diff mbox

[U-Boot,v7] nand/denali: Adding Denali NAND driver support

Message ID 1395673848-3551-1-git-send-email-clsee@altera.com
State Changes Requested
Delegated to: Scott Wood
Headers show

Commit Message

Chin Liang See March 24, 2014, 3:10 p.m. UTC
To add the Denali NAND driver support into U-Boot. It required
information such as register base address from configuration
header file  within include/configs folder.

Signed-off-by: Chin Liang See <clsee@altera.com>
Cc: Artem Bityutskiy <artem.bityutskiy@linux.intel.com>
Cc: David Woodhouse <David.Woodhouse@intel.com>
Cc: Brian Norris <computersforpeace@gmail.com>
Cc: Scott Wood <scottwood@freescale.com>
Cc: Masahiro Yamada <yamada.m@jp.panasonic.com>
---
Changes for v7
- Adding Masahiro's code to support 64bit version controller
- Removed unused stub functions
- Enhanced the ECC calculation
Changes for v6
- Remove chip_delay as its unused
- Remove ECC bit assignment in nand_para functions
Changes for v5
- Rename denali_nand to denali only
- Rename the macro for ctrl and data address
Changes for v4
- Added cache flush to handle dcache enabled
- Used standard return where 0 for pass
- Removed unnecessary casting
- Used standard readl and writel
Changes for v3
- Fixed coding style
Changes for v2
- Enable this driver support for SOCFPGA
---
 drivers/mtd/nand/Makefile |    1 +
 drivers/mtd/nand/denali.c | 1122 +++++++++++++++++++++++++++++++++++++++++++++
 drivers/mtd/nand/denali.h |  490 ++++++++++++++++++++
 3 files changed, 1613 insertions(+)
 create mode 100644 drivers/mtd/nand/denali.c
 create mode 100644 drivers/mtd/nand/denali.h

Comments

Masahiro Yamada March 28, 2014, 9:21 a.m. UTC | #1
Hi Chin,


> To add the Denali NAND driver support into U-Boot. It required
> information such as register base address from configuration
> header file  within include/configs folder.
> 
> Signed-off-by: Chin Liang See <clsee@altera.com>
> Cc: Artem Bityutskiy <artem.bityutskiy@linux.intel.com>
> Cc: David Woodhouse <David.Woodhouse@intel.com>
> Cc: Brian Norris <computersforpeace@gmail.com>
> Cc: Scott Wood <scottwood@freescale.com>
> Cc: Masahiro Yamada <yamada.m@jp.panasonic.com>
> ---
> Changes for v7
> - Adding Masahiro's code to support 64bit version controller
> - Removed unused stub functions
> - Enhanced the ECC calculation



This version works on Panasonic SoCs and
looks good enough to be applied.
Thanks!


Reviewed-by: Masahiro Yamada <yamada.m@jp.panasonic.com>
Tested-by: Masahiro Yamada <yamada.m@jp.panasonic.com>



Best Regards
Masahiro Yamada
Chin Liang See March 28, 2014, 2:58 p.m. UTC | #2
Hi Masahiro,

On Fri, 2014-03-28 at 18:21 +0900, Masahiro Yamada wrote:
> Hi Chin,
> 
> 
> > To add the Denali NAND driver support into U-Boot. It required
> > information such as register base address from configuration
> > header file  within include/configs folder.
> > 
> > Signed-off-by: Chin Liang See <clsee@altera.com>
> > Cc: Artem Bityutskiy <artem.bityutskiy@linux.intel.com>
> > Cc: David Woodhouse <David.Woodhouse@intel.com>
> > Cc: Brian Norris <computersforpeace@gmail.com>
> > Cc: Scott Wood <scottwood@freescale.com>
> > Cc: Masahiro Yamada <yamada.m@jp.panasonic.com>
> > ---
> > Changes for v7
> > - Adding Masahiro's code to support 64bit version controller
> > - Removed unused stub functions
> > - Enhanced the ECC calculation
> 
> 
> 
> This version works on Panasonic SoCs and
> looks good enough to be applied.
> Thanks!
> 

Great to hear that.
It was a fun experience to work with you to get this patch work for both
32bit and 64 bit controller.

Thanks
Chin Liang


> 
> Reviewed-by: Masahiro Yamada <yamada.m@jp.panasonic.com>
> Tested-by: Masahiro Yamada <yamada.m@jp.panasonic.com>
> 
> 
> 
> Best Regards
> Masahiro Yamada
>
Masahiro Yamada April 4, 2014, 8:31 a.m. UTC | #3
Hi Chin, Scott,


On Fri, 28 Mar 2014 09:58:40 -0500
Chin Liang See <clsee@altera.com> wrote:

> Hi Masahiro,
> 
> On Fri, 2014-03-28 at 18:21 +0900, Masahiro Yamada wrote:
> > Hi Chin,
> > 
> > 
> > > To add the Denali NAND driver support into U-Boot. It required
> > > information such as register base address from configuration
> > > header file  within include/configs folder.
> > > 
> > > Signed-off-by: Chin Liang See <clsee@altera.com>
> > > Cc: Artem Bityutskiy <artem.bityutskiy@linux.intel.com>
> > > Cc: David Woodhouse <David.Woodhouse@intel.com>
> > > Cc: Brian Norris <computersforpeace@gmail.com>
> > > Cc: Scott Wood <scottwood@freescale.com>
> > > Cc: Masahiro Yamada <yamada.m@jp.panasonic.com>
> > > ---
> > > Changes for v7
> > > - Adding Masahiro's code to support 64bit version controller
> > > - Removed unused stub functions
> > > - Enhanced the ECC calculation
> > 
> > 
> > 
> > This version works on Panasonic SoCs and
> > looks good enough to be applied.
> > Thanks!
> > 
> 
> Great to hear that.
> It was a fun experience to work with you to get this patch work for both
> 32bit and 64 bit controller.
> 


I am evaluating the performance of this driver.
Unfortunately it turned out this driver is very slow.

I have another driver for Denali NAND controller, which does not use
DMA.


So I compared the read/write performance.

This is my benchmark

(1) Write 0x10000000 bytes from SDRAM to NAND.

This patch (with DMA):  68 sec
My implementation without DMA: 46sec

(2) Read 0x10000000 bytes from NAND to SDRAM

This patch(with DMA): 45sec
My implementaion without DMA: 22sec



This patch with DMA is slower than without DMA.


What is worse is scanning bad block marks is extremely slow.
(Maybe abount 10x slower than without DMA)



So my question is, what should we do to improve the performance?
Is it a bad idea to use DMA?


The sequence of page_read in this patch is like this:
(1) Cache flush of DMA buffer area
(2) DMA transfer from NAND device to DMA buffer
(3) memcpy()  from DMA buffer to destination memory

In Linux Kernel,  I guess there is  DMA sync process between (2) and (3).
But we don't have DMA API in U-Boot.


If we do not use DMA, the read sequence is like this
(1) Copy data directly from NAND register to destination memory

According to my benchmark, this is about twice faster.



Scott, do you have any advice?


Best Regards
Masahiro Yamada
Scott Wood April 11, 2014, 10:43 p.m. UTC | #4
On Fri, 2014-04-04 at 17:31 +0900, Masahiro Yamada wrote:
> So my question is, what should we do to improve the performance?
> Is it a bad idea to use DMA?
> 
> 
> The sequence of page_read in this patch is like this:
> (1) Cache flush of DMA buffer area
> (2) DMA transfer from NAND device to DMA buffer
> (3) memcpy()  from DMA buffer to destination memory
> 
> In Linux Kernel,  I guess there is  DMA sync process between (2) and (3).
> But we don't have DMA API in U-Boot.

flush_dcache_range() plays the same role as the Linux DMA sync.

> If we do not use DMA, the read sequence is like this
> (1) Copy data directly from NAND register to destination memory
> 
> According to my benchmark, this is about twice faster.

Have you measured the performance in the Linux driver?

> Scott, do you have any advice?

Do some profiling to see where the time is spent.  I don't know how easy
it is to do automated profiling of U-Boot, but you could add some manual
instrumentation of the driver to measure min/avg/max/total time taken
over various intervals.

-Scott
Masahiro Yamada April 18, 2014, 11:41 a.m. UTC | #5
Hi Chin,


I found another fatal problem in v7.
"nand markbad" command does not work at all.
I think write_oob_data() is buggy.


And I made "nand bad" command much faster.
And other misc feedbacks.


How about squashing
http://patchwork.ozlabs.org/patch/340277/
http://patchwork.ozlabs.org/patch/340278/
to v7 and posting v8.


Best Regards
Masahiro Yamada
Chin Liang See April 23, 2014, 7:06 a.m. UTC | #6
Hi Masahiro,


On Fri, 2014-04-18 at 20:41 +0900, Masahiro Yamada wrote:
> Hi Chin,
> 
> 
> I found another fatal problem in v7.
> "nand markbad" command does not work at all.
> I think write_oob_data() is buggy.

I believe I already comment that on the previous mail. In short, its
working for me as I am using the BBT within the flash.

> 
> 
> And I made "nand bad" command much faster.
> And other misc feedbacks.

Actually, its only happen when new chip is used. But this code improved
the speed, its a nice enhancement to put into v8.

> 
> 
> How about squashing
> http://patchwork.ozlabs.org/patch/340277/
> http://patchwork.ozlabs.org/patch/340278/
> to v7 and posting v8.
> 

If you are ok with the comments, I can go ahead to create the v8 with
below changes
1. Change denali.xx to denali->xx
2. Enhancement of nand bad bad block scanning function

Thanks
Chin Liang

> 
> Best Regards
> Masahiro Yamada
>
Masahiro Yamada April 24, 2014, 10:22 a.m. UTC | #7
Hi Chin,


On Wed, 23 Apr 2014 02:06:58 -0500
Chin Liang See <clsee@altera.com> wrote:

> Hi Masahiro,
> 
> 
> On Fri, 2014-04-18 at 20:41 +0900, Masahiro Yamada wrote:
> > Hi Chin,
> > 
> > 
> > I found another fatal problem in v7.
> > "nand markbad" command does not work at all.
> > I think write_oob_data() is buggy.
> 
> I believe I already comment that on the previous mail. In short, its
> working for me as I am using the BBT within the flash.

