From patchwork Fri Oct 5 07:45:06 2012 Content-Type: text/plain; charset="utf-8" MIME-Version: 1.0 Content-Transfer-Encoding: 7bit X-Patchwork-Submitter: Tobias Burnus X-Patchwork-Id: 189425 Return-Path: X-Original-To: incoming@patchwork.ozlabs.org Delivered-To: patchwork-incoming@bilbo.ozlabs.org Received: from sourceware.org (server1.sourceware.org [209.132.180.131]) by ozlabs.org (Postfix) with SMTP id 7AA0C2C0094 for ; Fri, 5 Oct 2012 17:45:42 +1000 (EST) Comment: DKIM? See http://www.dkim.org DKIM-Signature: v=1; a=rsa-sha1; c=relaxed/relaxed; d=gcc.gnu.org; s=default; x=1350027943; h=Comment: DomainKey-Signature:Received:Received:Received:Received: Message-ID:Date:From:User-Agent:MIME-Version:To:Subject: Content-Type:Mailing-List:Precedence:List-Id:List-Unsubscribe: List-Archive:List-Post:List-Help:Sender:Delivered-To; bh=yYAIP25 thi9NlwgCcTUYyuu8Qg8=; b=ivd+2QcdKnnDFlaJZ6BufFlrJVyVauQSrHV5ho0 8p114x7/L7vZubjt+/SRspGFqhB990iwO637fKlSJ+DcxRN2mQlG/nznYS4E+kpn L0TuwOklfY9J9FKZT0PiWx3riWpAkfNHevcbIWgDsesL5OwYSBxeizxJ9j+Q8HRP 2bQE= Comment: DomainKeys? See http://antispam.yahoo.com/domainkeys DomainKey-Signature: a=rsa-sha1; q=dns; c=nofws; s=default; d=gcc.gnu.org; h=Received:Received:X-SWARE-Spam-Status:X-Spam-Check-By:Received:Received:Message-ID:Date:From:User-Agent:MIME-Version:To:Subject:Content-Type:Mailing-List:Precedence:List-Id:List-Unsubscribe:List-Archive:List-Post:List-Help:Sender:Delivered-To; b=QOLR9GfwhMiMb5ffGlx562GMWALojsWpHO15zD2h1z3og3A28FJczDnzaWSyas HInaPj4iBbqssMXOywNZaT5JxaS2AZDd7HSjwRuP0IpNZrGNGHfPJMzhhuUZzTIr Sb227pBcZhKLrtl1TnLgaeykE+C8aRBa8mb1w435RdaCE=; Received: (qmail 4231 invoked by alias); 5 Oct 2012 07:45:29 -0000 Received: (qmail 4194 invoked by uid 22791); 5 Oct 2012 07:45:21 -0000 X-SWARE-Spam-Status: No, hits=-1.8 required=5.0 tests=AWL, BAYES_00, RCVD_IN_DNSWL_NONE, TW_TM, TW_VP X-Spam-Check-By: sourceware.org Received: from mx02.qsc.de (HELO mx02.qsc.de) (213.148.130.14) by sourceware.org (qpsmtpd/0.43rc1) with ESMTP; Fri, 05 Oct 2012 07:45:10 +0000 Received: from [192.168.178.22] (port-92-204-33-183.dynamic.qsc.de [92.204.33.183]) by mx02.qsc.de (Postfix) with ESMTP id 585D327D0F; Fri, 5 Oct 2012 09:45:07 +0200 (CEST) Message-ID: <506E9002.9030605@net-b.de> Date: Fri, 05 Oct 2012 09:45:06 +0200 From: Tobias Burnus User-Agent: Mozilla/5.0 (X11; Linux x86_64; rv:15.0) Gecko/20120825 Thunderbird/15.0 MIME-Version: 1.0 To: gcc patches , gfortran Subject: [Patch, Fortran] Fix OPTIONAL, esp. with polymorphism Mailing-List: contact gcc-patches-help@gcc.gnu.org; run by ezmlm Precedence: bulk List-Id: List-Unsubscribe: List-Archive: List-Post: List-Help: Sender: gcc-patches-owner@gcc.gnu.org Delivered-To: mailing list gcc-patches@gcc.gnu.org gfortran supports OPTIONAL since quite some time - also some more complicated cases involving ELEMENTAL or the new F2008 addition, but as testing showed, the support is still incomplete; especially with polymorphic arguments there were several bugs. Besides a simple absent argument, passing an absent argument on also has to be supported. Fortran 2008 in addition added that a deallocated allocatable and an unassociated pointer also counts as absent - if (and only if) it is passed to a nonallocatable, nonpointer optional dummy. As complication comes on top of it: The CLASS container; especially for class->type, type->class, class->(parent)class and when combined with arrays, coarrays or assumed-rank arguments. There, one needs to ensure that one passes the NULL correctly and that a NULL pointers doesn't get dereferenced. On the way, I fixed some other issues like passing polymorphic coarray scalars (i.e. changing a class container with array descriptor to a class container without array descriptor). There are still issues with ELEMENTAL and with creating an array descriptor for an (absent) optional array which has no array descriptor. In addition, for CLASS->TYPE of assumed-rank arrays, the "packaging" (creating a contiguous array) support is also still lacking. See the 146 commented FIXME lines in the patch. However, I think the patch is large enough and sufficiently complete to be committed without the remaining parts. Build and regtested on x86-64-linux. OK for the trunk? Tobias 2012-10-06 Tobias Burnus PR fortran/50981 PR fortran/54618 * trans.h (gfc_conv_derived_to_class, gfc_conv_class_to_class): Update prototype. * trans-stmt.c (trans_associate_var,gfc_trans_allocate): Update calls to those functions. * trans-expr.c (gfc_conv_derived_to_class, gfc_conv_class_to_class, gfc_conv_expr_present): Handle absent polymorphic arguments. (class_scalar_coarray_to_class): New function. (gfc_conv_procedure_call): Update calls. 