_ofldq(unsigned long data)
+{
+	struct sge_ofld_txq *q = (struct sge_ofld_txq *)data;
+
+	spin_lock(&q->sendq.lock);
+	q->full = 0;            /* the queue actually is completely empty now */
+	service_ofldq(q);
+	spin_unlock(&q->sendq.lock);
+}
+
+/**
+ *	skb_txq - return the Tx queue an offload packet should use
+ *	@skb: the packet
+ *
+ *	Returns the Tx queue an offload packet should use as indicated by bits
+ *	1-15 in the packet's queue_mapping.
+ */
+static inline unsigned int skb_txq(const struct sk_buff *skb)
+{
+	return skb->queue_mapping >> 1;
+}
+
+/**
+ *	is_ctrl_pkt - return whether an offload packet is a control packet
+ *	@skb: the packet
+ *
+ *	Returns whether an offload packet should use an OFLD or a CTRL
+ *	Tx queue as indicated by bit 0 in the packet's queue_mapping.
+ */
+static inline unsigned int is_ctrl_pkt(const struct sk_buff *skb)
+{
+	return skb->queue_mapping & 1;
+}
+
+static inline int ofld_send(struct adapter *adap, struct sk_buff *skb)
+{
+	unsigned int idx = skb_txq(skb);
+
+	if (unlikely(is_ctrl_pkt(skb)))
+		return ctrl_xmit(&adap->sge.ctrlq[idx], skb);
+	return ofld_xmit(&adap->sge.ofldtxq[idx], skb);
+}
+
+/**
+ *	t4_ofld_send - send an offload packet
+ *	@adap: the adapter
+ *	@skb: the packet
+ *
+ *	Sends an offload packet.  We use the packet queue_mapping to select the
+ *	appropriate Tx queue as follows: bit 0 indicates whether the packet
+ *	should be sent as regular or control, bits 1-15 select the queue.
+ */
+int t4_ofld_send(struct adapter *adap, struct sk_buff *skb)
+{
+	int ret;
+
+	local_bh_disable();
+	ret = ofld_send(adap, skb);
+	local_bh_enable();
+	return ret;
+}
+
+/**
+ *	cxgb4_ofld_send - send an offload packet
+ *	@dev: the net device
+ *	@skb: the packet
+ *
+ *	Sends an offload packet.  This is an exported version of @t4_ofld_send,
+ *	intended for ULDs.
+ */
+int cxgb4_ofld_send(struct net_device *dev, struct sk_buff *skb)
+{
+	return t4_ofld_send(netdev2adap(dev), skb);
+}
+EXPORT_SYMBOL(cxgb4_ofld_send);
+
+static inline void copy_frags(struct skb_shared_info *ssi,
+			      const struct pkt_gl *gl, unsigned int offset)
+{
+	unsigned int n;
+
+	/* usually there's just one frag */
+	ssi->frags[0].page = gl->frags[0].page;
+	ssi->frags[0].page_offset = gl->frags[0].page_offset + offset;
+	ssi->frags[0].size = gl->frags[0].size - offset;
+	ssi->nr_frags = gl->nfrags;
+	n = gl->nfrags - 1;
+	if (n)
+		memcpy(&ssi->frags[1], &gl->frags[1], n * sizeof(skb_frag_t));
+
+	/* get a reference to the last page, we don't own it */
+	get_page(gl->frags[n].page);
+}
+
+/**
+ *	cxgb4_pktgl_to_skb - build an sk_buff from a packet gather list
+ *	@gl: the gather list
+ *	@skb_len: size of sk_buff main body if it carries fragments
+ *	@pull_len: amount of data to move to the sk_buff's main body
+ *
+ *	Builds an sk_buff from the given packet gather list.  Returns the
+ *	sk_buff or %NULL if sk_buff allocation failed.
+ */
+struct sk_buff *cxgb4_pktgl_to_skb(const struct pkt_gl *gl,
+				   unsigned int skb_len, unsigned int pull_len)
+{
+	struct sk_buff *skb;
+
+	/*
+	 * Below we rely on RX_COPY_THRES being less than the smallest Rx buffer
+	 * size, which is expected since buffers are at least PAGE_SIZEd.
+	 * In this case packets up to RX_COPY_THRES have only one fragment.
+	 */
+	if (gl->tot_len <= RX_COPY_THRES) {
+		skb = dev_alloc_skb(gl->tot_len);
+		if (unlikely(!skb))
+			goto out;
+		__skb_put(skb, gl->tot_len);
+		skb_copy_to_linear_data(skb, gl->va, gl->tot_len);
+	} else {
+		skb = dev_alloc_skb(skb_len);
+		if (unlikely(!skb))
+			goto out;
+		__skb_put(skb, pull_len);
+		skb_copy_to_linear_data(skb, gl->va, pull_len);
+
+		copy_frags(skb_shinfo(skb), gl, pull_len);
+		skb->len = gl->tot_len;
+		skb->data_len = skb->len - pull_len;
+		skb->truesize += skb->data_len;
+	}
+out:	return skb;
+}
+EXPORT_SYMBOL(cxgb4_pktgl_to_skb);
+
+/**
+ *	t4_pktgl_free - free a packet gather list
+ *	@gl: the gather list
+ *
+ *	Releases the pages of a packet gather list.  We do not own the last
+ *	page on the list and do not free it.
+ */
+void t4_pktgl_free(const struct pkt_gl *gl)
+{
+	int n;
+	const skb_frag_t *p;
+
+	for (p = gl->frags, n = gl->nfrags - 1; n--; p++)
+		put_page(p->page);
+}
+
+/*
+ * Process an MPS trace packet.  Give it an unused protocol number so it won't
+ * be delivered to anyone and send it to the stack for capture.