As I commented in another reply,
I guess it is working for you on v2013.01 release.
But I doubt it on the current u-boot/master.



> > 
> > 
> > How about squashing
> > http://patchwork.ozlabs.org/patch/340277/
> > http://patchwork.ozlabs.org/patch/340278/
> > to v7 and posting v8.
> > 
> 
> If you are ok with the comments, I can go ahead to create the v8 with
> below changes
> 1. Change denali.xx to denali->xx
> 2. Enhancement of nand bad bad block scanning function
> 

I found another bug.
NAND_BBT_USE_FLASH and NAND_BBT_NO_OOB must be added to
nand->bbt_options.

Please include this fix too in version 8.


  @@ -1162,13 +1162,13 @@ static int denali_nand_init(struct nand_chip *nand)
         /* check whether flash got BBT table (located at end of flash). As we
          * use NAND_BBT_NO_OOB, the BBT page will start with
          * bbt_pattern. We will have mirror pattern too */
 -       nand->options |= NAND_BBT_USE_FLASH;
 +       nand->bbt_options |= NAND_BBT_USE_FLASH;
         /*
          * We are using main + spare with ECC support. As BBT need ECC support,
          * we need to ensure BBT code don't write to OOB for the BBT pattern.
          * All BBT info will be stored into data area with ECC support.
          */
 -       nand->options |= NAND_BBT_NO_OOB;
 +       nand->bbt_options |= NAND_BBT_NO_OOB;
  #endif
  
         nand->ecc.mode = NAND_ECC_HW;


Best Regards
Masahiro Yamada
Masahiro Yamada May 7, 2014, 3:48 a.m. UTC | #8
Hi Chin,

Could you send v8?


Best Regards
Masahiro Yamada
Masahiro Yamada May 26, 2014, 4:58 a.m. UTC | #9
Hi Chin,

Could you tell me the status of Denali NAND driver?

Please apply my feedback and post v8.
I really need this driver.

Thanks,

Best Regards
Masahiro Yamada
Chin Liang See May 27, 2014, 9:54 a.m. UTC | #10
Hi Masahiro,

On Mon, 2014-05-26 at 13:58 +0900, Masahiro Yamada wrote:
> Hi Chin,
> 
> Could you tell me the status of Denali NAND driver?
> 
> Please apply my feedback and post v8.
> I really need this driver.
> 

Sorry as I was busy on some issues recently.
Let me work out the v8 patch and send out within this few days.
Thanks for reminding.