2012-10-06 Tobias Burnus PR fortran/50981 PR fortran/54618 * gfortran.dg/class_optional_1.f90: New. * gfortran.dg/class_optional_2.f90: New. diff --git a/gcc/fortran/trans-expr.c b/gcc/fortran/trans-expr.c index 1178e3d..8c4b8d6 100644 --- a/gcc/fortran/trans-expr.c +++ b/gcc/fortran/trans-expr.c @@ -231,12 +231,16 @@ class_array_data_assign (stmtblock_t *block, tree lhs_desc, tree rhs_desc, /* Takes a derived type expression and returns the address of a temporary class object of the 'declared' type. If vptr is not NULL, this is - used for the temporary class object. */ + used for the temporary class object. + alloc_ptr is false when the dummy is neither allocatable + nor a pointer; that's only relevant for the optional handling. */ void gfc_conv_derived_to_class (gfc_se *parmse, gfc_expr *e, - gfc_typespec class_ts, tree vptr) + gfc_typespec class_ts, tree vptr, bool optional, + bool optional_alloc_ptr) { gfc_symbol *vtab; + tree cond_optional = NULL_TREE; gfc_ss *ss; tree ctree; tree var; @@ -269,13 +273,21 @@ gfc_conv_derived_to_class (gfc_se *parmse, gfc_expr *e, /* Now set the data field. */ ctree = gfc_class_data_get (var); + if (optional) + cond_optional = gfc_conv_expr_present (e->symtree->n.sym); + if (parmse->ss && parmse->ss->info->useflags) { /* For an array reference in an elemental procedure call we need to retain the ss to provide the scalarized array reference. */ gfc_conv_expr_reference (parmse, e); tmp = fold_convert (TREE_TYPE (ctree), parmse->expr); + if (optional) + tmp = build3_loc (input_location, COND_EXPR, TREE_TYPE (tmp), + cond_optional, tmp, + fold_convert (TREE_TYPE (tmp), null_pointer_node)); gfc_add_modify (&parmse->pre, ctree, tmp); + } else { @@ -293,28 +305,144 @@ gfc_conv_derived_to_class (gfc_se *parmse, gfc_expr *e, gfc_expr_attr (e)); gfc_add_modify (&parmse->pre, gfc_conv_descriptor_dtype (ctree), gfc_get_dtype (type)); + if (optional) + parmse->expr = build3_loc (input_location, COND_EXPR, + TREE_TYPE (parmse->expr), + cond_optional, parmse->expr, + fold_convert (TREE_TYPE (parmse->expr), + null_pointer_node)); gfc_conv_descriptor_data_set (&parmse->pre, ctree, parmse->expr); } else { tmp = fold_convert (TREE_TYPE (ctree), parmse->expr); + if (optional) + tmp = build3_loc (input_location, COND_EXPR, TREE_TYPE (tmp), + cond_optional, tmp, + fold_convert (TREE_TYPE (tmp), + null_pointer_node)); gfc_add_modify (&parmse->pre, ctree, tmp); } } else { + stmtblock_t block; + gfc_init_block (&block); + parmse->ss = ss; gfc_conv_expr_descriptor (parmse, e); if (e->rank != class_ts.u.derived->components->as->rank) - class_array_data_assign (&parmse->pre, ctree, parmse->expr, true); + class_array_data_assign (&block, ctree, parmse->expr, true); + else + { + if (gfc_expr_attr (e).codimension) + parmse->expr = fold_build1_loc (input_location, + VIEW_CONVERT_EXPR, + TREE_TYPE (ctree), + parmse->expr); + gfc_add_modify (&block, ctree, parmse->expr); + } + + if (optional) + { + tmp = gfc_finish_block (&block); + + gfc_init_block (&block); + gfc_conv_descriptor_data_set (&block, ctree, null_pointer_node); + + tmp = build3_v (COND_EXPR, cond_optional, tmp, + gfc_finish_block (&block)); + gfc_add_expr_to_block (&parmse->pre, tmp); + } else - gfc_add_modify (&parmse->pre, ctree, parmse->expr); + gfc_add_block_to_block (&parmse->pre, &block); } } /* Pass the address of the class object. */ parmse->expr = gfc_build_addr_expr (NULL_TREE, var); + + if (optional && optional_alloc_ptr) + parmse->expr = build3_loc (input_location, COND_EXPR, + TREE_TYPE (parmse->expr), + cond_optional, parmse->expr, + fold_convert (TREE_TYPE (parmse->expr), + null_pointer_node)); +} + + +static void +class_scalar_coarray_to_class (gfc_se *parmse, gfc_expr *e, + gfc_typespec class_ts, bool optional) +{ + tree var, ctree, tmp; + stmtblock_t block; + gfc_ref *ref; + gfc_ref *class_ref; + + gfc_init_block (&block); + + class_ref = NULL; + for (ref = e->ref; ref; ref = ref->next) + { + if (ref->type == REF_COMPONENT + && ref->u.c.component->ts.type == BT_CLASS) + class_ref = ref; + + if (ref->next == NULL) + break; + } + + if (class_ref == NULL + && e->symtree && e->symtree->n.sym->ts.type == BT_CLASS) + tmp = e->symtree->n.sym->backend_decl; + else + { + /* Remove everything after the last class reference, convert the + expression and then recover its tailend once more. */ + gfc_se tmpse; + ref = class_ref->next; + class_ref->next = NULL; + gfc_init_se (&tmpse, NULL); + gfc_conv_expr (&tmpse, e); + class_ref->next = ref; + tmp = tmpse.expr; + } + + var = gfc_typenode_for_spec (&class_ts); + var = gfc_create_var (var, "class"); + + ctree = gfc_class_vptr_get (var); + gfc_add_modify (&block, ctree, + fold_convert (TREE_TYPE (ctree), gfc_class_vptr_get (tmp))); + + ctree = gfc_class_data_get (var); + tmp = gfc_conv_descriptor_data_get (gfc_class_data_get (tmp)); + gfc_add_modify (&block, ctree, fold_convert (TREE_TYPE (ctree), tmp)); + + /* Pass the address of the class object. */ + parmse->expr = gfc_build_addr_expr (NULL_TREE, var); + + if (optional) + { + tree cond = gfc_conv_expr_present (e->symtree->n.sym); + tree tmp2; + + tmp = gfc_finish_block (&block); + + gfc_init_block (&block); + tmp2 = gfc_class_data_get (var); + gfc_add_modify (&block, tmp2, fold_convert (TREE_TYPE (tmp2), + null_pointer_node)); + tmp2 = gfc_finish_block (&block); + + tmp = build3_loc (input_location, COND_EXPR, void_type_node, + cond, tmp, tmp2); + gfc_add_expr_to_block (&parmse->pre, tmp); + } + else + gfc_add_block_to_block (&parmse->pre, &block); } @@ -323,19 +451,26 @@ gfc_conv_derived_to_class (gfc_se *parmse, gfc_expr *e, type. OOP-TODO: This could be improved by adding code that branched on the dynamic type being the same as the declared type. In this case - the original class expression can be passed directly. */ + the original class expression can be passed directly. + alloc_ptr is false when the dummy is neither allocatable + nor a pointer; that's relevant for the optional handling. */ void -gfc_conv_class_to_class (gfc_se *parmse, gfc_expr *e, - gfc_typespec class_ts, bool elemental) +gfc_conv_class_to_class (gfc_se *parmse, gfc_expr *e, gfc_typespec class_ts, + bool elemental, bool copyback, bool optional, + bool optional_alloc_ptr) { tree ctree; tree var; tree tmp; tree vptr; + tree cond = NULL_TREE; gfc_ref *ref; gfc_ref *class_ref; + stmtblock_t block; bool full_array = false; + gfc_init_block (&block); + class_ref = NULL; for (ref = e->ref; ref; ref = ref->next) { @@ -353,7 +488,11 @@ gfc_conv_class_to_class (gfc_se *parmse, gfc_expr *e, return; /* Test for FULL_ARRAY. */ - gfc_is_class_array_ref (e, &full_array); + if (e->rank == 0 && gfc_expr_attr (e).codimension + && gfc_expr_attr (e).dimension) + full_array = true; + else + gfc_is_class_array_ref (e, &full_array); /* The derived type needs to be converted to a temporary CLASS object. */ @@ -369,22 +508,30 @@ gfc_conv_class_to_class (gfc_se *parmse, gfc_expr *e, { tree type = get_scalar_to_descriptor_type (parmse->expr, gfc_expr_attr (e)); - gfc_add_modify (&parmse->pre, gfc_conv_descriptor_dtype (ctree), + gfc_add_modify (&block, gfc_conv_descriptor_dtype (ctree), gfc_get_dtype (type)); - gfc_conv_descriptor_data_set (&parmse->pre, ctree, - gfc_class_data_get (parmse->expr)); + tmp = gfc_class_data_get (parmse->expr); + if (!POINTER_TYPE_P (TREE_TYPE (tmp))) + tmp = gfc_build_addr_expr (NULL_TREE, tmp); + + gfc_conv_descriptor_data_set (&block, ctree, tmp); } else - class_array_data_assign (&parmse->pre, ctree, parmse->expr, false); + class_array_data_assign (&block, ctree, parmse->expr, false); } else - gfc_add_modify (&parmse->pre, ctree, parmse->expr); + { + if (CLASS_DATA (e)->attr.codimension) + parmse->expr = fold_build1_loc (input_location, VIEW_CONVERT_EXPR, + TREE_TYPE (ctree), parmse->expr); + gfc_add_modify (&block, ctree, parmse->expr); + } /* Return the data component, except in the case of scalarized array references, where nullification of the cannot occur and so there is no need. */ - if (!elemental && full_array) + if (!elemental && full_array && copyback) { if (class_ts.u.derived->components->as && e->rank != class_ts.u.derived->components->as->rank) @@ -429,17 +576,51 @@ gfc_conv_class_to_class (gfc_se *parmse, gfc_expr *e, tmp = build_fold_indirect_ref_loc (input_location, tmp); vptr = gfc_class_vptr_get (tmp); - gfc_add_modify (&parmse->pre, ctree, + gfc_add_modify (&block, ctree, fold_convert (TREE_TYPE (ctree), vptr)); /* Return the vptr component, except in the case of scalarized array references, where the dynamic type cannot change. */ - if (!elemental && full_array) + if (!elemental && full_array && copyback) gfc_add_modify (&parmse->post, vptr, fold_convert (TREE_TYPE (vptr), ctree)); + gcc_assert (!optional || (optional && !copyback)); + if (optional) + { + tree tmp2; + + cond = gfc_conv_expr_present (e->symtree->n.sym); + tmp = gfc_finish_block (&block); + + if (optional_alloc_ptr) + tmp2 = build_empty_stmt (input_location); + else + { + gfc_init_block (&block); + + tmp2 = gfc_conv_descriptor_data_get (gfc_class_data_get (var)); + gfc_add_modify (&block, tmp2, fold_convert (TREE_TYPE (tmp2), + null_pointer_node)); + tmp2 = gfc_finish_block (&block); + } + + tmp = build3_loc (input_location, COND_EXPR, void_type_node, + cond, tmp, tmp2); + gfc_add_expr_to_block (&parmse->pre, tmp); + } + else + gfc_add_block_to_block (&parmse->pre, &block); + /* Pass the address of the class object. */ parmse->expr = gfc_build_addr_expr (NULL_TREE, var); + + if (optional && optional_alloc_ptr) + parmse->expr = build3_loc (input_location, COND_EXPR, + TREE_TYPE (parmse->expr), + cond, parmse->expr, + fold_convert (TREE_TYPE (parmse->expr), + null_pointer_node)); } @@ -857,19 +1038,43 @@ gfc_conv_expr_present (gfc_symbol * sym) /* Fortran 2008 allows to pass null pointers and non-associated pointers as actual argument to denote absent dummies. For array descriptors, - we thus also need to check the array descriptor. */ - if (!sym->attr.pointer && !sym->attr.allocatable - && sym->as && (sym->as->type == AS_ASSUMED_SHAPE - || sym->as->type == AS_ASSUMED_RANK) - && (gfc_option.allow_std & GFC_STD_F2008) != 0) + we thus also need to check the array descriptor. For BT_CLASS, it + can also occur for scalars and F2003 due to type->class wrapping and + class->class wrapping. Note futher that BT_CLASS always uses an + array descriptor for arrays, also for explicit-shape/assumed-size. */ + + if (!sym->attr.allocatable + && ((sym->ts.type != BT_CLASS && !sym->attr.pointer) + || (sym->ts.type == BT_CLASS + && !CLASS_DATA (sym)->attr.allocatable + && !CLASS_DATA (sym)->attr.class_pointer)) + && ((gfc_option.allow_std & GFC_STD_F2008) != 