+ */
+static noinline int handle_trace_pkt(struct adapter *adap,
+				     const struct pkt_gl *gl)
+{
+	struct sk_buff *skb;
+	struct cpl_trace_pkt *p;
+
+	skb = cxgb4_pktgl_to_skb(gl, RX_PULL_LEN, RX_PULL_LEN);
+	if (unlikely(!skb)) {
+		t4_pktgl_free(gl);
+		return 0;
+	}
+
+	p = (struct cpl_trace_pkt *)skb->data;
+	__skb_pull(skb, sizeof(*p));
+	skb_reset_mac_header(skb);
+	skb->protocol = htons(0xffff);
+	skb->dev = adap->port[0];
+	netif_receive_skb(skb);
+	return 0;
+}
+
+static void do_gro(struct sge_eth_rxq *rxq, const struct pkt_gl *gl,
+		   const struct cpl_rx_pkt *pkt)
+{
+	int ret;
+	struct sk_buff *skb;
+
+	skb = napi_get_frags(&rxq->rspq.napi);
+	if (unlikely(!skb)) {
+		t4_pktgl_free(gl);
+		rxq->stats.rx_drops++;
+		return;
+	}
+
+	copy_frags(skb_shinfo(skb), gl, RX_PKT_PAD);
+	skb->len = gl->tot_len - RX_PKT_PAD;
+	skb->data_len = skb->len;
+	skb->truesize += skb->data_len;
+	skb->ip_summed = CHECKSUM_UNNECESSARY;
+	skb_record_rx_queue(skb, rxq->rspq.idx);
+
+	if (unlikely(pkt->vlan_ex)) {
+		struct port_info *pi = netdev_priv(rxq->rspq.netdev);
+		struct vlan_group *grp = pi->vlan_grp;
+
+		rxq->stats.vlan_ex++;
+		if (likely(grp)) {
+			ret = vlan_gro_frags(&rxq->rspq.napi, grp,
+					     ntohs(pkt->vlan));
+			goto stats;
+		}
+	}
+	ret = napi_gro_frags(&rxq->rspq.napi);
+stats:	if (ret == GRO_HELD)
+		rxq->stats.lro_pkts++;
+	else if (ret == GRO_MERGED || ret == GRO_MERGED_FREE)
+		rxq->stats.lro_merged++;
+	rxq->stats.pkts++;
+	rxq->stats.rx_cso++;
+}
+
+/**
+ *	t4_ethrx_handler - process an ingress ethernet packet
+ *	@q: the response queue that received the packet
+ *	@rsp: the response queue descriptor holding the RX_PKT message
+ *	@si: the gather list of packet fragments
+ *
+ *	Process an ingress ethernet packet and deliver it to the stack.
+ */
+int t4_ethrx_handler(struct sge_rspq *q, const __be64 *rsp,
+		     const struct pkt_gl *si)
+{
+	bool csum_ok;
+	struct sk_buff *skb;
+	struct port_info *pi;
+	const struct cpl_rx_pkt *pkt;
+	struct sge_eth_rxq *rxq = container_of(q, struct sge_eth_rxq, rspq);
+
+	if (unlikely(*(u8 *)rsp == CPL_TRACE_PKT))
+		return handle_trace_pkt(q->adap, si);
+
+	pkt = (void *)&rsp[1];
+	csum_ok = pkt->csum_calc && !pkt->err_vec;
+	if ((pkt->l2info & htonl(RXF_TCP)) &&
+	    (q->netdev->features & NETIF_F_GRO) && csum_ok && !pkt->ip_frag) {
+		do_gro(rxq, si, pkt);
+		return 0;
+	}
+
+	if (si->tot_len <= RX_COPY_THRES) {
+		/* small packets have only one fragment */
+		skb = dev_alloc_skb(si->frags[0].size);
+		if (!skb)
+			goto nomem;
+		__skb_put(skb, si->frags[0].size);
+		skb_copy_to_linear_data(skb, si->va, si->frags[0].size);
+	} else {
+		skb = dev_alloc_skb(RX_PKT_SKB_LEN);
+		if (!skb)
+			goto nomem;
+		__skb_put(skb, RX_PULL_LEN);
+		skb_copy_to_linear_data(skb, si->va, RX_PULL_LEN);
+
+		copy_frags(skb_shinfo(skb), si, RX_PULL_LEN);
+		skb->len = si->tot_len;
+		skb->data_len = skb->len - RX_PULL_LEN;
+		skb->truesize += skb->data_len;
+	}
+
+	__skb_pull(skb, RX_PKT_PAD);      /* remove ethernet header padding */
+	skb->protocol = eth_type_trans(skb, q->netdev);
+	skb_record_rx_queue(skb, q->idx);
+	pi = netdev_priv(skb->dev);
+	rxq->stats.pkts++;
+
+	if (csum_ok && (pi->rx_offload & RX_CSO) &&
+	    (pkt->l2info & htonl(RXF_UDP | RXF_TCP))) {
+		if (!pkt->ip_frag)
+			skb->ip_summed = CHECKSUM_UNNECESSARY;
+		else {
+			__sum16 c = (__force __sum16)pkt->csum;
+			skb->csum = csum_unfold(c);
+			skb->ip_summed = CHECKSUM_COMPLETE;
+		}
+		rxq->stats.rx_cso++;
+	} else
+		skb->ip_summed = CHECKSUM_NONE;
+
+	if (unlikely(pkt->vlan_ex)) {
+		struct vlan_group *grp = pi->vlan_grp;
+
+		rxq->stats.vlan_ex++;
+		if (likely(grp))
+			vlan_hwaccel_receive_skb(skb, grp, ntohs(pkt->vlan));
+		else
+			dev_kfree_skb_any(skb);
+	} else
+		netif_receive_skb(skb);
+
+	return 0;
+
+nomem:	t4_pktgl_free(si);
+	rxq->stats.rx_drops++;
+	return 0;
+}
+
+/**
+ *	restore_rx_bufs - put back a packet's Rx buffers
+ *	@si: the packet gather list
+ *	@q: the SGE free list
+ *	@frags: number of FL buffers to restore
+ *
+ *	Puts back on an FL the Rx buffers associated with @si.  The buffers
+ *	have already been unmapped and are left unmapped, we mark them so to
+ *	prevent further unmapping attempts.