Chin Liang


> Thanks,
> 
> Best Regards
> Masahiro Yamada
>
diff mbox

Patch

diff --git a/drivers/mtd/nand/Makefile b/drivers/mtd/nand/Makefile
index 02b149c..76ae105 100644
--- a/drivers/mtd/nand/Makefile
+++ b/drivers/mtd/nand/Makefile
@@ -39,6 +39,7 @@  obj-$(CONFIG_NAND_ECC_BCH) += nand_bch.o
 obj-$(CONFIG_NAND_ATMEL) += atmel_nand.o
 obj-$(CONFIG_DRIVER_NAND_BFIN) += bfin_nand.o
 obj-$(CONFIG_NAND_DAVINCI) += davinci_nand.o
+obj-$(CONFIG_NAND_DENALI) += denali.o
 obj-$(CONFIG_NAND_FSL_ELBC) += fsl_elbc_nand.o
 obj-$(CONFIG_NAND_FSL_IFC) += fsl_ifc_nand.o
 obj-$(CONFIG_NAND_FSL_UPM) += fsl_upm.o
diff --git a/drivers/mtd/nand/denali.c b/drivers/mtd/nand/denali.c
new file mode 100644
index 0000000..348e244
--- /dev/null
+++ b/drivers/mtd/nand/denali.c
@@ -0,0 +1,1122 @@ 
+/*
+ * Copyright (C) 2014       Panasonic Corporation
+ * Copyright (C) 2013-2014, Altera Corporation <www.altera.com>
+ * Copyright (C) 2009-2010, Intel Corporation and its suppliers.
+ *
+ * SPDX-License-Identifier:	GPL-2.0+
+ */
+
+#include <common.h>
+#include <nand.h>
+#include <asm/errno.h>
+#include <asm/io.h>
+
+#include "denali.h"
+
+#define NAND_DEFAULT_TIMINGS	-1
+
+static struct denali_nand_info denali;
+static int onfi_timing_mode = NAND_DEFAULT_TIMINGS;
+
+/* We define a macro here that combines all interrupts this driver uses into
+ * a single constant value, for convenience. */
+#define DENALI_IRQ_ALL	(INTR_STATUS__DMA_CMD_COMP | \
+			INTR_STATUS__ECC_TRANSACTION_DONE | \
+			INTR_STATUS__ECC_ERR | \
+			INTR_STATUS__PROGRAM_FAIL | \
+			INTR_STATUS__LOAD_COMP | \
+			INTR_STATUS__PROGRAM_COMP | \
+			INTR_STATUS__TIME_OUT | \
+			INTR_STATUS__ERASE_FAIL | \
+			INTR_STATUS__RST_COMP | \
+			INTR_STATUS__ERASE_COMP | \
+			INTR_STATUS__ECC_UNCOR_ERR | \
+			INTR_STATUS__INT_ACT | \
+			INTR_STATUS__LOCKED_BLK)
+
+/* indicates whether or not the internal value for the flash bank is
+ * valid or not */
+#define CHIP_SELECT_INVALID	-1
+
+#define SUPPORT_8BITECC		1
+
+/* These constants are defined by the driver to enable common driver
+ * configuration options. */
+#define SPARE_ACCESS		0x41
+#define MAIN_ACCESS		0x42
+#define MAIN_SPARE_ACCESS	0x43
+
+#define DENALI_UNLOCK_START	0x10
+#define DENALI_UNLOCK_END	0x11
+#define DENALI_LOCK		0x21
+#define DENALI_LOCK_TIGHT	0x31
+#define DENALI_BUFFER_LOAD	0x60
+#define DENALI_BUFFER_WRITE	0x62
+
+#define DENALI_READ	0
+#define DENALI_WRITE	0x100
+
+/* types of device accesses. We can issue commands and get status */
+#define COMMAND_CYCLE	0
+#define ADDR_CYCLE	1
+#define STATUS_CYCLE	2
+
+/* this is a helper macro that allows us to
+ * format the bank into the proper bits for the controller */
+#define BANK(x) ((x) << 24)
+
+/* Interrupts are cleared by writing a 1 to the appropriate status bit */
+static inline void clear_interrupt(uint32_t irq_mask)
+{
+	uint32_t intr_status_reg = 0;
+	intr_status_reg = INTR_STATUS(denali.flash_bank);
+	writel(irq_mask, denali.flash_reg + intr_status_reg);
+}
+
+static uint32_t read_interrupt_status(void)
+{
+	uint32_t intr_status_reg = 0;
+	intr_status_reg = INTR_STATUS(denali.flash_bank);
+	return readl(denali.flash_reg + intr_status_reg);
+}
+
+static void clear_interrupts(void)
+{
+	uint32_t status = 0;
+	status = read_interrupt_status();
+	clear_interrupt(status);
+	denali.irq_status = 0;
+}
+
+static void denali_irq_enable(uint32_t int_mask)
+{
+	int i;
+	for (i = 0; i < denali.max_banks; ++i)
+		writel(int_mask, denali.flash_reg + INTR_EN(i));
+}
+
+static uint32_t wait_for_irq(uint32_t irq_mask)
+{
+	unsigned long timeout = 1000000;
+	uint32_t intr_status;
+
+	do {
+		intr_status = read_interrupt_status() & DENALI_IRQ_ALL;
+		if (intr_status & irq_mask) {
+			denali.irq_status &= ~irq_mask;
+			/* our interrupt was detected */
+			break;
+		}
+		udelay(1);
+		timeout--;
+	} while (timeout != 0);
+
+	if (timeout == 0) {
+		/* timeout */
+		printf("Denali timeout with interrupt status %08x\n",
+		       read_interrupt_status());
+		intr_status = 0;
+	}
+	return intr_status;
+}
+
+/*
+ * Certain operations for the denali NAND controller use an indexed mode to
+ * read/write data. The operation is performed by writing the address value
+ * of the command to the device memory followed by the data. This function
+ * abstracts this common operation.
+*/
+static void index_addr(uint32_t address, uint32_t data)
+{
+	writel(address, denali.flash_mem + INDEX_CTRL_REG);
+	writel(data, denali.flash_mem + INDEX_DATA_REG);
+}
+
+/* Perform an indexed read of the device */
+static void index_addr_read_data(uint32_t address, uint32_t *pdata)
+{
+	writel(address, denali.flash_mem + INDEX_CTRL_REG);
+	*pdata = readl(denali.flash_mem + INDEX_DATA_REG);
+}
+
+/* We need to buffer some data for some of the NAND core routines.
+ * The operations manage buffering that data. */
+static void reset_buf(void)
+{
+	denali.buf.head = 0;
+	denali.buf.tail = 0;
+}
+
+static void write_byte_to_buf(uint8_t byte)
+{
+	BUG_ON(denali.buf.tail >= sizeof(denali.buf.buf));
+	denali.buf.buf[denali.buf.tail++] = byte;
+}
+
+/* resets a specific device connected to the core */
+static void reset_bank(void)
+{
+	uint32_t irq_status;
+	uint32_t irq_mask = INTR_STATUS__RST_COMP |
+			    INTR_STATUS__TIME_OUT;
+
+	clear_interrupts();
+
+	writel(1 << denali.flash_bank, denali.flash_reg + DEVICE_RESET);
+
+	irq_status = wait_for_irq(irq_mask);
+	if (irq_status & INTR_STATUS__TIME_OUT)
+		debug(KERN_ERR "reset bank failed.\n");
+}
+
+/* Reset the flash controller */
+static uint32_t denali_nand_reset(void)
+{
+	uint32_t i;
+
+	for (i = 0; i < denali.max_banks; i++)
+		writel(INTR_STATUS__RST_COMP | INTR_STATUS__TIME_OUT,
+		       denali.flash_reg + INTR_STATUS(i));
+
+	for (i = 0; i < denali.max_banks; i++) {
+		writel(1 << i, denali.flash_reg + DEVICE_RESET);
+		while (!(readl(denali.flash_reg +	INTR_STATUS(i)) &
+			(INTR_STATUS__RST_COMP | INTR_STATUS__TIME_OUT)))
+			if (readl(denali.flash_reg + INTR_STATUS(i)) &
+				INTR_STATUS__TIME_OUT)
+				debug(KERN_DEBUG "NAND Reset operation "
+					"timed out on bank %d\n", i);
+	}
+
+	for (i = 0; i < denali.max_banks; i++)
+		writel(INTR_STATUS__RST_COMP | INTR_STATUS__TIME_OUT,
+		       denali.flash_reg + INTR_STATUS(i));
+
+	return 0;
+}
+
+/* this routine calculates the ONFI timing values for a given mode and
+ * programs the clocking register accordingly. The mode is determined by
+ * the get_onfi_nand_para routine.
+ */
+static void nand_onfi_timing_set(uint32_t mode)
+{
+	uint32_t trea[6] = {40, 30, 25, 20, 20, 16};
+	uint32_t trp[6] = {50, 25, 17, 15, 12, 10};
+	uint32_t treh[6] = {30, 15, 15, 10, 10, 7};
+	uint32_t trc[6] = {100, 50, 35, 30, 25, 20};
+	uint32_t trhoh[6] = {0, 15, 15, 15, 15, 15};
+	uint32_t trloh[6] = {0, 0, 0, 0, 5, 5};
+	uint32_t tcea[6] = {100, 45, 30, 25, 25, 25};
+	uint32_t tadl[6] = {200, 100, 100, 100, 70, 70};
+	uint32_t trhw[6] = {200, 100, 100, 100, 100, 100};
+	uint32_t trhz[6] = {200, 100, 100, 100, 100, 100};
+	uint32_t twhr[6] = {120, 80, 80, 60, 60, 60};
+	uint32_t tcs[6] = {70, 35, 25, 25, 20, 15};
+
+	uint32_t tclsrising = 1;
+	uint32_t data_invalid_rhoh, data_invalid_rloh, data_invalid;
+	uint32_t dv_window = 0;
+	uint32_t en_lo, en_hi;
+	uint32_t acc_clks;
+	uint32_t addr_2_data, re_2_we, re_2_re, we_2_re, cs_cnt;
+
+	en_lo = DIV_ROUND_UP(trp[mode], CLK_X);
+	en_hi = DIV_ROUND_UP(treh[mode], CLK_X);
+#if ONFI_BLOOM_TIME
+	if ((en_hi * CLK_X) < (treh[mode] + 2))
+		en_hi++;
+#endif
+
+	if ((en_lo + en_hi) * CLK_X < trc[mode])
+		en_lo += DIV_ROUND_UP((trc[mode] - (en_lo + en_hi) * CLK_X),
+				      CLK_X);
+
+	if ((en_lo + en_hi) < CLK_MULTI)
+		en_lo += CLK_MULTI - en_lo - en_hi;
+
+	while (dv_window < 8) {
+		data_invalid_rhoh = en_lo * CLK_X + trhoh[mode];
+
+		data_invalid_rloh = (en_lo + en_hi) * CLK_X + trloh[mode];
+
+		data_invalid =
+		    data_invalid_rhoh <
+		    data_invalid_rloh ? data_invalid_rhoh : data_invalid_rloh;
+
+		dv_window = data_invalid - trea[mode];
+
+		if (dv_window < 8)
+			en_lo++;
+	}
+
+	acc_clks = DIV_ROUND_UP(trea[mode], CLK_X);
+
+	while (((acc_clks * CLK_X) - trea[mode]) < 3)
+		acc_clks++;
+
+	if ((data_invalid - acc_clks * CLK_X) < 2)