0 + || sym->ts.type == BT_CLASS)) { tree tmp; - tmp = build_fold_indirect_ref_loc (input_location, decl); - tmp = gfc_conv_array_data (tmp); - tmp = fold_build2_loc (input_location, NE_EXPR, boolean_type_node, tmp, - fold_convert (TREE_TYPE (tmp), null_pointer_node)); - cond = fold_build2_loc (input_location, TRUTH_ANDIF_EXPR, - boolean_type_node, cond, tmp); + + if ((sym->as && (sym->as->type == AS_ASSUMED_SHAPE + || sym->as->type == AS_ASSUMED_RANK + || sym->attr.codimension)) + || (sym->ts.type == BT_CLASS && CLASS_DATA (sym)->as)) + { + tmp = build_fold_indirect_ref_loc (input_location, decl); + if (sym->ts.type == BT_CLASS) + tmp = gfc_class_data_get (tmp); + tmp = gfc_conv_array_data (tmp); + } + else if (sym->ts.type == BT_CLASS) + tmp = gfc_class_data_get (decl); + else + tmp = NULL_TREE; + + if (tmp != NULL_TREE) + { + tmp = fold_build2_loc (input_location, NE_EXPR, boolean_type_node, tmp, + fold_convert (TREE_TYPE (tmp), null_pointer_node)); + cond = fold_build2_loc (input_location, TRUTH_ANDIF_EXPR, + boolean_type_node, cond, tmp); + } } return cond; @@ -3714,7 +3919,8 @@ gfc_conv_procedure_call (gfc_se * se, gfc_symbol * sym, if (e && e->expr_type == EXPR_VARIABLE && !e->ref && e->ts.type == BT_CLASS - && CLASS_DATA (e)->attr.dimension) + && (CLASS_DATA (e)->attr.codimension + || CLASS_DATA (e)->attr.dimension)) { gfc_typespec temp_ts = e->ts; gfc_add_class_array_ref (e); @@ -3763,7 +3969,12 @@ gfc_conv_procedure_call (gfc_se * se, gfc_symbol * sym, /* The derived type needs to be converted to a temporary CLASS object. */ gfc_init_se (&parmse, se); - gfc_conv_derived_to_class (&parmse, e, fsym->ts, NULL); + gfc_conv_derived_to_class (&parmse, e, fsym->ts, NULL, + fsym->attr.optional + && e->expr_type == EXPR_VARIABLE + && e->symtree->n.sym->attr.optional, + CLASS_DATA (fsym)->attr.class_pointer + || CLASS_DATA (fsym)->attr.allocatable); } else if (se->ss && se->ss->info->useflags) { @@ -3789,7 +4000,20 @@ gfc_conv_procedure_call (gfc_se * se, gfc_symbol * sym, if (fsym && fsym->ts.type == BT_DERIVED && gfc_is_class_container_ref (e)) - parmse.expr = gfc_class_data_get (parmse.expr); + { + parmse.expr = gfc_class_data_get (parmse.expr); + + if (fsym->attr.optional && e->expr_type == EXPR_VARIABLE + && e->symtree->n.sym->attr.optional) + { + tree cond = gfc_conv_expr_present (e->symtree->n.sym); + parmse.expr = build3_loc (input_location, COND_EXPR, + TREE_TYPE (parmse.expr), + cond, parmse.expr, + fold_convert (TREE_TYPE (parmse.expr), + null_pointer_node)); + } + } /* If we are passing an absent array as optional dummy to an elemental procedure, make sure that we pass NULL when the data @@ -3817,13 +4041,23 @@ gfc_conv_procedure_call (gfc_se * se, gfc_symbol * sym, /* The scalarizer does not repackage the reference to a class array - instead it returns a pointer to the data element. */ if (fsym && fsym->ts.type == BT_CLASS && e->ts.type == BT_CLASS) - gfc_conv_class_to_class (&parmse, e, fsym->ts, true); + gfc_conv_class_to_class (&parmse, e, fsym->ts, true, + fsym->attr.intent != INTENT_IN + && (CLASS_DATA (fsym)->attr.class_pointer + || CLASS_DATA (fsym)->attr.allocatable), + fsym->attr.optional + && e->expr_type == EXPR_VARIABLE + && e->symtree->n.sym->attr.optional, + CLASS_DATA (fsym)->attr.class_pointer + || CLASS_DATA (fsym)->attr.allocatable); } else { bool scalar; gfc_ss *argss; + gfc_init_se (&parmse, NULL); + /* Check whether the expression is a scalar or not; we cannot use e->rank as it can be nonzero for functions arguments. */ argss = gfc_walk_expr (e); @@ -3831,9 +4065,19 @@ gfc_conv_procedure_call (gfc_se * se, gfc_symbol * sym, if (!scalar) gfc_free_ss_chain (argss); + /* Special handling for passing scalar polymorphic coarrays; + otherwise one passes "class->_data.data" instead of "&class". */ + if (e->rank == 0 && e->ts.type == BT_CLASS + && fsym && fsym->ts.type == BT_CLASS + && CLASS_DATA (fsym)->attr.codimension + && !CLASS_DATA (fsym)->attr.dimension) + { + gfc_add_class_array_ref (e); + parmse.want_coarray = 1; + scalar = false; + } + /* A scalar or transformational function. */ - gfc_init_se (&parmse, NULL); - if (scalar) { if (e->expr_type == EXPR_VARIABLE @@ -3888,7 +4132,23 @@ gfc_conv_procedure_call (gfc_se * se, gfc_symbol * sym, } else { - gfc_conv_expr_reference (&parmse, e); + if (e->ts.type == BT_CLASS && fsym + && fsym->ts.type == BT_CLASS + && (!CLASS_DATA (fsym)->as + || CLASS_DATA (fsym)->as->type != AS_ASSUMED_RANK) + && CLASS_DATA (e)->attr.codimension) + { + gcc_assert (!CLASS_DATA (fsym)->attr.codimension); + gcc_assert (!CLASS_DATA (fsym)->as); + gfc_add_class_array_ref (e); + parmse.want_coarray = 1; + gfc_conv_expr_reference (&parmse, e); + class_scalar_coarray_to_class (&parmse, e, fsym->ts, + fsym->attr.optional + && e->expr_type == EXPR_VARIABLE); + } + else + gfc_conv_expr_reference (&parmse, e); /* Catch base objects that are not variables. */ if (e->ts.type == BT_CLASS @@ -3904,7 +4164,15 @@ gfc_conv_procedure_call (gfc_se * se, gfc_symbol * sym, && ((CLASS_DATA (fsym)->as && CLASS_DATA (fsym)->as->type == AS_ASSUMED_RANK) || CLASS_DATA (e)->attr.dimension)) - gfc_conv_class_to_class (&parmse, e, fsym->ts, false); + gfc_conv_class_to_class (&parmse, e, fsym->ts, false, + fsym->attr.intent != INTENT_IN + && (CLASS_DATA (fsym)->attr.class_pointer + || CLASS_DATA (fsym)->attr.allocatable), + fsym->attr.optional + && e->expr_type == EXPR_VARIABLE + && e->symtree->n.sym->attr.optional, + CLASS_DATA (fsym)->attr.class_pointer + || CLASS_DATA (fsym)->attr.allocatable); if (fsym && (fsym->ts.type == BT_DERIVED || fsym->ts.type == BT_ASSUMED) @@ -4005,14 +4273,22 @@ gfc_conv_procedure_call (gfc_se * se, gfc_symbol * sym, } else if (e->ts.type == BT_CLASS && fsym && fsym->ts.type == BT_CLASS - && CLASS_DATA (fsym)->attr.dimension) + && (CLASS_DATA (fsym)->attr.dimension + || CLASS_DATA (fsym)->attr.codimension)) { /* Pass a class array. */ - gfc_init_se (&parmse, se); gfc_conv_expr_descriptor (&parmse, e); /* The conversion does not repackage the reference to a class array - _data descriptor. */ - gfc_conv_class_to_class (&parmse, e, fsym->ts, false); + gfc_conv_class_to_class (&parmse, e, fsym->ts, false, + fsym->attr.intent != INTENT_IN + && (CLASS_DATA (fsym)->attr.class_pointer + || CLASS_DATA (fsym)->attr.allocatable), + fsym->attr.optional + && e->expr_type == EXPR_VARIABLE + && e->symtree->n.sym->attr.optional, + CLASS_DATA (fsym)->attr.class_pointer + || CLASS_DATA (fsym)->attr.allocatable); } else { diff --git a/gcc/fortran/trans-stmt.c b/gcc/fortran/trans-stmt.c index 204f069..9205950 100644 --- a/gcc/fortran/trans-stmt.c +++ b/gcc/fortran/trans-stmt.c @@ -1228,7 +1228,7 @@ trans_associate_var (gfc_symbol *sym, gfc_wrapped_block *block) gfc_conv_expr_descriptor (&se, e); /* Obtain a temporary class container for the result. */ - gfc_conv_class_to_class (&se, e, sym->ts, false); + gfc_conv_class_to_class (&se, e, sym->ts, false, true, false, false); se.expr = build_fold_indirect_ref_loc (input_location, se.expr); /* Set the offset. */ @@ -1255,7 +1255,7 @@ trans_associate_var (gfc_symbol *sym, gfc_wrapped_block *block) /* Get the _vptr component of the class object. */ tmp = gfc_get_vptr_from_expr (se.expr); /* Obtain a temporary class container for the result. */ - gfc_conv_derived_to_class (&se, e, sym->ts, tmp); + gfc_conv_derived_to_class (&se, e, sym->ts, tmp, false, false); se.expr = build_fold_indirect_ref_loc (input_location, se.expr); } else @@ -4874,7 +4874,7 @@ gfc_trans_allocate (gfc_code * code) gfc_init_se (&se_sz, NULL); gfc_conv_expr_reference (&se_sz, code->expr3); gfc_conv_class_to_class (&se_sz, code->expr3, - code->expr3->ts, false); + code->expr3->ts, false, true, false, false); gfc_add_block_to_block (&se.pre, &se_sz.pre); gfc_add_block_to_block (&se.post, &se_sz.post); classexpr = build_fold_indirect_ref_loc (input_location, diff --git a/gcc/fortran/trans.h b/gcc/fortran/trans.h index 9818ceb..7e6d58c 100644 --- a/gcc/fortran/trans.h +++ b/gcc/fortran/trans.h @@ -351,8 +351,10 @@ tree gfc_vtable_copy_get (tree); tree gfc_get_vptr_from_expr (tree); tree gfc_get_class_array_ref (tree, tree); tree gfc_copy_class_to_class (tree, tree, tree); -void gfc_conv_derived_to_class (gfc_se *, gfc_expr *, gfc_typespec, tree); -void gfc_conv_class_to_class (gfc_se *, gfc_expr *, gfc_typespec, bool); +void gfc_conv_derived_to_class (gfc_se *, gfc_expr *, gfc_typespec, tree, bool, + bool); +void gfc_conv_class_to_class (gfc_se *, gfc_expr *, gfc_typespec, bool, bool, + bool, bool); /* Initialize an init/cleanup block. */ void gfc_start_wrapped_block (gfc_wrapped_block* block, tree code); --- /dev/null 2012-10-04 07:54:15.859706324 +0200 +++ gcc/gcc/testsuite/gfortran.dg/class_optional_1.f90 2012-09-29 22:02:09.000000000 +0200 @@ -0,0 +1,41 @@ +! { dg-do run } +! +! PR fortran/50981 +! PR fortran/54618 +! + implicit none + type t + integer :: a + end type t + type(t), allocatable :: var1, var2(:) + call sub_ct2(null()) ! << SEGFAULT + call sub_ct(var1) + call sub_ct(var2) + call sub_cta2(null()) + call sub_cta(var2) + allocate(var1, var2(2)) + call sub_ct(var1) + call sub_ct(var2) + if (var1%a /= 5 .or. any (var2%a /= 5)) call abort() + call sub_cta(var2) + if (any (var2%a /= 7)) call abort() + +contains + elemental subroutine sub_ct2(y) + class(t), intent(in), optional :: y + if (present(y)) i = 5 + end subroutine sub_ct2 + elemental subroutine sub_ct(y) + class(t), intent(inout), optional :: y + if (present(y)) y%a = 5 + end subroutine sub_ct + subroutine sub_cta2(y) + class(t), intent(in), optional :: y(:) + if (present(y)) i = 7 + end subroutine sub_cta2 + subroutine sub_cta(y) + class(t), intent(inout), optional :: y(:) + if (present(y)) y%a = 7 + if (present(y)) i = 7 + end subroutine sub_cta +end --- /dev/null 2012-10-04 07:54:15.859706324 +0200 +++ gcc/gcc/testsuite/gfortran.dg/class_optional_2.f90 2012-10-04 22:20:26.000000000 +0200 @@ -0,0 +1,959 @@ +! { dg-do run } +! { dg-options "-fcoarray=single" } +! +! PR fortran/50981 +! PR fortran/54618 +! + + implicit none + type t + integer, allocatable :: i + end type t + type, extends (t):: t2 + integer, allocatable :: j + end type t2 + + class(t), allocatable :: xa, xa2(:), xac[:], xa2c(:)[:] + class(t), pointer :: xp, xp2(:) + + xp => null() + xp2 => null() + + call s1a1() + call s1a() + call s1ac1() + call s1ac() + call s2() + call s2p(psnt=.false.) + call s2caf() + call s2elem() + call s2elem_t() + call s2elem_t2() + call s2t() + call s2tp(psnt=.false.) + call s2t2() + call s2t2p(psnt=.false.) + + call a1a1() + call a1a() + call a1ac1() + call a1ac() + call a2() + call a2p(psnt=.false.) + call a2caf() + + call a3a1() + call a3a() + call a3ac1() + call a3ac() + call a4() + call a4p(psnt=.false.) + call a4caf() + + call ar1a1() + call ar1a() + call ar1ac1() + call ar1ac() + call ar() + call art() + call arp(psnt=.false.) + call artp(psnt=.false.) + + call suba(alloc=.false., prsnt=.false.) + call suba(xa, alloc=.false., prsnt=.true.) + if (.not. allocated (xa)) call abort () + if (.not. allocated (xa%i)) call abort () + if (xa%i /= 5) call abort () + xa%i = -3 + call suba(xa, alloc=.true., prsnt=.true.) + if (allocated (xa)) call abort () + + call suba2(alloc=.false., prsnt=.false.) + call suba2(xa2, alloc=.false., prsnt=.true.) + if (.not. allocated (xa2)) call abort () + if (size (xa2) /= 1) call abort () + if (.not. allocated (xa2(1)%i)) call abort () + if (xa2(1)%i /= 5) call abort () + xa2(1)%i = -3 + call suba2(xa2, alloc=.true., prsnt=.true.) + if (allocated (xa2)) call abort () + + call subp(alloc=.false., prsnt=.false.) + call subp(xp, alloc=.false., prsnt=.true.) + if (.not. associated (xp)) call abort () + if (.not. allocated (xp%i)) call abort () + if (xp%i /= 5) call abort () + xp%i = -3 + call subp(xp, alloc=.true., prsnt=.true.) + if (associated (xp)) call abort () + + call subp2(alloc=.false., prsnt=.false.) + call subp2(xp2, alloc=.false., prsnt=.true.) + if (.not. associated (xp2)) call abort () + if (size (xp2) /= 1) call abort () + if (.not. allocated (xp2(1)%i)) call abort () + if (xp2(1)%i /= 5) call abort () + xp2(1)%i = -3 + call subp2(xp2, alloc=.true., prsnt=.true.) + if (associated (xp2)) call abort () + + call subac(alloc=.false., prsnt=.false.) + call subac(xac, alloc=.false., prsnt=.true.) + if (.not. allocated (xac)) call abort () + if (.not. allocated (xac%i)) call abort () + if (xac%i /= 5) call abort () + xac%i = -3 + call subac(xac, alloc=.true., prsnt=.true.) + if (allocated (xac)) call abort () + + call suba2c(alloc=.false., prsnt=.false.) + call suba2c(xa2c, alloc=.false., prsnt=.true.) + if (.not. allocated (xa2c)) call abort () + if (size (xa2c) /= 1) call abort () + if (.not. allocated (xa2c(1)%i)) call abort () + if (xa2c(1)%i /= 5) call abort () + xa2c(1)%i = -3 + call suba2c(xa2c, alloc=.true., prsnt=.true.) + if (allocated (xa2c)) call abort () + +contains + subroutine suba2c(x, prsnt, alloc) + class(t), optional, allocatable :: x(:)[:] + logical prsnt, alloc + if (present (x) .neqv. prsnt) call abort () + if (prsnt) then + if (alloc .neqv. allocated(x)) call abort () + if (.not. allocated (x)) then + allocate (x(1)[*]) + x(1)%i = 5 + else + if (x(1)%i /= -3) call abort() + deallocate (x) + end if + end if + end subroutine suba2c + + subroutine subac(x, prsnt, alloc) + class(t), optional, allocatable :: x[:] + logical prsnt, alloc + if (present (x) .neqv. prsnt) call abort () + if (present (x)) then + if (alloc .neqv. allocated(x)) call abort () + if (.not. allocated (x)) then + allocate (x[*]) + x%i = 5 + else + if (x%i /= -3) call abort() + deallocate (x) + end if + end if + end subroutine subac + + subroutine suba2(x, prsnt, alloc) + class(t), optional, allocatable :: x(:) + logical prsnt, alloc + if (present (x) .neqv. prsnt) call abort () + if (prsnt) then + if (alloc .neqv. allocated(x)) call abort () + if (.not. allocated (x)) then + allocate (x(1)) + x(1)%i = 5 + else + if (x(1)%i /= -3) call abort() + deallocate (x) + end if + end if + end subroutine suba2 + + subroutine suba(x, prsnt, alloc) + class(t), optional, allocatable :: x + logical prsnt, alloc + if (present (x) .neqv. prsnt) call abort () + if (present (x)) then + if (alloc .neqv. allocated(x)) call abort () + if (.not. allocated (x)) then + allocate (x) + x%i = 5 + else + if (x%i /= -3) call abort() + deallocate (x) + end if + end if + end subroutine suba + + subroutine subp2(x, prsnt, alloc) + class(t), optional, pointer :: x(:) + logical prsnt, alloc + if (present (x) .neqv. prsnt) call abort () + if (present (x)) then + if (alloc .neqv. associated(x)) call abort () + if (.not. associated (x)) then + allocate (x(1)) + x(1)%i = 5 + else + if (x(1)%i /= -3) call abort() + deallocate (x) + end if + end if + end subroutine subp2 + + subroutine subp(x, prsnt, alloc) + class(t), optional, pointer :: x + logical prsnt, alloc + if (present (x) .neqv. prsnt) call abort () + if (present (x)) then + if (alloc .neqv. associated(x)) call abort () + if (.not. associated (x)) then + allocate (x) + x%i = 5 + else + if (x%i /= -3) call abort() + deallocate (x) + end if + end if + end subroutine subp + + + subroutine s1a1(z, z2, z3, z4, z5) + type(t), optional :: z, z4[*] + type(t), pointer, optional :: z2 + type(t), allocatable, optional :: z3, z5[:] + type(t), allocatable :: x + type(t), pointer :: y + y => null() + call s2(x) + call