+ *
+ *	This function undoes a series of @unmap_rx_buf calls when we find out
+ *	that the current packet can't be processed right away afterall and we
+ *	need to come back to it later.  This is a very rare event and there's
+ *	no effort to make this particularly efficient.
+ */
+static void restore_rx_bufs(const struct pkt_gl *si, struct sge_fl *q,
+			    int frags)
+{
+	struct rx_sw_desc *d;
+
+	while (frags--) {
+		if (q->cidx == 0)
+			q->cidx = q->size - 1;
+		else
+			q->cidx--;
+		d = &q->sdesc[q->cidx];
+		d->page = si->frags[frags].page;
+		d->dma_addr |= RX_UNMAPPED_BUF;
+		q->avail++;
+	}
+}
+
+/**
+ *	is_new_response - check if a response is newly written
+ *	@r: the response descriptor
+ *	@q: the response queue
+ *
+ *	Returns true if a response descriptor contains a yet unprocessed
+ *	response.
+ */
+static inline bool is_new_response(const struct rsp_ctrl *r,
+				   const struct sge_rspq *q)
+{
+	return RSPD_GEN(r->type_gen) == q->gen;
+}
+
+/**
+ *	rspq_next - advance to the next entry in a response queue
+ *	@q: the queue
+ *
+ *	Updates the state of a response queue to advance it to the next entry.
+ */
+static inline void rspq_next(struct sge_rspq *q)
+{
+	q->cur_desc = (void *)q->cur_desc + q->iqe_len;
+	if (unlikely(++q->cidx == q->size)) {
+		q->cidx = 0;
+		q->gen ^= 1;
+		q->cur_desc = q->desc;
+	}
+}
+
+/**
+ *	process_responses - process responses from an SGE response queue
+ *	@q: the ingress queue to process
+ *	@budget: how many responses can be processed in this round
+ *
+ *	Process responses from an SGE response queue up to the supplied budget.
+ *	Responses include received packets as well as control messages from FW
+ *	or HW.
+ *
+ *	Additionally choose the interrupt holdoff time for the next interrupt
+ *	on this queue.  If the system is under memory shortage use a fairly
+ *	long delay to help recovery.
+ */
+int process_responses(struct sge_rspq *q, int budget)
+{
+	int ret, rsp_type;
+	int budget_left = budget;
+	const struct rsp_ctrl *rc;
+	struct sge_eth_rxq *rxq = container_of(q, struct sge_eth_rxq, rspq);
+
+	while (likely(budget_left)) {
+		rc = (void *)q->cur_desc + (q->iqe_len - sizeof(*rc));
+		if (!is_new_response(rc, q))
+			break;
+
+		rmb();
+		rsp_type = RSPD_TYPE(rc->type_gen);
+		if (likely(rsp_type == RSP_TYPE_FLBUF)) {
+			skb_frag_t *fp;
+			struct pkt_gl si;
+			const struct rx_sw_desc *rsd;
+			u32 len = ntohl(rc->pldbuflen_qid), bufsz, frags;
+
+			if (len & RSPD_NEWBUF) {
+				if (likely(q->offset > 0)) {
+					free_rx_bufs(q->adap, &rxq->fl, 1);
+					q->offset = 0;
+				}
+				len &= RSPD_LEN;
+			}
+			si.tot_len = len;
+
+			/* gather packet fragments */
+			for (frags = 0, fp = si.frags; ; frags++, fp++) {
+				rsd = &rxq->fl.sdesc[rxq->fl.cidx];
+				bufsz = get_buf_size(rsd);
+				fp->page = rsd->page;
+				fp->page_offset = q->offset;
+				fp->size = min(bufsz, len);
+				len -= fp->size;
+				if (!len)
+					break;
+				unmap_rx_buf(q->adap, &rxq->fl);
+			}
+
+			/*
+			 * Last buffer remains mapped so explicitly make it
+			 * coherent for CPU access.
+			 */
+			dma_sync_single_for_cpu(q->adap->pdev_dev,
+						get_buf_addr(rsd),
+						fp->size, DMA_FROM_DEVICE);
+
+			si.va = page_address(si.frags[0].page) +
+				si.frags[0].page_offset;
+			prefetch(si.va);
+
+			si.nfrags = frags + 1;
+			ret = q->handler(q, q->cur_desc, &si);
+			if (likely(ret == 0))
+				q->offset += ALIGN(fp->size, FL_ALIGN);
+			else
+				restore_rx_bufs(&si, &rxq->fl, frags);
+		} else if (likely(rsp_type == RSP_TYPE_CPL)) {
+			ret = q->handler(q, q->cur_desc, NULL);
+		} else {
+			ret = q->handler(q, (const __be64 *)rc, CXGB4_MSG_AN);
+		}
+
+		if (unlikely(ret)) {
+			/* couldn't process descriptor, back off for recovery */
+			q->next_intr_params = QINTR_TIMER_IDX(NOMEM_TMR_IDX);
+			break;
+		}
+
+		rspq_next(q);
+		budget_left--;
+	}
+
+	if (q->offset >= 0 && rxq->fl.size - rxq->fl.avail >= 16)
+		replenish_fl(q->adap, &rxq->fl, GFP_ATOMIC);
+	return budget - budget_left;
+}
+
+/**
+ *	napi_rx_handler - the NAPI handler for Rx processing
+ *	@napi: the napi instance
+ *	@budget: how many packets we can process in this round
+ *
+ *	Handler for new data events when using NAPI.  This does not need any
+ *	locking or protection from interrupts as data interrupts are off at
+ *	this point and other adapter interrupts do not interfere (the latter
+ *	in not a concern at all with MSI-X as non-data interrupts then have
+ *	a separate handler).