+		debug(KERN_WARNING "%s, Line %d: Warning!\n",
+		      __FILE__, __LINE__);
+
+	addr_2_data = DIV_ROUND_UP(tadl[mode], CLK_X);
+	re_2_we = DIV_ROUND_UP(trhw[mode], CLK_X);
+	re_2_re = DIV_ROUND_UP(trhz[mode], CLK_X);
+	we_2_re = DIV_ROUND_UP(twhr[mode], CLK_X);
+	cs_cnt = DIV_ROUND_UP((tcs[mode] - trp[mode]), CLK_X);
+	if (!tclsrising)
+		cs_cnt = DIV_ROUND_UP(tcs[mode], CLK_X);
+	if (cs_cnt == 0)
+		cs_cnt = 1;
+
+	if (tcea[mode]) {
+		while (((cs_cnt * CLK_X) + trea[mode]) < tcea[mode])
+			cs_cnt++;
+	}
+
+#if MODE5_WORKAROUND
+	if (mode == 5)
+		acc_clks = 5;
+#endif
+
+	/* Sighting 3462430: Temporary hack for MT29F128G08CJABAWP:B */
+	if ((readl(denali.flash_reg + MANUFACTURER_ID) == 0) &&
+	    (readl(denali.flash_reg + DEVICE_ID) == 0x88))
+		acc_clks = 6;
+
+	writel(acc_clks, denali.flash_reg + ACC_CLKS);
+	writel(re_2_we, denali.flash_reg + RE_2_WE);
+	writel(re_2_re, denali.flash_reg + RE_2_RE);
+	writel(we_2_re, denali.flash_reg + WE_2_RE);
+	writel(addr_2_data, denali.flash_reg + ADDR_2_DATA);
+	writel(en_lo, denali.flash_reg + RDWR_EN_LO_CNT);
+	writel(en_hi, denali.flash_reg + RDWR_EN_HI_CNT);
+	writel(cs_cnt, denali.flash_reg + CS_SETUP_CNT);
+}
+
+/* queries the NAND device to see what ONFI modes it supports. */
+static uint32_t get_onfi_nand_para(void)
+{
+	int i;
+	/* we needn't to do a reset here because driver has already
+	 * reset all the banks before
+	 * */
+	if (!(readl(denali.flash_reg + ONFI_TIMING_MODE) &
+	    ONFI_TIMING_MODE__VALUE))
+		return -EIO;
+
+	for (i = 5; i > 0; i--) {
+		if (readl(denali.flash_reg + ONFI_TIMING_MODE) &
+			(0x01 << i))
+			break;
+	}
+
+	nand_onfi_timing_set(i);
+
+	/* By now, all the ONFI devices we know support the page cache */
+	/* rw feature. So here we enable the pipeline_rw_ahead feature */
+	return 0;
+}
+
+static void get_samsung_nand_para(uint8_t device_id)
+{
+	if (device_id == 0xd3) { /* Samsung K9WAG08U1A */
+		/* Set timing register values according to datasheet */
+		writel(5, denali.flash_reg + ACC_CLKS);
+		writel(20, denali.flash_reg + RE_2_WE);
+		writel(12, denali.flash_reg + WE_2_RE);
+		writel(14, denali.flash_reg + ADDR_2_DATA);
+		writel(3, denali.flash_reg + RDWR_EN_LO_CNT);
+		writel(2, denali.flash_reg + RDWR_EN_HI_CNT);
+		writel(2, denali.flash_reg + CS_SETUP_CNT);
+	}
+}
+
+static void get_toshiba_nand_para(void)
+{
+	uint32_t tmp;
+
+	/* Workaround to fix a controller bug which reports a wrong */
+	/* spare area size for some kind of Toshiba NAND device */
+	if ((readl(denali.flash_reg + DEVICE_MAIN_AREA_SIZE) == 4096) &&
+	    (readl(denali.flash_reg + DEVICE_SPARE_AREA_SIZE)
+		== 64)){
+		writel(216, denali.flash_reg + DEVICE_SPARE_AREA_SIZE);
+		tmp = readl(denali.flash_reg + DEVICES_CONNECTED) *
+			readl(denali.flash_reg + DEVICE_SPARE_AREA_SIZE);
+		writel(tmp, denali.flash_reg + LOGICAL_PAGE_SPARE_SIZE);
+	}
+}
+
+static void get_hynix_nand_para(uint8_t device_id)
+{
+	uint32_t main_size, spare_size;
+
+	switch (device_id) {
+	case 0xD5: /* Hynix H27UAG8T2A, H27UBG8U5A or H27UCG8VFA */
+	case 0xD7: /* Hynix H27UDG8VEM, H27UCG8UDM or H27UCG8V5A */
+		writel(128, denali.flash_reg + PAGES_PER_BLOCK);
+		writel(4096, denali.flash_reg + DEVICE_MAIN_AREA_SIZE);
+		writel(224, denali.flash_reg + DEVICE_SPARE_AREA_SIZE);
+		main_size = 4096 *
+			readl(denali.flash_reg + DEVICES_CONNECTED);
+		spare_size = 224 *
+			readl(denali.flash_reg + DEVICES_CONNECTED);
+		writel(main_size, denali.flash_reg + LOGICAL_PAGE_DATA_SIZE);
+		writel(spare_size, denali.flash_reg + LOGICAL_PAGE_SPARE_SIZE);
+		writel(0, denali.flash_reg + DEVICE_WIDTH);
+		break;
+	default:
+		debug(KERN_WARNING
+			"Spectra: Unknown Hynix NAND (Device ID: 0x%x)."
+			"Will use default parameter values instead.\n",
+			device_id);
+	}
+}
+
+/* determines how many NAND chips are connected to the controller. Note for
+ * Intel CE4100 devices we don't support more than one device.
+ */
+static void find_valid_banks(void)
+{
+	uint32_t id[denali.max_banks];
+	int i;
+
+	denali.total_used_banks = 1;
+	for (i = 0; i < denali.max_banks; i++) {
+		index_addr((uint32_t)(MODE_11 | (i << 24) | 0), 0x90);
+		index_addr((uint32_t)(MODE_11 | (i << 24) | 1), 0);
+		index_addr_read_data((uint32_t)(MODE_11 | (i << 24) | 2),
+				     &id[i]);
+
+		if (i == 0) {
+			if (!(id[i] & 0x0ff))
+				break;
+		} else {
+			if ((id[i] & 0x0ff) == (id[0] & 0x0ff))
+				denali.total_used_banks++;
+			else
+				break;
+		}
+	}
+}
+
+/*
+ * Use the configuration feature register to determine the maximum number of
+ * banks that the hardware supports.
+ */
+static void detect_max_banks(void)
+{
+	uint32_t features = readl(denali.flash_reg + FEATURES);
+	denali.max_banks = 2 << (features & FEATURES__N_BANKS);
+}
+
+static void detect_partition_feature(void)
+{
+	/* For MRST platform, denali.fwblks represent the
+	 * number of blocks firmware is taken,
+	 * FW is in protect partition and MTD driver has no
+	 * permission to access it. So let driver know how many
+	 * blocks it can't touch.
+	 * */
+	if (readl(denali.flash_reg + FEATURES) & FEATURES__PARTITION) {
+		if ((readl(denali.flash_reg + PERM_SRC_ID(1)) &
+			PERM_SRC_ID__SRCID) == SPECTRA_PARTITION_ID) {
+			denali.fwblks =
+			    ((readl(denali.flash_reg + MIN_MAX_BANK(1)) &
+			      MIN_MAX_BANK__MIN_VALUE) *
+			     denali.blksperchip)
+			    +
+			    (readl(denali.flash_reg + MIN_BLK_ADDR(1)) &
+			    MIN_BLK_ADDR__VALUE);
+		} else {
+			denali.fwblks = SPECTRA_START_BLOCK;
+		}
+	} else {
+		denali.fwblks = SPECTRA_START_BLOCK;
+	}
+}
+
+static uint32_t denali_nand_timing_set(void)
+{
+	uint32_t id_bytes[5], addr;
+	uint8_t i, maf_id, device_id;
+
+	/* Use read id method to get device ID and other
+	 * params. For some NAND chips, controller can't
+	 * report the correct device ID by reading from
+	 * DEVICE_ID register
+	 * */
+	addr = (uint32_t)MODE_11 | BANK(denali.flash_bank);
+	index_addr((uint32_t)addr | 0, 0x90);
+	index_addr((uint32_t)addr | 1, 0);
+	for (i = 0; i < 5; i++)
+		index_addr_read_data(addr | 2, &id_bytes[i]);
+	maf_id = id_bytes[0];
+	device_id = id_bytes[1];
+
+	if (readl(denali.flash_reg + ONFI_DEVICE_NO_OF_LUNS) &
+		ONFI_DEVICE_NO_OF_LUNS__ONFI_DEVICE) { /* ONFI 1.0 NAND */
+		if (get_onfi_nand_para())
+			return -EIO;
+	} else if (maf_id == 0xEC) { /* Samsung NAND */
+		get_samsung_nand_para(device_id);
+	} else if (maf_id == 0x98) { /* Toshiba NAND */
+		get_toshiba_nand_para();
+	} else if (maf_id == 0xAD) { /* Hynix NAND */
+		get_hynix_nand_para(device_id);
+	}
+
+	find_valid_banks();
+
+	detect_partition_feature();
+
+	/* If the user specified to override the default timings
+	 * with a specific ONFI mode, we apply those changes here.
+	 */
+	if (onfi_timing_mode != NAND_DEFAULT_TIMINGS)
+		nand_onfi_timing_set(onfi_timing_mode);
+
+	return 0;
+}
+
+/* validation function to verify that the controlling software is making
+ * a valid request
+ */
+static inline bool is_flash_bank_valid(int flash_bank)
+{
+	return (flash_bank >= 0 && flash_bank < 4);
+}
+
+static void denali_irq_init(void)
+{
+	uint32_t int_mask = 0;
+	int i;
+
+	/* Disable global interrupts */
+	writel(0, denali.flash_reg + GLOBAL_INT_ENABLE);
+
+	int_mask = DENALI_IRQ_ALL;
+
+	/* Clear all status bits */
+	for (i = 0; i < denali.max_banks; ++i)
+		writel(0xFFFF, denali.flash_reg + INTR_STATUS(i));
+
+	denali_irq_enable(int_mask);
+}
+
+/* This helper function setups the registers for ECC and whether or not
+ * the spare area will be transferred. */
+static void setup_ecc_for_xfer(bool ecc_en, bool transfer_spare)
+{
+	int ecc_en_flag = 0, transfer_spare_flag = 0;
+
+	/* set ECC, transfer spare bits if needed */
+	ecc_en_flag = ecc_en ? ECC_ENABLE__FLAG : 0;
+	transfer_spare_flag = transfer_spare ? TRANSFER_SPARE_REG__FLAG : 0;
+
+	/* Enable spare area/ECC per user's request. */
+	writel(ecc_en_flag, denali.flash_reg + ECC_ENABLE);
+	/* applicable for MAP01 only */
+	writel(transfer_spare_flag, denali.flash_reg + TRANSFER_SPARE_REG);
+}
+
+/* sends a pipeline command operation to the controller. See the Denali NAND
+ * controller's user guide for more information (section 4.2.3.6).
+ */