s2(y) + call s2(z) + call s2(z2) + call s2(z3) + call s2(z4) + call s2(z5) + call s2p(y,psnt=.true.) + call s2p(z2,psnt=.false.) + call s2elem(x) + call s2elem(y) + call s2elem(z) + call s2elem(z2) + call s2elem(z3) + call s2elem(z4) + call s2elem(z5) + call s2elem_t(x) + call s2elem_t(y) + call s2elem_t(z) +! call s2elem_t(z2) ! FIXME: Segfault +! call s2elem_t(z3) ! FIXME: Segfault +! call s2elem_t(z4) ! FIXME: Segfault +! call s2elem_t(z5) ! FIXME: Segfault + call s2caf(z4) + call s2caf(z5) + call ar(x) + call ar(y) + call ar(z) + call ar(z2) + call ar(z3) + call ar(z4) + call ar(z5) + call arp(y,psnt=.true.) + call arp(z2,psnt=.false.) + call s2t(x) + call s2t(y) + call s2t(z) +! call s2t(z2) ! FIXME: Segfault +! call s2t(z3) ! FIXME: Segfault +! call s2t(z4) ! FIXME: Segfault +! call s2t(z5) ! FIXME: Segfault + call s2tp(y,psnt=.true.) + call s2tp(z2,psnt=.false.) + end subroutine s1a1 + subroutine s1a(z, z2, z3, z4, z5) + type(t2), optional :: z, z4[*] + type(t2), optional, pointer :: z2 + type(t2), optional, allocatable :: z3, z5[:] + type(t2), allocatable :: x + type(t2), pointer :: y + y => null() + call s2(x) + call s2(y) + call s2(z) + call s2(z2) + call s2(z3) + call s2(z4) + call s2(z5) + call s2p(y,psnt=.true.) + call s2p(z2,psnt=.false.) + call s2elem(x) + call s2elem(y) + call s2elem(z) + call s2elem(z2) + call s2elem(z3) + call s2elem(z4) + call s2elem(z5) + call s2elem_t2(x) + call s2elem_t2(y) + call s2elem_t2(z) +! call s2elem_t2(z2) ! FIXME: Segfault +! call s2elem_t2(z3) ! FIXME: Segfault +! call s2elem_t2(z4) ! FIXME: Segfault +! call s2elem_t2(z5) ! FIXME: Segfault + call s2caf(z4) + call s2caf(z5) + call ar(x) + call ar(y) + call ar(z) + call ar(z2) + call ar(z3) + call ar(z4) + call ar(z5) + call arp(y,psnt=.true.) + call arp(z2,psnt=.false.) + call s2t2(x) + call s2t2(y) + call s2t2(z) +! call s2t2(z2) ! FIXME: Segfault +! call s2t2(z3) ! FIXME: Segfault + call s2t2(z4) +! call s2t2(z5) ! FIXME: Segfault + call s2t2p(y,psnt=.true.) + call s2t2p(z2,psnt=.false.) + end subroutine s1a + subroutine s1ac1(z, z2, z3, z4, z5) + class(t), optional :: z, z4[*] + class(t), optional, pointer :: z2 + class(t), optional, allocatable :: z3, z5[:] + class(t), allocatable :: x + class(t), pointer :: y + y => null() + call s2(x) + call s2(y) + call s2(z) + call s2(z2) + call s2(z3) + call s2(z4) + call s2(z5) + call s2p(y,psnt=.true.) + call s2p(z2,psnt=.false.) + call s2elem(x) + call s2elem(y) + call s2elem(z) + call s2elem(z2) + call s2elem(z3) + call s2elem(z4) + call s2elem(z5) + call s2elem_t(x) + call s2elem_t(y) +! call s2elem_t(z) ! FIXME: Segfault +! call s2elem_t(z2) ! FIXME: Segfault +! call s2elem_t(z3) ! FIXME: Segfault +! call s2elem_t(z4) ! FIXME: Segfault +! call s2elem_t(z5) ! FIXME: Segfault + call s2caf(z4) + call s2caf(z5) + call ar(x) + call ar(y) + call ar(z) + call ar(z2) + call ar(z3) + call ar(z4) + call ar(z5) + call arp(y,psnt=.true.) + call arp(z2,psnt=.false.) + call s2t(x) + call s2t(y) +! call s2t(z) ! FIXME: Segfault +! call s2t(z2) ! FIXME: Segfault +! call s2t(z3) ! FIXME: Segfault +! call s2t(z4) ! FIXME: Segfault +! call s2t(z5) ! FIXME: Segfault + call s2tp(y,psnt=.true.) + call s2tp(z2,psnt=.false.) + end subroutine s1ac1 + subroutine s1ac(z, z2, z3, z4, z5) + class(t2), optional :: z, z4[*] + class(t2), optional, pointer :: z2 + class(t2), optional, allocatable :: z3, z5[:] + class(t2), allocatable :: x + class(t2), pointer :: y + y => null() + call s2(x) + call s2(y) + call s2(z) + call s2(z2) + call s2(z3) + call s2(z4) + call s2(z5) + call s2p(y,psnt=.true.) + call s2p(z2,psnt=.false.) + call s2elem(x) + call s2elem(y) + call s2elem(z) + call s2elem(z2) + call s2elem(z3) + call s2elem(z4) + call s2elem(z5) + call s2elem_t2(x) +! call s2elem_t2(y) ! FIXME: Segfault +! call s2elem_t2(z) ! FIXME: Segfault +! call s2elem_t2(z2) ! FIXME: Segfault +! call s2elem_t2(z3) ! FIXME: Segfault +! call s2elem_t2(z4) ! FIXME: Segfault +! call s2elem_t2(z5) ! FIXME: Segfault + call s2caf(z4) + call s2caf(z5) + call ar(x) + call ar(y) + call ar(z) + call ar(z2) + call ar(z3) + call ar(z4) + call ar(z5) + call arp(y,psnt=.true.) + call arp(z2,psnt=.false.) + call s2t2(x) + call s2t2(y) +! call s2t2(z) ! FIXME: Segfault +! call s2t2(z2) ! FIXME: Segfault +! call s2t2(z3) ! FIXME: Segfault +! call s2t2(z4) ! FIXME: Segfault +! call s2t2(z5) ! FIXME: Segfault + call s2t2p(y,psnt=.true.) + call s2t2p(z2,psnt=.false.) + end subroutine s1ac + + subroutine s2(x) + class(t), intent(in), optional :: x + if (present (x)) call abort () + !print *, present(x) + end subroutine s2 + subroutine s2p(x,psnt) + class(t), intent(in), pointer, optional :: x + logical psnt + if (present (x).neqv. psnt) call abort () + !print *, present(x) + end subroutine s2p + subroutine s2caf(x) + class(t), intent(in), optional :: x[*] + if (present (x)) call abort () + !print *, present(x) + end subroutine s2caf + subroutine s2t(x) + type(t), intent(in), optional :: x + if (present (x)) call abort () + !print *, present(x) + end subroutine s2t + subroutine s2t2(x) + type(t2), intent(in), optional :: x + if (present (x)) call