+ */
+static int napi_rx_handler(struct napi_struct *napi, int budget)
+{
+	unsigned int params;
+	struct sge_rspq *q = container_of(napi, struct sge_rspq, napi);
+	int work_done = process_responses(q, budget);
+
+	if (likely(work_done < budget)) {
+		napi_complete(napi);
+		params = q->next_intr_params;
+		q->next_intr_params = q->intr_params;
+	} else
+		params = QINTR_TIMER_IDX(7);
+
+	t4_write_reg(q->adap, MYPF_REG(SGE_PF_GTS), CIDXINC(work_done) |
+		     INGRESSQID((u32)q->cntxt_id) | SEINTARM(params));
+	return work_done;
+}
+
+/*
+ * Returns true if a NAPI instance is already scheduled for polling.
+ */
+static inline int napi_is_scheduled(const struct napi_struct *napi)
+{
+	return test_bit(NAPI_STATE_SCHED, &napi->state);
+}
+
+/*
+ * The MSI-X interrupt handler for an SGE response queue.
+ */
+irqreturn_t t4_sge_intr_msix(int irq, void *cookie)
+{
+	struct sge_rspq *q = cookie;
+
+	spin_lock(&q->lock);
+	napi_schedule(&q->napi);
+	spin_unlock(&q->lock);
+	return IRQ_HANDLED;
+}
+
+/*
+ * Process the indirect interrupt entries in the interrupt queue and kick off
+ * NAPI for each queue that has generated an entry.
+ */
+static unsigned int process_intrq(struct adapter *adap)
+{
+	unsigned int credits;
+	const struct rsp_ctrl *rc;
+	struct sge_rspq *q = &adap->sge.intrq;
+
+	for (credits = 0; ; credits++) {
+		rc = (void *)q->cur_desc + (q->iqe_len - sizeof(*rc));
+		if (!is_new_response(rc, q))
+			break;
+
+		rmb();
+		if (RSPD_TYPE(rc->type_gen) == RSP_TYPE_INTR) {
+			unsigned int qid = ntohl(rc->pldbuflen_qid);
+			struct sge_rspq *srcq = adap->sge.ingr_map[qid];
+
+			spin_lock(&srcq->lock);
+			napi_schedule(&srcq->napi);
+			spin_unlock(&srcq->lock);
+		}
+
+		rspq_next(q);
+	}
+
+	t4_write_reg(adap, MYPF_REG(SGE_PF_GTS), CIDXINC(credits) |
+		     INGRESSQID(q->cntxt_id) | SEINTARM(q->intr_params));
+	return credits;
+}
+
+/*
+ * The MSI interrupt handler, which handles data events from SGE response queues
+ * as well as error and other async events as they all use the same MSI vector.
+ */
+static irqreturn_t t4_intr_msi(int irq, void *cookie)
+{
+	struct adapter *adap = cookie;
+
+	t4_slow_intr_handler(adap);
+	process_intrq(adap);
+	return IRQ_HANDLED;
+}
+
+/*
+ * Interrupt handler for legacy INTx interrupts.
+ * Handles data events from SGE response queues as well as error and other
+ * async events as they all use the same interrupt line.
+ */
+static irqreturn_t t4_intr_intx(int irq, void *cookie)
+{
+	struct adapter *adap = cookie;
+
+	t4_write_reg(adap, MYPF_REG(PCIE_PF_CLI), 0);
+	if (t4_slow_intr_handler(adap) | process_intrq(adap))
+		return IRQ_HANDLED;
+	return IRQ_NONE;             /* probably shared interrupt */
+}
+
+/**
+ *	t4_intr_handler - select the top-level interrupt handler
+ *	@adap: the adapter
+ *
+ *	Selects the top-level interrupt handler based on the type of interrupts
+ *	(MSI-X, MSI, or INTx).
+ */
+irq_handler_t t4_intr_handler(struct adapter *adap)
+{
+	if (adap->flags & USING_MSIX)
+		return t4_sge_intr_msix;
+	if (adap->flags & USING_MSI)
+		return t4_intr_msi;
+	return t4_intr_intx;
+}
+
+static void sge_rx_timer_cb(unsigned long data)
+{
+	unsigned long m;
+	unsigned int i, cnt[2];
+	struct adapter *adap = (struct adapter *)data;
+	struct sge *s = &adap->sge;
+
+	for (i = 0; i < ARRAY_SIZE(s->starving_fl); i++)
+		for (m = s->starving_fl[i]; m; m &= m - 1) {
+			struct sge_eth_rxq *rxq;
+			unsigned int id = __ffs(m) + i * BITS_PER_LONG;
+			struct sge_fl *fl = s->egr_map[id];
+
+			rxq = container_of(fl, struct sge_eth_rxq, fl);
+			if (spin_trylock_irq(&rxq->rspq.lock)) {