+static int denali_send_pipeline_cmd(bool ecc_en, bool transfer_spare,
+					int access_type, int op)
+{
+	uint32_t addr = 0x0, cmd = 0x0, irq_status = 0,	 irq_mask = 0;
+	uint32_t page_count = 1;	/* always read a page */
+
+	if (op == DENALI_READ)
+		irq_mask = INTR_STATUS__LOAD_COMP;
+	else if (op == DENALI_WRITE)
+		irq_mask = INTR_STATUS__PROGRAM_COMP |
+			INTR_STATUS__PROGRAM_FAIL;
+	else
+		BUG();
+
+	/* clear interrupts */
+	clear_interrupts();
+
+	/* setup ECC and transfer spare reg */
+	setup_ecc_for_xfer(ecc_en, transfer_spare);
+
+	addr = BANK(denali.flash_bank) | denali.page;
+
+	/* setup the acccess type */
+	cmd = MODE_10 | addr;
+	index_addr((uint32_t)cmd, access_type);
+
+	/* setup the pipeline command */
+	if (access_type == SPARE_ACCESS && op == DENALI_WRITE)
+		index_addr((uint32_t)cmd, DENALI_BUFFER_WRITE);
+	else if (access_type == SPARE_ACCESS && op == DENALI_READ)
+		index_addr((uint32_t)cmd, DENALI_BUFFER_LOAD);
+	else
+		index_addr((uint32_t)cmd, 0x2000 | op | page_count);
+
+	/* wait for command to be accepted */
+	irq_status = wait_for_irq(irq_mask);
+	if ((irq_status & irq_mask) != irq_mask)
+		return -EIO;
+
+	if (access_type != SPARE_ACCESS) {
+		cmd = MODE_01 | addr;
+		writel(cmd, denali.flash_mem + INDEX_CTRL_REG);
+	}
+	return 0;
+}
+
+/* helper function that simply writes a buffer to the flash */
+static int write_data_to_flash_mem(const void *buf, int len)
+{
+	uint32_t i = 0, *buf32;
+
+	/* verify that the len is a multiple of 4. see comment in
+	 * read_data_from_flash_mem() */
+	BUG_ON((len % 4) != 0);
+
+	/* write the data to the flash memory */
+	buf32 = (uint32_t *)buf;
+	for (i = 0; i < len / 4; i++)
+		writel(*buf32++, denali.flash_mem + INDEX_DATA_REG);
+	return i * 4; /* intent is to return the number of bytes read */
+}
+
+static void denali_mode_main_access(void)
+{
+	uint32_t addr, cmd;
+	addr = BANK(denali.flash_bank) | denali.page;
+	cmd = MODE_10 | addr;
+	index_addr(cmd, MAIN_ACCESS);
+}
+
+static void denali_mode_main_spare_access(void)
+{
+	uint32_t addr, cmd;
+	addr = BANK(denali.flash_bank) | denali.page;
+	cmd = MODE_10 | addr;
+	index_addr(cmd, MAIN_SPARE_ACCESS);
+}
+
+/* Writes OOB data to the device.
+ * This code unused under normal U-Boot console as normally page write raw
+ * to be used for write oob data with main data.
+ */
+static int write_oob_data(struct mtd_info *mtd, uint8_t *buf, int page)
+{
+	uint32_t cmd;
+
+	denali.page = page;
+	debug("* write_oob_data *\n");
+
+	/* We need to write to buffer first through MAP00 command */
+	cmd = MODE_00 | BANK(denali.flash_bank);
+	writel(cmd, denali.flash_mem + INDEX_CTRL_REG);
+
+	/* send the data into flash buffer */
+	write_data_to_flash_mem(buf, mtd->oobsize);
+
+	/* activate the write through MAP10 commands */
+	if (denali_send_pipeline_cmd(false, false, SPARE_ACCESS, DENALI_WRITE))
+		return -EIO;
+
+	return 0;
+}
+
+/* this function examines buffers to see if they contain data that
+ * indicate that the buffer is part of an erased region of flash.
+ */
+bool is_erased(uint8_t *buf, int len)
+{
+	int i = 0;
+	for (i = 0; i < len; i++)
+		if (buf[i] != 0xFF)
+			return false;
+	return true;
+}
+
+
+/* programs the controller to either enable/disable DMA transfers */
+static void denali_enable_dma(bool en)
+{
+	uint32_t reg_val = 0x0;
+
+	if (en)
+		reg_val = DMA_ENABLE__FLAG;
+
+	writel(reg_val, denali.flash_reg + DMA_ENABLE);
+	readl(denali.flash_reg + DMA_ENABLE);
+}
+
+/* setups the HW to perform the data DMA */
+static void denali_setup_dma(int op)
+{
+	const int page_count = 1;
+	uint32_t mode;
+	uint32_t addr = (uint32_t)denali.buf.dma_buf;
+
+	flush_dcache_range(addr, addr + sizeof(denali.buf.dma_buf));
+
+#ifdef CONFIG_NAND_DENALI_64BIT
+	mode = MODE_10 | BANK(denali.flash_bank) | denali.page;
+
+	/* DMA is a three step process */
+
+	/* 1. setup transfer type, interrupt when complete,
+	      burst len = 64 bytes, the number of pages */
+	index_addr(mode, 0x01002000 | (64 << 16) | op | page_count);
+
+	/* 2. set memory low address bits 31:0 */
+	index_addr(mode, addr);
+
+	/* 3. set memory high address bits 64:32 */
+	index_addr(mode, 0);
+#else
+	mode = MODE_10 | BANK(denali.flash_bank);
+
+	/* DMA is a four step process */
+
+	/* 1. setup transfer type and # of pages */
+	index_addr(mode | denali.page, 0x2000 | op | page_count);
+
+	/* 2. set memory high address bits 23:8 */
+	index_addr(mode | ((uint32_t)(addr >> 16) << 8), 0x2200);
+
+	/* 3. set memory low address bits 23:8 */
+	index_addr(mode | ((uint32_t)addr << 8), 0x2300);
+
+	/* 4.  interrupt when complete, burst len = 64 bytes*/
+	index_addr(mode | 0x14000, 0x2400);
+#endif
+}
+
+/* Common DMA function */
+static uint32_t denali_dma_configuration(uint32_t ops, bool raw_xfer,
+					 uint32_t irq_mask, int oob_required)
+{
+	uint32_t irq_status = 0;
+	/* setup_ecc_for_xfer(bool ecc_en, bool transfer_spare) */
+	setup_ecc_for_xfer(!raw_xfer, oob_required);
+
+	/* clear any previous interrupt flags */
+	clear_interrupts();
+
+	/* enable the DMA */
+	denali_enable_dma(true);
+
+	/* setup the DMA */
+	denali_setup_dma(ops);
+
+	/* wait for operation to complete */
+	irq_status = wait_for_irq(irq_mask);
+
+	/* if ECC fault happen, seems we need delay before turning off DMA.
+	 * If not, the controller will go into non responsive condition */
+	if (irq_status & INTR_STATUS__ECC_UNCOR_ERR)
+		udelay(100);
+
+	/* disable the DMA */
+	denali_enable_dma(false);
+
+	return irq_status;
+}
+
+static int write_page(struct mtd_info *mtd, struct nand_chip *chip,
+			const uint8_t *buf, bool raw_xfer, int oob_required)
+{
+	uint32_t irq_status = 0;
+	uint32_t irq_mask = INTR_STATUS__DMA_CMD_COMP;
+
+	denali.status = 0;
+
+	/* copy buffer into DMA buffer */
+	memcpy((void *)denali.buf.dma_buf, buf, mtd->writesize);
+
+	/* need extra memcpoy for raw transfer */
+	if (raw_xfer)
+		memcpy((void *)denali.buf.dma_buf + mtd->writesize,
+		       chip->oob_poi, mtd->oobsize);
+
+	/* setting up DMA */
+	irq_status = denali_dma_configuration(DENALI_WRITE, raw_xfer, irq_mask,
+						oob_required);
+
+	/* if timeout happen, error out */
+	if (!(irq_status & INTR_STATUS__DMA_CMD_COMP)) {
+		debug("DMA timeout for denali write_page\n");
+		denali.status = NAND_STATUS_FAIL;
+		return -EIO;
+	}
+
+	if (irq_status & INTR_STATUS__LOCKED_BLK) {
+		debug("Failed as write to locked block\n");
+		denali.status = NAND_STATUS_FAIL;
+		return -EIO;
+	}
+	return 0;
+}
+
+/* NAND core entry points */
+
+/*
+ * this is the callback that the NAND core calls to write a page. Since
+ * writing a page with ECC or without is similar, all the work is done
+ * by write_page above.
+ */
+static int denali_write_page(struct mtd_info *mtd, struct nand_chip *chip,
+				const uint8_t *buf, int oob_required)
+{
+	/*
+	 * for regular page writes, we let HW handle all the ECC
+	 * data written to the device.
+	 */
+	debug("denali_write_page at page %08x\n", denali.page);
+
+	if (oob_required)
+		/* switch to main + spare access */
+		denali_mode_main_spare_access();
+	else
+		/* switch to main access only */
+		denali_mode_main_access();
+
+	return write_page(mtd, chip, buf, false, oob_required);
+}
+
+/*
+ * This is the callback that the NAND core calls to write a page without ECC.
+ * raw access is similar to ECC page writes, so all the work is done in the
+ * write_page() function above.
+ */
+static int denali_write_page_raw(struct mtd_info *mtd, struct nand_chip *chip,
+					const uint8_t *buf, int oob_required)
+{
+	/*
+	 * for raw page writes, we want to disable ECC and simply write
+	 * whatever data is in the buffer.
+	 */
+	debug("denali_write_page_raw at page %08x\n", denali.page);
+
+	if (oob_required)
+		/* switch to main + spare access */
+		denali_mode_main_spare_access();
+	else
+		/* switch to main access only */
+		denali_mode_main_access();
+
+	return write_page(mtd, chip, buf, true, oob_required);
+}
+
+static int denali_write_oob(struct mtd_info *mtd, struct nand_chip *chip,
+				int page)
+{
+	return write_oob_data(mtd, chip->oob_poi, page);
+}
+
+/* raw include ECC value and all the spare area */
+static int denali_read_page_raw(struct mtd_info *mtd, struct nand_chip *chip,
+				uint8_t *buf, int oob_required, int page)
+{
+	uint32_t irq_status, irq_mask = INTR_STATUS__DMA_CMD_COMP;
+
+	debug("denali_read_page_raw at page %08x\n", page);
+	if (denali.page != page) {
+		debug("Missing NAND_CMD_READ0 command\n");
+		return -EIO;
+	}
+
+	if (oob_required)
+		/* switch to main + spare access */
+		denali_mode_main_spare_access();
+	else
+		/* switch to main access only */
+		denali_mode_main_access();
+
+	/* setting up the DMA where ecc_enable is false */
+	irq_status = denali_dma_configuration(DENALI_READ, true, irq_mask,
+						oob_required);
+
+	/* if timeout happen, error out */
+	if (!(irq_status & INTR_STATUS__DMA_CMD_COMP)) {
+		debug("DMA timeout for denali_read_page_raw\n");
+		return -EIO;
+	}
+
+	/* splitting the content to destination buffer holder */
+	memcpy(chip->oob_poi, (denali.buf.dma_buf + mtd->writesize),
+	       mtd->oobsize);
+	memcpy(buf, denali.buf.dma_buf, mtd->writesize);
+	debug("buf %02x %02x\n", buf[0], buf[1]);
+	debug("chip->oob_poi %02x %02x\n", chip->oob_poi[0], chip->oob_poi[1]);
+	return 0;
+}
+
+static int denali_read_page(struct mtd_info *mtd, struct nand_chip *chip,
+				uint8_t *buf, int oob_required, int page)
+{
+	uint32_t irq_status, irq_mask =	INTR_STATUS__DMA_CMD_COMP;
+
+	debug("denali_read_page at page %08x\n", page);
+	if (denali.page != page) {
+		debug("Missing NAND_CMD_READ0 command\n");
+		return -EIO;
+	}
+
+	if (oob_required)
+		/* switch to main + spare access */
+		denali_mode_main_spare_access();
+	else
+		/* switch to main access only */
+		denali_mode_main_access();
+
+	/* setting up the DMA where ecc_enable is true */
+	irq_status = denali_dma_configuration(DENALI_READ, false, irq_mask,
+						oob_required);
+
+	memcpy(buf, (const void *)denali.buf.dma_buf, mtd->writesize);
+	debug("buf %02x %02x\n", buf[0], buf[1]);
+
+	/* check whether any ECC error */
+	if (irq_status & INTR_STATUS__ECC_UNCOR_ERR) {
+		/* is the ECC cause by erase page, check using read_page_raw */
+		debug("  Uncorrected ECC detected\n");
+		denali_read_page_raw(mtd, chip, buf, oob_required, denali.page);
+
+		if (is_erased(buf, mtd->writesize) == true &&
+		    is_erased(chip->oob_poi, mtd->oobsize) == true) {
+			debug("  ECC error cause by erased block\n");
+			/* false alarm, return the 0xFF */
+		} else {
+			return -EIO;
+		}
+	}
+	memcpy(buf, (const void *)denali.buf.dma_buf, mtd->writesize);
+	return 0;
+}
+
+static uint8_t denali_read_byte(struct mtd_info *mtd)
+{
+	uint32_t addr, result;
+	addr = (uint32_t)MODE_11 | BANK(denali.flash_bank);
+	index_addr_read_data((uint32_t)addr | 2, &result);
+	return (uint8_t)result & 0xFF;
+}
+
+static int denali_read_oob(struct mtd_info *mtd, struct nand_chip *chip,
+				int page)
+{
+	debug("denali_read_oob at page %08x\n", page);
+	denali.page = page;
+	return denali_read_page_raw(mtd, chip, denali.buf.buf, 1, page);
+}
+
+static void denali_read_buf(struct mtd_info *mtd, uint8_t *buf, int len)
+{
+	uint32_t i, addr, result;
+
+	/* delay for tR (data transfer from Flash array to data register) */
+	udelay(25);
+
+	/* ensure device completed else additional delay and polling */
+	wait_for_irq(INTR_STATUS__INT_ACT);
+
+	addr = (uint32_t)MODE_11 | BANK(denali.flash_bank);
+	for (i = 0; i < len; i++) {
+		index_addr_read_data((uint32_t)addr | 2, &result);
+		write_byte_to_buf(result);
+	}
+	memcpy(buf, denali.buf.buf, len);
+}
+
+static void denali_select_chip(struct mtd_info *mtd, int chip)
+{
+	denali.flash_bank = chip;
+}
+
+static int denali_waitfunc(struct mtd_info *mtd, struct nand_chip *chip)
+{
+	int status = denali.status;
+	denali.status = 0;
+
+	return status;
+}
+
+static void denali_erase(struct mtd_info *mtd, int page)
+{
+	uint32_t cmd = 0x0, irq_status = 0;
+
+	debug("denali_erase at page %08x\n", page);
+
+	/* clear interrupts */
+	clear_interrupts();
+
+	/* setup page read request for access type */
+	cmd = MODE_10 | BANK(denali.flash_bank) | page;
+	index_addr((uint32_t)cmd, 0x1);
+
+	/* wait for erase to complete or failure to occur */
+	irq_status = wait_for_irq(INTR_STATUS__ERASE_COMP |
+		INTR_STATUS__ERASE_FAIL);
+
+	if (irq_status & INTR_STATUS__ERASE_FAIL ||
+	    irq_status & INTR_STATUS__LOCKED_BLK)
+		denali.status = NAND_STATUS_FAIL;
+	else
+		denali.status = 0;
+}
+
+static void denali_cmdfunc(struct mtd_info *mtd, unsigned int cmd, int col,
+			   int page)
+{
+	uint32_t addr;
+
+	switch (cmd) {
+	case NAND_CMD_PAGEPROG:
+		break;
+	case NAND_CMD_STATUS:
+		addr = MODE_11 | BANK(denali.flash_bank);
+		index_addr(addr | 0, cmd);
+		break;
+	case NAND_CMD_PARAM:
+		clear_interrupts();
+	case NAND_CMD_READID:
+		reset_buf();
+		/* sometimes ManufactureId read from register is not right
+		 * e.g. some of Micron MT29F32G08QAA MLC NAND chips
+		 * So here we send READID cmd to NAND insteand
+		 * */
+		addr = MODE_11 | BANK(denali.flash_bank);
+		index_addr(addr | 0, cmd);
+		index_addr(addr | 1, col & 0xFF);
+		break;
+	case NAND_CMD_READ0:
+	case NAND_CMD_SEQIN:
+		denali.page = page;
+		break;
+	case NAND_CMD_RESET:
+		reset_bank();
+		break;
+	case NAND_CMD_READOOB:
+		/* TODO: Read OOB data */
+		break;
+	case NAND_CMD_ERASE1:
+		/*
+		 * supporting block erase only, not multiblock erase as
+		 * it will cross plane and software need complex calculation
+		 * to identify the block count for the cross plane
+		 */
+		denali_erase(mtd, page);
+		break;
+	case NAND_CMD_ERASE2:
+		/* nothing to do here as it was done during NAND_CMD_ERASE1 */
+		break;
+	case NAND_CMD_UNLOCK1:
+		addr = MODE_10 | BANK(denali.flash_bank) | page;
+		index_addr(addr | 0, DENALI_UNLOCK_START);
+		break;
+	case NAND_CMD_UNLOCK2:
+		addr = MODE_10 | BANK(denali.flash_bank) | page;
+		index_addr(addr | 0, DENALI_UNLOCK_END);
+		break;
+	case NAND_CMD_LOCK:
+		addr = MODE_10 | BANK(denali.flash_bank);
+		index_addr(addr | 0, DENALI_LOCK);
+		break;
+	case NAND_CMD_LOCK_TIGHT:
+		addr = MODE_10 | BANK(denali.flash_bank);
+		index_addr(addr | 0, DENALI_LOCK_TIGHT);
+		break;
+	default:
+		printf(": unsupported command received 0x%x\n", cmd);
+		break;
+	}
+}
+/* end NAND core entry points */
+
+/* Initialization code to bring the device up to a known good state */
+static void denali_hw_init(void)
+{
+	/*
+	 * tell driver how many bit controller will skip before writing
+	 * ECC code in OOB. This is normally used for bad block marker
+	 */
+	writel(CONFIG_NAND_DENALI_SPARE_AREA_SKIP_BYTES,
+	       denali.flash_reg + SPARE_AREA_SKIP_BYTES);
+	detect_max_banks();
+	denali_nand_reset();
+	writel(0x0F, denali.flash_reg + RB_PIN_ENABLED);
+	writel(CHIP_EN_DONT_CARE__FLAG,
+	       denali.flash_reg + CHIP_ENABLE_DONT_CARE);
+	writel(0xffff, denali.flash_reg + SPARE_AREA_MARKER);
+
+	/* Should set value for these registers when init */
+	writel(0, denali.flash_reg + TWO_ROW_ADDR_CYCLES);
+	writel(1, denali.flash_reg + ECC_ENABLE);
+	denali_nand_timing_set();
+	denali_irq_init();
+}
+
+static struct nand_ecclayout nand_oob;
+
+static int denali_nand_init(struct nand_chip *nand)
+{
+	denali.flash_reg = (void  __iomem *)CONFIG_SYS_NAND_REGS_BASE;
+	denali.flash_mem = (void  __iomem *)CONFIG_SYS_NAND_DATA_BASE;
+
+#ifdef CONFIG_SYS_NAND_USE_FLASH_BBT
+	/* check whether flash got BBT table (located at end of flash). As we
+	 * use NAND_BBT_NO_OOB, the BBT page will start with
+	 * bbt_pattern. We will have mirror pattern too */
+	nand->options |= NAND_BBT_USE_FLASH;
+	/*
+	 * We are using main + spare with ECC support. As BBT need ECC support,
+	 * we need to ensure BBT code don't write to OOB for the BBT pattern.
+	 * All BBT info will be stored into data area with ECC support.
+	 */
+	nand->options |= NAND_BBT_NO_OOB;
+#endif
+
+	nand->ecc.mode = NAND_ECC_HW;
+	nand->ecc.size = CONFIG_NAND_DENALI_ECC_SIZE;
+	nand->ecc.read_oob = denali_read_oob;
+	nand->ecc.write_oob = denali_write_oob;
+	nand->ecc.read_page = denali_read_page;
+	nand->ecc.read_page_raw = denali_read_page_raw;
+	nand->ecc.write_page = denali_write_page;
+	nand->ecc.write_page_raw = denali_write_page_raw;
+	/*
+	 * Tell driver the ecc strength. This register may be already set
+	 * correctly. So we read this value out.
+	 */