+				if (!napi_is_scheduled(&rxq->rspq.napi)) {
+					if (fl_starving(fl)) {
+						fl->starving++;
+						__refill_fl(adap, fl);
+					}
+					if (!fl_starving(fl))
+						clear_bit(id, s->starving_fl);
+				}
+				spin_unlock(&rxq->rspq.lock);
+			}
+		}
+
+	t4_write_reg(adap, SGE_DEBUG_INDEX, 13);
+	cnt[0] = t4_read_reg(adap, SGE_DEBUG_DATA_HIGH);
+	cnt[1] = t4_read_reg(adap, SGE_DEBUG_DATA_LOW);
+
+	for (i = 0; i < 2; i++)
+		if (cnt[i] >= s->starve_thres) {
+			if (s->idma_state[i])
+				continue;
+			s->idma_state[i] = 1;
+			t4_write_reg(adap, SGE_DEBUG_INDEX, 11);
+			m = t4_read_reg(adap, SGE_DEBUG_DATA_LOW) >> (i * 16);
+			dev_warn(adap->pdev_dev,
+				 "SGE idma%u starvation detected for "
+				 "queue %lu\n", i, m & 0xffff);
+		} else if (s->idma_state[i])
+			s->idma_state[i] = 0;
+
+	mod_timer(&s->rx_timer, jiffies + RX_QCHECK_PERIOD);
+}
+
+static void sge_tx_timer_cb(unsigned long data)
+{
+	unsigned long m, i;
+	struct adapter *adap = (struct adapter *)data;
+	struct sge *s = &adap->sge;
+
+	for (i = 0; i < ARRAY_SIZE(s->txq_maperr); i++)
+		for (m = s->txq_maperr[i]; m; m &= m - 1) {
+			unsigned long id = __ffs(m) + i * BITS_PER_LONG;
+			struct sge_ofld_txq *txq = s->egr_map[id];
+
+			clear_bit(id, s->txq_maperr);
+			tasklet_schedule(&txq->qresume_tsk);
+		}
+
+	mod_timer(&s->tx_timer, jiffies + TX_QCHECK_PERIOD);
+}
+
+int t4_sge_alloc_rxq(struct adapter *adap, struct sge_rspq *iq, bool fwevtq,
+		     struct net_device *dev, int intr_idx,
+		     struct sge_fl *fl, rspq_handler_t hnd)
+{
+	int ret, flsz = 0;
+	struct fw_iq_cmd c;
+	struct port_info *pi = netdev_priv(dev);
+
+	/* Size needs to be multiple of 16, including status entry. */
+	iq->size = roundup(iq->size, 16);
+
+	iq->desc = alloc_ring(adap->pdev_dev, iq->size, iq->iqe_len, 0,
+			      &iq->phys_addr, NULL, 0);
+	if (!iq->desc)
+		return -ENOMEM;
+
+	memset(&c, 0, sizeof(c));
+	c.op_to_vfn = htonl(FW_CMD_OP(FW_IQ_CMD) | FW_CMD_REQUEST |
+			    FW_CMD_WRITE | FW_CMD_EXEC |
+			    FW_IQ_CMD_PFN(0) | FW_IQ_CMD_VFN(0));
+	c.alloc_to_len16 = htonl(FW_IQ_CMD_ALLOC | FW_IQ_CMD_IQSTART(1) |
+				 FW_LEN16(c));
+	c.type_to_iqandstindex = htonl(FW_IQ_CMD_TYPE(FW_IQ_TYPE_FL_INT_CAP) |
+		FW_IQ_CMD_IQASYNCH(fwevtq) | FW_IQ_CMD_VIID(pi->viid) |
+		FW_IQ_CMD_IQANDST(intr_idx < 0) | FW_IQ_CMD_IQANUD(1) |
+		FW_IQ_CMD_IQANDSTINDEX(intr_idx >= 0 ? intr_idx :
+							-intr_idx - 1));
+	c.iqdroprss_to_iqesize = htons(FW_IQ_CMD_IQPCIECH(pi->tx_chan) |
+		FW_IQ_CMD_IQGTSMODE |
+		FW_IQ_CMD_IQINTCNTTHRESH(iq->pktcnt_idx) |
+		FW_IQ_CMD_IQESIZE(ilog2(iq->iqe_len) - 4));
+	c.iqsize = htons(iq->size);
+	c.iqaddr = cpu_to_be64(iq->phys_addr);
+
+	if (fl) {
+		fl->size = roundup(fl->size, 8);
+		fl->desc = alloc_ring(adap->pdev_dev, fl->size, sizeof(__be64),
+				      sizeof(struct rx_sw_desc), &fl->addr,
+				      &fl->sdesc, STAT_LEN);
+		if (!fl->desc)
+			goto fl_nomem;
+
+		flsz = fl->size / 8 + STAT_LEN / sizeof(struct tx_desc);
+		c.iqns_to_fl0congen = htonl(FW_IQ_CMD_FL0PACKEN |
+					    FW_IQ_CMD_FL0PADEN);
+		c.fl0dcaen_to_fl0cidxfthresh = htons(FW_IQ_CMD_FL0FBMIN(2) |
+				FW_IQ_CMD_FL0FBMAX(3));
+		c.fl0size = htons(flsz);
+		c.fl0addr = cpu_to_be64(fl->addr);
+	}
+
+	ret = t4_wr_mbox(adap, 0, &c, sizeof(c), &c);
+	if (ret)
+		goto err;
+
+	spin_lock_init(&iq->lock);
+	netif_napi_add(dev, &iq->napi, napi_rx_handler, 64);
+	iq->cur_desc = iq->desc;
+	iq->cidx = 0;
+	iq->gen = 1;
+	iq->next_intr_params = iq->intr_params;
+	iq->cntxt_id = ntohs(c.iqid);
+	iq->abs_id = ntohs(c.physiqid);
+	iq->size--;                           /* subtract status entry */
+	iq->adap = adap;
+	iq->netdev = dev;
+	iq->handler = hnd;
+
+	/* set offset to -1 to distinguish ingress queues without FL */
+	iq->offset = fl ? 0 : -1;
+
+	adap->sge.ingr_map[iq->cntxt_id] = iq;
+
+	if (fl) {
+		fl->cntxt_id = htons(c.fl0id);
+		fl->avail = fl->pend_cred = 0;
+		fl->pidx = fl->cidx = 0;
+		fl->alloc_failed = fl->large_alloc_failed = fl->starving = 0;
+		adap->sge.egr_map[fl->cntxt_id] = fl;
+		replenish_fl(adap, fl, GFP_KERNEL);
+	}
+	return 0;
+
+fl_nomem:
+	ret = -ENOMEM;
+err:
+	if (iq->desc) {
+		dma_free_coherent(adap->pdev_dev, iq->size * iq->iqe_len,
+				  iq->desc, iq->phys_addr);
+		iq->desc = NULL;
+	}
+	if (fl && fl->desc) {
+		kfree(fl->sdesc);
+		fl->sdesc = NULL;
+		dma_free_coherent(adap->pdev_dev, flsz * sizeof(struct tx_desc),
+				  fl->desc, fl->addr);
+		fl->desc = NULL;
+	}
+	return ret;
+}
+
+static void init_txq(struct adapter *adap, struct sge_txq *q, unsigned int id)
+{
+	q->in_use = 0;
+	q->cidx = q->pidx = 0;
+	q->stops = q->restarts = 0;
+	q->stat = (void *)&q->desc[q->size];
+	q->cntxt_id = id;
+	adap->sge.egr_map[id] = q;
+}
+
+int t4_sge_alloc_eth_txq(struct adapter *adap, struct sge_eth_txq *txq,
+			 struct net_device *dev, struct netdev_queue *netdevq,
+			 unsigned int iqid)
+{
+	int ret, nentries;
+	struct fw_eq_eth_cmd c;
+	struct port_info *pi = netdev_priv(dev);
+
+	/* Add status entries */
+	nentries = txq->q.size + STAT_LEN / sizeof(struct tx_desc);
+
+	txq->q.desc = alloc_ring(adap->pdev_dev, txq->q.size,
+			sizeof(struct tx_desc), sizeof(struct tx_sw_desc),
+			&txq->q.phys_addr, &txq->q.sdesc, STAT_LEN);
+	if (!txq->q.desc)
+		return -ENOMEM;
+
+	memset(&c, 0, sizeof(c));
+	c.op_to_vfn = htonl(FW_CMD_OP(FW_EQ_ETH_CMD) | FW_CMD_REQUEST |
+			    FW_CMD_WRITE | FW_CMD_EXEC |
+			    FW_EQ_ETH_CMD_PFN(0) | FW_EQ_ETH_CMD_VFN(0));
+	c.alloc_to_len16 = htonl(FW_EQ_ETH_CMD_ALLOC |
+				 FW_EQ_ETH_CMD_EQSTART | FW_LEN16(c));
+	c.viid_pkd = htonl(FW_EQ_ETH_CMD_VIID(pi->viid));
+	c.fetchszm_to_iqid = htonl(FW_EQ_ETH_CMD_HOSTFCMODE(2) |
+				   FW_EQ_ETH_CMD_PCIECHN(pi->tx_chan) |
+				   FW_EQ_ETH_CMD_IQID(iqid));
+	c.dcaen_to_eqsize = htonl(FW_EQ_ETH_CMD_FBMIN(2) |
+				  FW_EQ_ETH_CMD_FBMAX(3) |
+				  FW_EQ_ETH_CMD_CIDXFTHRESH(5) |
+				  FW_EQ_ETH_CMD_EQSIZE(nentries));
+	c.eqaddr = cpu_to_be64(txq->q.phys_addr);
+
+	ret = t4_wr_mbox(adap, 0, &c, sizeof(c), &c);
+	if (ret) {
+		kfree(txq->q.sdesc);
+		txq->q.sdesc = NULL;
+		dma_free_coherent(adap->pdev_dev,
+				  nentries * sizeof(struct tx_desc),
+				  txq->q.desc, txq->q.phys_addr);
+		txq->q.desc = NULL;
+		return ret;
+	}
+
+	init_txq(adap, &txq->q, FW_EQ_ETH_CMD_EQID_GET(ntohl(c.eqid_pkd)));
+	txq->txq = netdevq;
+	txq->tso = txq->tx_cso = txq->vlan_ins = 0;
+	txq->mapping_err = 0;
+	return 0;
+}
+
+int t4_sge_alloc_ctrl_txq(struct adapter *adap, struct sge_ctrl_txq *txq,
+			  struct net_device *dev, unsigned int iqid,
+			  unsigned int cmplqid)
+{
+	int ret, nentries;
+	struct fw_eq_ctrl_cmd c;
+	struct port_info *pi = netdev_priv(dev);
+
+	/* Add status entries */
+	nentries = txq->q.size + STAT_LEN / sizeof(struct tx_desc);
+
+	txq->q.desc = alloc_ring(adap->pdev_dev, nentries,
+				 sizeof(struct tx_desc), 0, &txq->q.phys_addr,
+				 NULL, 0);
+	if (!txq->q.desc)
+		return -ENOMEM;
+
+	c.op_to_vfn = htonl(FW_CMD_OP(FW_EQ_CTRL_CMD) | FW_CMD_REQUEST |
+			    FW_CMD_WRITE | FW_CMD_EXEC |
+			    FW_EQ_CTRL_CMD_PFN(0) | FW_EQ_CTRL_CMD_VFN(0));
+	c.alloc_to_len16 = htonl(FW_EQ_CTRL_CMD_ALLOC |
+				 FW_EQ_CTRL_CMD_EQSTART | FW_LEN16(c));
+	c.cmpliqid_eqid = htonl(FW_EQ_CTRL_CMD_CMPLIQID(cmplqid));