+	nand->ecc.strength = readl(denali.flash_reg + ECC_CORRECTION);
+	switch (nand->ecc.size) {
+	case 512:
+		nand->ecc.bytes = (nand->ecc.strength * 13 + 15) / 16 * 2;
+		break;
+	case 1024:
+		nand->ecc.bytes = (nand->ecc.strength * 14 + 15) / 16 * 2;
+		break;
+	default:
+		pr_err("Unsupported ECC size\n");
+		return -EINVAL;
+	}
+	nand_oob.eccbytes = nand->ecc.bytes;
+	nand->ecc.layout = &nand_oob;
+
+	/* Set address of hardware control function */
+	nand->cmdfunc = denali_cmdfunc;
+	nand->read_byte = denali_read_byte;
+	nand->read_buf = denali_read_buf;
+	nand->select_chip = denali_select_chip;
+	nand->waitfunc = denali_waitfunc;
+	denali_hw_init();
+	return 0;
+}
+
+int board_nand_init(struct nand_chip *chip)
+{
+	return denali_nand_init(chip);
+}
diff --git a/drivers/mtd/nand/denali.h b/drivers/mtd/nand/denali.h
new file mode 100644
index 0000000..50a109d
--- /dev/null
+++ b/drivers/mtd/nand/denali.h
@@ -0,0 +1,490 @@ 
+/*
+ * Copyright (C) 2013-2014 Altera Corporation <www.altera.com>
+ * Copyright (C) 2009-2010, Intel Corporation and its suppliers.
+ *
+ * SPDX-License-Identifier:	GPL-2.0+
+ */
+
+#include <linux/mtd/nand.h>
+
+#define DEVICE_RESET				0x0
+#define     DEVICE_RESET__BANK0				0x0001
+#define     DEVICE_RESET__BANK1				0x0002
+#define     DEVICE_RESET__BANK2				0x0004
+#define     DEVICE_RESET__BANK3				0x0008
+
+#define TRANSFER_SPARE_REG			0x10
+#define     TRANSFER_SPARE_REG__FLAG			0x0001
+
+#define LOAD_WAIT_CNT				0x20
+#define     LOAD_WAIT_CNT__VALUE			0xffff
+
+#define PROGRAM_WAIT_CNT			0x30
+#define     PROGRAM_WAIT_CNT__VALUE			0xffff
+
+#define ERASE_WAIT_CNT				0x40
+#define     ERASE_WAIT_CNT__VALUE			0xffff
+
+#define INT_MON_CYCCNT				0x50
+#define     INT_MON_CYCCNT__VALUE			0xffff
+
+#define RB_PIN_ENABLED				0x60
+#define     RB_PIN_ENABLED__BANK0			0x0001
+#define     RB_PIN_ENABLED__BANK1			0x0002
+#define     RB_PIN_ENABLED__BANK2			0x0004
+#define     RB_PIN_ENABLED__BANK3			0x0008
+
+#define MULTIPLANE_OPERATION			0x70
+#define     MULTIPLANE_OPERATION__FLAG			0x0001
+
+#define MULTIPLANE_READ_ENABLE			0x80
+#define     MULTIPLANE_READ_ENABLE__FLAG		0x0001
+
+#define COPYBACK_DISABLE			0x90
+#define     COPYBACK_DISABLE__FLAG			0x0001
+
+#define CACHE_WRITE_ENABLE			0xa0
+#define     CACHE_WRITE_ENABLE__FLAG			0x0001
+
+#define CACHE_READ_ENABLE			0xb0
+#define     CACHE_READ_ENABLE__FLAG			0x0001
+
+#define PREFETCH_MODE				0xc0
+#define     PREFETCH_MODE__PREFETCH_EN			0x0001
+#define     PREFETCH_MODE__PREFETCH_BURST_LENGTH	0xfff0
+
+#define CHIP_ENABLE_DONT_CARE			0xd0
+#define     CHIP_EN_DONT_CARE__FLAG			0x01
+
+#define ECC_ENABLE				0xe0
+#define     ECC_ENABLE__FLAG				0x0001
+
+#define GLOBAL_INT_ENABLE			0xf0
+#define     GLOBAL_INT_EN_FLAG				0x01
+
+#define WE_2_RE					0x100
+#define     WE_2_RE__VALUE				0x003f
+
+#define ADDR_2_DATA				0x110
+#define     ADDR_2_DATA__VALUE				0x003f
+
+#define RE_2_WE					0x120
+#define     RE_2_WE__VALUE				0x003f
+
+#define ACC_CLKS				0x130
+#define     ACC_CLKS__VALUE				0x000f
+
+#define NUMBER_OF_PLANES			0x140
+#define     NUMBER_OF_PLANES__VALUE			0x0007
+
+#define PAGES_PER_BLOCK				0x150
+#define     PAGES_PER_BLOCK__VALUE			0xffff
+
+#define DEVICE_WIDTH				0x160
+#define     DEVICE_WIDTH__VALUE				0x0003
+
+#define DEVICE_MAIN_AREA_SIZE			0x170
+#define     DEVICE_MAIN_AREA_SIZE__VALUE		0xffff
+
+#define DEVICE_SPARE_AREA_SIZE			0x180
+#define     DEVICE_SPARE_AREA_SIZE__VALUE		0xffff
+
+#define TWO_ROW_ADDR_CYCLES			0x190
+#define     TWO_ROW_ADDR_CYCLES__FLAG			0x0001
+
+#define MULTIPLANE_ADDR_RESTRICT		0x1a0
+#define     MULTIPLANE_ADDR_RESTRICT__FLAG		0x0001
+
+#define ECC_CORRECTION				0x1b0
+#define     ECC_CORRECTION__VALUE			0x001f
+
+#define READ_MODE				0x1c0
+#define     READ_MODE__VALUE				0x000f
+
+#define WRITE_MODE				0x1d0
+#define     WRITE_MODE__VALUE				0x000f
+
+#define COPYBACK_MODE				0x1e0
+#define     COPYBACK_MODE__VALUE			0x000f
+
+#define RDWR_EN_LO_CNT				0x1f0
+#define     RDWR_EN_LO_CNT__VALUE			0x001f
+
+#define RDWR_EN_HI_CNT				0x200
+#define     RDWR_EN_HI_CNT__VALUE			0x001f
+
+#define MAX_RD_DELAY				0x210
+#define     MAX_RD_DELAY__VALUE				0x000f
+
+#define CS_SETUP_CNT				0x220
+#define     CS_SETUP_CNT__VALUE				0x001f
+
+#define SPARE_AREA_SKIP_BYTES			0x230
+#define     SPARE_AREA_SKIP_BYTES__VALUE		0x003f
+
+#define SPARE_AREA_MARKER			0x240
+#define     SPARE_AREA_MARKER__VALUE			0xffff
+
+#define DEVICES_CONNECTED			0x250
+#define     DEVICES_CONNECTED__VALUE			0x0007
+
+#define DIE_MASK				0x260
+#define     DIE_MASK__VALUE				0x00ff
+
+#define FIRST_BLOCK_OF_NEXT_PLANE		0x270
+#define     FIRST_BLOCK_OF_NEXT_PLANE__VALUE		0xffff
+
+#define WRITE_PROTECT				0x280
+#define     WRITE_PROTECT__FLAG				0x0001
+
+#define RE_2_RE					0x290
+#define     RE_2_RE__VALUE				0x003f
+
+#define MANUFACTURER_ID				0x300
+#define     MANUFACTURER_ID__VALUE			0x00ff
+
+#define DEVICE_ID				0x310
+#define     DEVICE_ID__VALUE				0x00ff
+
+#define DEVICE_PARAM_0				0x320
+#define     DEVICE_PARAM_0__VALUE			0x00ff
+
+#define DEVICE_PARAM_1				0x330
+#define     DEVICE_PARAM_1__VALUE			0x00ff
+
+#define DEVICE_PARAM_2				0x340
+#define     DEVICE_PARAM_2__VALUE			0x00ff
+
+#define LOGICAL_PAGE_DATA_SIZE			0x350
+#define     LOGICAL_PAGE_DATA_SIZE__VALUE		0xffff
+
+#define LOGICAL_PAGE_SPARE_SIZE			0x360
+#define     LOGICAL_PAGE_SPARE_SIZE__VALUE		0xffff
+
+#define REVISION				0x370
+#define     REVISION__VALUE				0xffff
+
+#define ONFI_DEVICE_FEATURES			0x380
+#define     ONFI_DEVICE_FEATURES__VALUE			0x003f
+
+#define ONFI_OPTIONAL_COMMANDS			0x390
+#define     ONFI_OPTIONAL_COMMANDS__VALUE		0x003f
+
+#define ONFI_TIMING_MODE			0x3a0
+#define     ONFI_TIMING_MODE__VALUE			0x003f
+
+#define ONFI_PGM_CACHE_TIMING_MODE		0x3b0
+#define     ONFI_PGM_CACHE_TIMING_MODE__VALUE		0x003f
+
+#define ONFI_DEVICE_NO_OF_LUNS			0x3c0
+#define     ONFI_DEVICE_NO_OF_LUNS__NO_OF_LUNS		0x00ff
+#define     ONFI_DEVICE_NO_OF_LUNS__ONFI_DEVICE		0x0100
+
+#define ONFI_DEVICE_NO_OF_BLOCKS_PER_LUN_L	0x3d0
+#define     ONFI_DEVICE_NO_OF_BLOCKS_PER_LUN_L__VALUE	0xffff
+
+#define ONFI_DEVICE_NO_OF_BLOCKS_PER_LUN_U	0x3e0
+#define     ONFI_DEVICE_NO_OF_BLOCKS_PER_LUN_U__VALUE	0xffff
+
+#define FEATURES					0x3f0
+#define     FEATURES__N_BANKS				0x0003
+#define     FEATURES__ECC_MAX_ERR			0x003c
+#define     FEATURES__DMA				0x0040
+#define     FEATURES__CMD_DMA				0x0080
+#define     FEATURES__PARTITION				0x0100
+#define     FEATURES__XDMA_SIDEBAND			0x0200
+#define     FEATURES__GPREG				0x0400
+#define     FEATURES__INDEX_ADDR			0x0800
+
+#define TRANSFER_MODE				0x400
+#define     TRANSFER_MODE__VALUE			0x0003
+
+#define INTR_STATUS(__bank)	(0x410 + ((__bank) * 0x50))
+#define INTR_EN(__bank)		(0x420 + ((__bank) * 0x50))
+
+/*
+ * Some versions of the IP have the ECC fixup handled in hardware.  In this
+ * configuration we only get interrupted when the error is uncorrectable.
+ * Unfortunately this bit replaces INTR_STATUS__ECC_TRANSACTION_DONE from the
+ * old IP.
+ */
+#define     INTR_STATUS__ECC_UNCOR_ERR			0x0001
+#define     INTR_STATUS__ECC_TRANSACTION_DONE		0x0001
+#define     INTR_STATUS__ECC_ERR			0x0002
+#define     INTR_STATUS__DMA_CMD_COMP			0x0004
+#define     INTR_STATUS__TIME_OUT			0x0008
+#define     INTR_STATUS__PROGRAM_FAIL			0x0010
+#define     INTR_STATUS__ERASE_FAIL			0x0020
+#define     INTR_STATUS__LOAD_COMP			0x0040
+#define     INTR_STATUS__PROGRAM_COMP			0x0080
+#define     INTR_STATUS__ERASE_COMP			0x0100
+#define     INTR_STATUS__PIPE_CPYBCK_CMD_COMP		0x0200
+#define     INTR_STATUS__LOCKED_BLK			0x0400
+#define     INTR_STATUS__UNSUP_CMD			0x0800
+#define     INTR_STATUS__INT_ACT			0x1000
+#define     INTR_STATUS__RST_COMP			0x2000
+#define     INTR_STATUS__PIPE_CMD_ERR			0x4000
+#define     INTR_STATUS__PAGE_XFER_INC			0x8000
+
+#define     INTR_EN__ECC_TRANSACTION_DONE		0x0001
+#define     INTR_EN__ECC_ERR				0x0002
+#define     INTR_EN__DMA_CMD_COMP			0x0004
+#define     INTR_EN__TIME_OUT				0x0008
+#define     INTR_EN__PROGRAM_FAIL			0x0010
+#define     INTR_EN__ERASE_FAIL				0x0020
+#define     INTR_EN__LOAD_COMP				0x0040
+#define     INTR_EN__PROGRAM_COMP			0x0080