+	c.physeqid_pkd = htonl(0);
+	c.fetchszm_to_iqid = htonl(FW_EQ_CTRL_CMD_HOSTFCMODE(2) |
+				   FW_EQ_CTRL_CMD_PCIECHN(pi->tx_chan) |
+				   FW_EQ_CTRL_CMD_IQID(iqid));
+	c.dcaen_to_eqsize = htonl(FW_EQ_CTRL_CMD_FBMIN(2) |
+				  FW_EQ_CTRL_CMD_FBMAX(3) |
+				  FW_EQ_CTRL_CMD_CIDXFTHRESH(5) |
+				  FW_EQ_CTRL_CMD_EQSIZE(nentries));
+	c.eqaddr = cpu_to_be64(txq->q.phys_addr);
+
+	ret = t4_wr_mbox(adap, 0, &c, sizeof(c), &c);
+	if (ret) {
+		dma_free_coherent(adap->pdev_dev,
+				  nentries * sizeof(struct tx_desc),
+				  txq->q.desc, txq->q.phys_addr);
+		txq->q.desc = NULL;
+		return ret;
+	}
+
+	init_txq(adap, &txq->q, FW_EQ_CTRL_CMD_EQID_GET(ntohl(c.cmpliqid_eqid)));
+	txq->adap = adap;
+	skb_queue_head_init(&txq->sendq);
+	tasklet_init(&txq->qresume_tsk, restart_ctrlq, (unsigned long)txq);
+	txq->full = 0;
+	return 0;
+}
+
+int t4_sge_alloc_ofld_txq(struct adapter *adap, struct sge_ofld_txq *txq,
+			  struct net_device *dev, unsigned int iqid)
+{
+	int ret, nentries;
+	struct fw_eq_ofld_cmd c;
+	struct port_info *pi = netdev_priv(dev);
+
+	/* Add status entries */
+	nentries = txq->q.size + STAT_LEN / sizeof(struct tx_desc);
+
+	txq->q.desc = alloc_ring(adap->pdev_dev, txq->q.size,
+			sizeof(struct tx_desc), sizeof(struct tx_sw_desc),
+			&txq->q.phys_addr, &txq->q.sdesc, STAT_LEN);
+	if (!txq->q.desc)
+		return -ENOMEM;
+
+	memset(&c, 0, sizeof(c));
+	c.op_to_vfn = htonl(FW_CMD_OP(FW_EQ_OFLD_CMD) | FW_CMD_REQUEST |
+			    FW_CMD_WRITE | FW_CMD_EXEC |
+			    FW_EQ_OFLD_CMD_PFN(0) | FW_EQ_OFLD_CMD_VFN(0));
+	c.alloc_to_len16 = htonl(FW_EQ_OFLD_CMD_ALLOC |
+				 FW_EQ_OFLD_CMD_EQSTART | FW_LEN16(c));
+	c.fetchszm_to_iqid = htonl(FW_EQ_OFLD_CMD_HOSTFCMODE(2) |
+				   FW_EQ_OFLD_CMD_PCIECHN(pi->tx_chan) |
+				   FW_EQ_OFLD_CMD_IQID(iqid));
+	c.dcaen_to_eqsize = htonl(FW_EQ_OFLD_CMD_FBMIN(2) |
+				  FW_EQ_OFLD_CMD_FBMAX(3) |
+				  FW_EQ_OFLD_CMD_CIDXFTHRESH(5) |
+				  FW_EQ_OFLD_CMD_EQSIZE(nentries));
+	c.eqaddr = cpu_to_be64(txq->q.phys_addr);
+
+	ret = t4_wr_mbox(adap, 0, &c, sizeof(c), &c);
+	if (ret) {
+		kfree(txq->q.sdesc);
+		txq->q.sdesc = NULL;
+		dma_free_coherent(adap->pdev_dev,
+				  nentries * sizeof(struct tx_desc),
+				  txq->q.desc, txq->q.phys_addr);
+		txq->q.desc = NULL;
+		return ret;
+	}
+
+	init_txq(adap, &txq->q, FW_EQ_OFLD_CMD_EQID_GET(ntohl(c.eqid_pkd)));
+	txq->adap = adap;
+	skb_queue_head_init(&txq->sendq);
+	tasklet_init(&txq->qresume_tsk, restart_ofldq, (unsigned long)txq);
+	txq->full = 0;
+	txq->mapping_err = 0;
+	return 0;
+}
+
+static void free_txq(struct adapter *adap, struct sge_txq *q)
+{
+	dma_free_coherent(adap->pdev_dev,
+			  q->size * sizeof(struct tx_desc) + STAT_LEN,
+			  q->desc, q->phys_addr);
+	q->cntxt_id = 0;
+	q->sdesc = NULL;
+	q->desc = NULL;
+}
+
+static void free_rspq_fl(struct adapter *adap, struct sge_rspq *rq,
+			 struct sge_fl *fl)
+{
+	unsigned int fl_id = fl ? fl->cntxt_id : 0xffff;
+
+	t4_iq_free(adap, 0, 0, 0, FW_IQ_TYPE_FL_INT_CAP, rq->cntxt_id, fl_id,
+		   0xffff);
+	dma_free_coherent(adap->pdev_dev, (rq->size + 1) * rq->iqe_len,
+			  rq->desc, rq->phys_addr);
+	netif_napi_del(&rq->napi);
+	rq->netdev = NULL;
+	rq->cntxt_id = rq->abs_id = 0;
+	rq->desc = NULL;
+
+	if (fl) {
+		free_rx_bufs(adap, fl, fl->avail);
+		dma_free_coherent(adap->pdev_dev, fl->size * 8 + STAT_LEN,
+				  fl->desc, fl->addr);
+		kfree(fl->sdesc);
+		fl->sdesc = NULL;
+		fl->cntxt_id = 0;
+		fl->desc = NULL;
+	}
+}
+
+/**
+ *	t4_free_sge_resources - free SGE resources
+ *	@adap: the adapter
+ *
+ *	Frees resources used by the SGE queue sets.