+#define     INTR_EN__ERASE_COMP				0x0100
+#define     INTR_EN__PIPE_CPYBCK_CMD_COMP		0x0200
+#define     INTR_EN__LOCKED_BLK				0x0400
+#define     INTR_EN__UNSUP_CMD				0x0800
+#define     INTR_EN__INT_ACT				0x1000
+#define     INTR_EN__RST_COMP				0x2000
+#define     INTR_EN__PIPE_CMD_ERR			0x4000
+#define     INTR_EN__PAGE_XFER_INC			0x8000
+
+#define PAGE_CNT(__bank)	(0x430 + ((__bank) * 0x50))
+#define ERR_PAGE_ADDR(__bank)	(0x440 + ((__bank) * 0x50))
+#define ERR_BLOCK_ADDR(__bank)	(0x450 + ((__bank) * 0x50))
+
+#define DATA_INTR				0x550
+#define     DATA_INTR__WRITE_SPACE_AV			0x0001
+#define     DATA_INTR__READ_DATA_AV			0x0002
+
+#define DATA_INTR_EN				0x560
+#define     DATA_INTR_EN__WRITE_SPACE_AV		0x0001
+#define     DATA_INTR_EN__READ_DATA_AV			0x0002
+
+#define GPREG_0					0x570
+#define     GPREG_0__VALUE				0xffff
+
+#define GPREG_1					0x580
+#define     GPREG_1__VALUE				0xffff
+
+#define GPREG_2					0x590
+#define     GPREG_2__VALUE				0xffff
+
+#define GPREG_3					0x5a0
+#define     GPREG_3__VALUE				0xffff
+
+#define ECC_THRESHOLD				0x600
+#define     ECC_THRESHOLD__VALUE			0x03ff
+
+#define ECC_ERROR_BLOCK_ADDRESS			0x610
+#define     ECC_ERROR_BLOCK_ADDRESS__VALUE		0xffff
+
+#define ECC_ERROR_PAGE_ADDRESS			0x620
+#define     ECC_ERROR_PAGE_ADDRESS__VALUE		0x0fff
+#define     ECC_ERROR_PAGE_ADDRESS__BANK		0xf000
+
+#define ECC_ERROR_ADDRESS			0x630
+#define     ECC_ERROR_ADDRESS__OFFSET			0x0fff
+#define     ECC_ERROR_ADDRESS__SECTOR_NR		0xf000
+
+#define ERR_CORRECTION_INFO			0x640
+#define     ERR_CORRECTION_INFO__BYTEMASK		0x00ff
+#define     ERR_CORRECTION_INFO__DEVICE_NR		0x0f00
+#define     ERR_CORRECTION_INFO__ERROR_TYPE		0x4000
+#define     ERR_CORRECTION_INFO__LAST_ERR_INFO		0x8000
+
+#define DMA_ENABLE				0x700
+#define     DMA_ENABLE__FLAG				0x0001
+
+#define IGNORE_ECC_DONE				0x710
+#define     IGNORE_ECC_DONE__FLAG			0x0001
+
+#define DMA_INTR				0x720
+#define     DMA_INTR__TARGET_ERROR			0x0001
+#define     DMA_INTR__DESC_COMP_CHANNEL0		0x0002
+#define     DMA_INTR__DESC_COMP_CHANNEL1		0x0004
+#define     DMA_INTR__DESC_COMP_CHANNEL2		0x0008
+#define     DMA_INTR__DESC_COMP_CHANNEL3		0x0010
+#define     DMA_INTR__MEMCOPY_DESC_COMP		0x0020
+
+#define DMA_INTR_EN				0x730
+#define     DMA_INTR_EN__TARGET_ERROR			0x0001
+#define     DMA_INTR_EN__DESC_COMP_CHANNEL0		0x0002
+#define     DMA_INTR_EN__DESC_COMP_CHANNEL1		0x0004
+#define     DMA_INTR_EN__DESC_COMP_CHANNEL2		0x0008
+#define     DMA_INTR_EN__DESC_COMP_CHANNEL3		0x0010
+#define     DMA_INTR_EN__MEMCOPY_DESC_COMP		0x0020
+
+#define TARGET_ERR_ADDR_LO			0x740
+#define     TARGET_ERR_ADDR_LO__VALUE			0xffff
+
+#define TARGET_ERR_ADDR_HI			0x750
+#define     TARGET_ERR_ADDR_HI__VALUE			0xffff
+
+#define CHNL_ACTIVE				0x760
+#define     CHNL_ACTIVE__CHANNEL0			0x0001
+#define     CHNL_ACTIVE__CHANNEL1			0x0002
+#define     CHNL_ACTIVE__CHANNEL2			0x0004
+#define     CHNL_ACTIVE__CHANNEL3			0x0008
+
+#define ACTIVE_SRC_ID				0x800
+#define     ACTIVE_SRC_ID__VALUE			0x00ff
+
+#define PTN_INTR					0x810
+#define     PTN_INTR__CONFIG_ERROR			0x0001
+#define     PTN_INTR__ACCESS_ERROR_BANK0		0x0002
+#define     PTN_INTR__ACCESS_ERROR_BANK1		0x0004
+#define     PTN_INTR__ACCESS_ERROR_BANK2		0x0008
+#define     PTN_INTR__ACCESS_ERROR_BANK3		0x0010
+#define     PTN_INTR__REG_ACCESS_ERROR			0x0020
+
+#define PTN_INTR_EN				0x820
+#define     PTN_INTR_EN__CONFIG_ERROR			0x0001
+#define     PTN_INTR_EN__ACCESS_ERROR_BANK0		0x0002
+#define     PTN_INTR_EN__ACCESS_ERROR_BANK1		0x0004
+#define     PTN_INTR_EN__ACCESS_ERROR_BANK2		0x0008
+#define     PTN_INTR_EN__ACCESS_ERROR_BANK3		0x0010
+#define     PTN_INTR_EN__REG_ACCESS_ERROR		0x0020
+
+#define PERM_SRC_ID(__bank)	(0x830 + ((__bank) * 0x40))
+#define     PERM_SRC_ID__SRCID				0x00ff
+#define     PERM_SRC_ID__DIRECT_ACCESS_ACTIVE		0x0800
+#define     PERM_SRC_ID__WRITE_ACTIVE			0x2000
+#define     PERM_SRC_ID__READ_ACTIVE			0x4000
+#define     PERM_SRC_ID__PARTITION_VALID		0x8000
+
+#define MIN_BLK_ADDR(__bank)	(0x840 + ((__bank) * 0x40))
+#define     MIN_BLK_ADDR__VALUE				0xffff
+
+#define MAX_BLK_ADDR(__bank)	(0x850 + ((__bank) * 0x40))
+#define     MAX_BLK_ADDR__VALUE				0xffff
+
+#define MIN_MAX_BANK(__bank)	(0x860 + ((__bank) * 0x40))
+#define     MIN_MAX_BANK__MIN_VALUE			0x0003
+#define     MIN_MAX_BANK__MAX_VALUE			0x000c
+
+/* lld.h */
+#define GOOD_BLOCK 0
+#define DEFECTIVE_BLOCK 1
+#define READ_ERROR 2
+
+#define CLK_X  5
+#define CLK_MULTI 4
+
+/* spectraswconfig.h */
+#define CMD_DMA 0
+
+#define SPECTRA_PARTITION_ID    0
+/**** Block Table and Reserved Block Parameters *****/
+#define SPECTRA_START_BLOCK     3
+#define NUM_FREE_BLOCKS_GATE    30
+
+/* KBV - Updated to LNW scratch register address */
+#define SCRATCH_REG_ADDR    CONFIG_MTD_NAND_DENALI_SCRATCH_REG_ADDR
+#define SCRATCH_REG_SIZE    64
+
+#define GLOB_HWCTL_DEFAULT_BLKS    2048
+
+#define CUSTOM_CONF_PARAMS      0
+
+#define ONFI_BLOOM_TIME         1
+#define MODE5_WORKAROUND        0
+
+/* lld_nand.h */
+/*
+ * NAND Flash Controller Device Driver
+ * Copyright (c) 2009, Intel Corporation and its suppliers.
+ *
+ * This program is free software; you can redistribute it and/or modify it
+ * under the terms and conditions of the GNU General Public License,
+ * version 2, as published by the Free Software Foundation.
+ *
+ * This program is distributed in the hope it will be useful, but WITHOUT
+ * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
+ * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
+ * more details.
+ *
+ * You should have received a copy of the GNU General Public License along with
+ * this program; if not, write to the Free Software Foundation, Inc.,
+ * 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
+ *
+ */
+
+#ifndef _LLD_NAND_
+#define _LLD_NAND_
+
+#define INDEX_CTRL_REG    0x0
+#define INDEX_DATA_REG    0x10
+
+#define MODE_00    0x00000000
+#define MODE_01    0x04000000
+#define MODE_10    0x08000000
+#define MODE_11    0x0C000000
+
+
+#define DATA_TRANSFER_MODE              0
+#define PROTECTION_PER_BLOCK            1
+#define LOAD_WAIT_COUNT                 2
+#define PROGRAM_WAIT_COUNT              3
+#define ERASE_WAIT_COUNT                4
+#define INT_MONITOR_CYCLE_COUNT         5
+#define READ_BUSY_PIN_ENABLED           6
+#define MULTIPLANE_OPERATION_SUPPORT    7
+#define PRE_FETCH_MODE                  8
+#define CE_DONT_CARE_SUPPORT            9
+#define COPYBACK_SUPPORT                10
+#define CACHE_WRITE_SUPPORT             11
+#define CACHE_READ_SUPPORT              12
+#define NUM_PAGES_IN_BLOCK              13
+#define ECC_ENABLE_SELECT               14
+#define WRITE_ENABLE_2_READ_ENABLE      15
+#define ADDRESS_2_DATA                  16
+#define READ_ENABLE_2_WRITE_ENABLE      17
+#define TWO_ROW_ADDRESS_CYCLES          18
+#define MULTIPLANE_ADDRESS_RESTRICT     19
+#define ACC_CLOCKS                      20
+#define READ_WRITE_ENABLE_LOW_COUNT     21
+#define READ_WRITE_ENABLE_HIGH_COUNT    22
+
+#define ECC_SECTOR_SIZE     512
+
+#define DENALI_BUF_SIZE		(NAND_MAX_PAGESIZE + NAND_MAX_OOBSIZE)
+
+struct nand_buf {
+	int head;
+	int tail;
+	/* seprating dma_buf as buf can be used for status read purpose */
+	uint8_t dma_buf[DENALI_BUF_SIZE]  __aligned(64);
+	uint8_t buf[DENALI_BUF_SIZE];
+};
+
+#define INTEL_CE4100	1
+#define INTEL_MRST	2
+#define DT		3
+
+struct denali_nand_info {
+	struct mtd_info mtd;
+	struct nand_chip *nand;
+
+	int flash_bank; /* currently selected chip */
+	int status;
+	int platform;
+	struct nand_buf buf;
+	struct device *dev;
+	int total_used_banks;
+	uint32_t block;  /* stored for future use */
+	uint32_t page;
+	void __iomem *flash_reg;  /* Mapped io reg base address */
+	void __iomem *flash_mem;  /* Mapped io reg base address */
+
+	/* elements used by ISR */
+	/*struct completion complete;*/
+
+	uint32_t irq_status;
+	int irq_debug_array[32];
+	int idx;
+	int irq;
+
+	uint32_t devnum;	/* represent how many nands connected */
+	uint32_t fwblks; /* represent how many blocks FW used */
+	uint32_t totalblks;
+	uint32_t blksperchip;
+	uint32_t bbtskipbytes;
+	uint32_t max_banks;
+};
+
+#endif /*_LLD_NAND_*/