+ */
+void t4_free_sge_resources(struct adapter *adap)
+{
+	int i;
+	struct sge_eth_rxq *eq = adap->sge.ethrxq;
+	struct sge_eth_txq *etq = adap->sge.ethtxq;
+	struct sge_ofld_rxq *oq = adap->sge.ofldrxq;
+	struct sge_rspq *intrq = &adap->sge.intrq;
+
+	/* clean up Ethernet Tx/Rx queues */
+	for (i = 0; i < adap->sge.ethqsets; i++, eq++, etq++) {
+		if (eq->rspq.desc)
+			free_rspq_fl(adap, &eq->rspq, &eq->fl);
+		if (etq->q.desc) {
+			t4_eth_eq_free(adap, 0, 0, 0, etq->q.cntxt_id);
+			free_tx_desc(adap, &etq->q, etq->q.in_use, true);
+			kfree(etq->q.sdesc);
+			free_txq(adap, &etq->q);
+		}
+	}
+
+	/* clean up RDMA and iSCSI Rx queues */
+	for (i = 0; i < adap->sge.ofldqsets; i++, oq++) {
+		if (oq->rspq.desc)
+			free_rspq_fl(adap, &oq->rspq, &oq->fl);
+	}
+	for (i = 0, oq = adap->sge.rdmarxq; i < adap->sge.rdmaqs; i++, oq++) {
+		if (oq->rspq.desc)
+			free_rspq_fl(adap, &oq->rspq, &oq->fl);
+	}
+
+	/* clean up offload Tx queues */
+	for (i = 0; i < ARRAY_SIZE(adap->sge.ofldtxq); i++) {
+		struct sge_ofld_txq *q = &adap->sge.ofldtxq[i];
+
+		if (q->q.desc) {
+			tasklet_kill(&q->qresume_tsk);
+			t4_ofld_eq_free(adap, 0, 0, 0, q->q.cntxt_id);
+			free_tx_desc(adap, &q->q, q->q.in_use, false);
+			kfree(q->q.sdesc);
+			__skb_queue_purge(&q->sendq);
+			free_txq(adap, &q->q);
+		}
+	}
+
+	/* clean up control Tx queues */
+	for (i = 0; i < ARRAY_SIZE(adap->sge.ctrlq); i++) {
+		struct sge_ctrl_txq *cq = &adap->sge.ctrlq[i];
+
+		if (cq->q.desc) {
+			tasklet_kill(&cq->qresume_tsk);
+			t4_ctrl_eq_free(adap, 0, 0, 0, cq->q.cntxt_id);
+			__skb_queue_purge(&cq->sendq);
+			free_txq(adap, &cq->q);
+		}
+	}
+
+	if (adap->sge.fw_evtq.desc)
+		free_rspq_fl(adap, &adap->sge.fw_evtq, NULL);
+
+	if (intrq->desc) {
+		t4_iq_free(adap, 0, 0, 0, FW_IQ_TYPE_FL_INT_CAP,
+			   intrq->cntxt_id, 0xffff, 0xffff);
+		dma_free_coherent(adap->pdev_dev,
+				  (intrq->size + 1) * intrq->iqe_len,
+				  intrq->desc, intrq->phys_addr);
+		intrq->cntxt_id = intrq->abs_id = 0;
+		intrq->desc = NULL;
+		/* this queue doesn't use NAPI */
+	}
+}
+
+void t4_sge_start(struct adapter *adap)
+{
+	mod_timer(&adap->sge.rx_timer, jiffies + RX_QCHECK_PERIOD);
+	mod_timer(&adap->sge.tx_timer, jiffies + TX_QCHECK_PERIOD);
+}
+
+/**
+ *	t4_sge_stop - disable SGE operation
+ *	@adap: the adapter
+ *
+ *	Stop tasklets and timers associated with the DMA engine.  Note that
+ *	this is effective only if measures have been taken to disable any HW
+ *	events that may restart them.
+ */
+void t4_sge_stop(struct adapter *adap)
+{
+	int i;
+	struct sge *s = &adap->sge;
+
+	if (in_interrupt())  /* actions below require waiting */
+		return;
+
+	if (s->rx_timer.function)
+		del_timer_sync(&s->rx_timer);
+	if (s->tx_timer.function)
+		del_timer_sync(&s->tx_timer);
+
+	for (i = 0; i < ARRAY_SIZE(s->ofldtxq); i++) {
+		struct sge_ofld_txq *q = &s->ofldtxq[i];
+
+		if (q->q.desc)
+			tasklet_kill(&q->qresume_tsk);
+	}
+	for (i = 0; i < ARRAY_SIZE(s->ctrlq); i++) {
+		struct sge_ctrl_txq *cq = &s->ctrlq[i];
+
+		if (cq->q.desc)
+			tasklet_kill(&cq->qresume_tsk);
+	}
+}
+
+/**
+ *	t4_sge_init - initialize SGE
+ *	@adap: the adapter
+ *
+ *	Performs SGE initialization needed every time after a chip reset.
+ *	We do not initialize any of the queues here, instead the driver
+ *	top-level must request them individually.
+ */
+void t4_sge_init(struct adapter *adap)
+{
+	struct sge *s = &adap->sge;
+	unsigned int fl_align_log = ilog2(FL_ALIGN);
+
+	t4_set_reg_field(adap, SGE_CONTROL, PKTSHIFT_MASK |
+			 INGPADBOUNDARY_MASK | EGRSTATUSPAGESIZE,
+			 INGPADBOUNDARY(fl_align_log - 5) | PKTSHIFT(2) |
+			 RXPKTCPLMODE |
+			 (STAT_LEN == 128 ? EGRSTATUSPAGESIZE : 0));
+	t4_set_reg_field(adap, SGE_HOST_PAGE_SIZE, HOSTPAGESIZEPF0_MASK,
+			 HOSTPAGESIZEPF0(PAGE_SHIFT - 10));
+	t4_write_reg(adap, SGE_FL_BUFFER_SIZE0, PAGE_SIZE);
+#if FL_PG_ORDER > 0
+	t4_write_reg(adap, SGE_FL_BUFFER_SIZE1, PAGE_SIZE << FL_PG_ORDER);
+#endif
+	t4_write_reg(adap, SGE_INGRESS_RX_THRESHOLD,
+		     THRESHOLD_0(s->counter_val[0]) |
+		     THRESHOLD_1(s->counter_val[1]) |
+		     THRESHOLD_2(s->counter_val[2]) |
+		     THRESHOLD_3(s->counter_val[3]));
+	t4_write_reg(adap, SGE_TIMER_VALUE_0_AND_1,
+		     TIMERVALUE0(us_to_core_ticks(adap, s->timer_val[0])) |
+		     TIMERVALUE1(us_to_core_ticks(adap, s->timer_val[1])));
+	t4_write_reg(adap, SGE_TIMER_VALUE_2_AND_3,
+		     TIMERVALUE0(us_to_core_ticks(adap, s->timer_val[2])) |
+		     TIMERVALUE1(us_to_core_ticks(adap, s->timer_val[3])));
+	t4_write_reg(adap, SGE_TIMER_VALUE_4_AND_5,
+		     TIMERVALUE0(us_to_core_ticks(adap, s->timer_val[4])) |
+		     TIMERVALUE1(us_to_core_ticks(adap, s->timer_val[5])));
+	setup_timer(&s->rx_timer, sge_rx_timer_cb, (unsigned long)adap);
+	setup_timer(&s->tx_timer, sge_tx_timer_cb, (unsigned long)adap);
+	s->starve_thres = core_ticks_per_usec(adap) * 1000000;  /* 1 s */
+	s->idma_state[0] = s->idma_state[1] = 0;
+}