abort () + !print *, present(x) + end subroutine s2t2 + subroutine s2tp(x, psnt) + type(t), pointer, intent(in), optional :: x + logical psnt + if (present (x).neqv. psnt) call abort () + !print *, present(x) + end subroutine s2tp + subroutine s2t2p(x, psnt) + type(t2), pointer, intent(in), optional :: x + logical psnt + if (present (x).neqv. psnt) call abort () + !print *, present(x) + end subroutine s2t2p + impure elemental subroutine s2elem(x) + class(t), intent(in), optional :: x + if (present (x)) call abort () + !print *, present(x) + end subroutine s2elem + impure elemental subroutine s2elem_t(x) + type(t), intent(in), optional :: x + if (present (x)) call abort () + !print *, present(x) + end subroutine s2elem_t + impure elemental subroutine s2elem_t2(x) + type(t2), intent(in), optional :: x + if (present (x)) call abort () + !print *, present(x) + end subroutine s2elem_t2 + + + subroutine a1a1(z, z2, z3, z4, z5) + type(t), optional :: z(:), z4(:)[*] + type(t), optional, pointer :: z2(:) + type(t), optional, allocatable :: z3(:), z5(:)[:] + type(t), allocatable :: x(:) + type(t), pointer :: y(:) + y => null() + call a2(x) + call a2(y) + call a2(z) + call a2(z2) + call a2(z3) + call a2(z4) + call a2(z5) + call a2p(y,psnt=.true.) + call a2p(z2,psnt=.false.) + call a2caf(z4) + call a2caf(z5) + call ar(x) + call ar(y) + call ar(z) + call ar(z2) + call ar(z3) + call ar(z4) + call ar(z5) + call arp(y,psnt=.true.) + call arp(z2,psnt=.false.) +! call s2elem(x) ! FIXME: Segfault +! call s2elem(y) ! FIXME: Segfault +! call s2elem(z) ! FIXME: Segfault +! call s2elem(z2) ! FIXME: Segfault +! call s2elem(z3) ! FIXME: Segfault +! call s2elem(z4) ! FIXME: Segfault +! call s2elem(z5) ! FIXME: Segfault + call s2elem_t(x) + call s2elem_t(y) + call s2elem_t(z) +! call s2elem_t(z2) ! FIXME: Segfault +! call s2elem_t(z3) ! FIXME: Segfault +! call s2elem_t(z4) ! FIXME: Segfault +! call s2elem_t(z5) ! FIXME: Segfault + end subroutine a1a1 + subroutine a1a(z, z2, z3, z4, z5) + type(t2), optional :: z(:), z4(:)[*] + type(t2), optional, pointer :: z2(:) + type(t2), optional, allocatable :: z3(:), z5(:)[:] + type(t2), allocatable :: x(:) + type(t2), pointer :: y(:) + y => null() + call a2(x) + call a2(y) + call a2(z) + call a2(z2) + call a2(z3) + call a2(z4) + call a2(z5) + call a2p(y,psnt=.true.) + call a2p(z2,psnt=.false.) + call a2caf(z4) + call a2caf(z5) + call ar(x) + call ar(y) + call ar(z) + call ar(z2) + call ar(z3) + call ar(z4) + call ar(z5) + call arp(y,psnt=.true.) + call arp(z2,psnt=.false.) +! call s2elem(x) ! FIXME: Segfault +! call s2elem(y) ! FIXME: Segfault +! call s2elem(z) ! FIXME: Segfault +! call s2elem(z2) ! FIXME: Segfault +! call s2elem(z3) ! FIXME: Segfault +! call s2elem(z4) ! FIXME: Segfault +! call s2elem(z5) ! FIXME: Segfault + call s2elem_t2(x) + call s2elem_t2(y) + call s2elem_t2(z) +! call s2elem_t2(z2) ! FIXME: Segfault +! call s2elem_t2(z3) ! FIXME: Segfault +! call s2elem_t2(z4) ! FIXME: Segfault +! call s2elem_t2(z5) ! FIXME: Segfault + end subroutine a1a + subroutine a1ac1(z, z2, z3, z4, z5) + class(t), optional :: z(:), z4(:)[*] + class(t), optional, pointer :: z2(:) + class(t), optional, allocatable :: z3(:), z5(:)[:] + class(t), allocatable :: x(:) + class(t), pointer :: y(:) + y => null() + call a2(x) + call a2(y) + call a2(z) + call a2(z2) + call a2(z3) + call a2(z4) + call a2(z5) + call a2p(y,psnt=.true.) + call a2p(z2,psnt=.false.) + call a2caf(z4) + call a2caf(z5) + call ar(x) + call ar(y) + call ar(z) + call ar(z2) + call ar(z3) + call ar(z4) + call ar(z5) + call arp(y,psnt=.true.) + call arp(z2,psnt=.false.) +! call s2elem(x) ! FIXME: Segfault +! call s2elem(y) ! FIXME: Segfault +! call s2elem(z) ! FIXME: Segfault +! call s2elem(z2) ! FIXME: Segfault +! call s2elem(z3) ! FIXME: Segfault +! call s2elem(z4) ! FIXME: Segfault +! call s2elem(z5) ! FIXME: Segfault +! call s2elem_t(x) ! FIXME: Segfault +! call s2elem_t(y) ! FIXME: Segfault +! call s2elem_t(z) ! FIXME: Segfault +! call s2elem_t(z2) ! FIXME: Segfault +! call s2elem_t(z3) ! FIXME: Segfault +! call s2elem_t(z4) ! FIXME: Segfault +! call s2elem_t(z5) ! FIXME: Segfault + end subroutine a1ac1 + subroutine a1ac(z, z2, z3, z4, z5) + class(t2), optional :: z(:), z4(:)[*] + class(t2), optional, pointer :: z2(:) + class(t2), optional, allocatable :: z3(:), z5(:)[:] + class(t2), allocatable :: x(:) + class(t2), pointer :: y(:) + y => null() + call a2(x) + call a2(y) + call a2(z) + call a2(z2) + call a2(z3) + call a2(z4) + call a2(z5) + call a2p(y,psnt=.true.) + call a2p(z2,psnt=.false.) + call a2caf(z4) + call a2caf(z5) + call ar(x) + call ar(y) + call ar(z) + call ar(z2) + call ar(z3) + call ar(z4) + call ar(z5) + call arp(y,psnt=.true.) + call arp(z2,psnt=.false.) +! call s2elem(x) ! FIXME: Segfault +! call s2elem(y) ! FIXME: Segfault +! call s2elem(z) ! FIXME: Segfault +! call s2elem(z2) ! FIXME: Segfault +! call s2elem(z3) ! FIXME: Segfault +! call s2elem(z4) ! FIXME: Segfault +! call s2elem(z5) ! FIXME: Segfault +! call s2elem_t2(x) ! FIXME: Segfault +! call s2elem_t2(y) ! FIXME: Segfault +! call s2elem_t2(z) ! FIXME: Segfault +! call s2elem_t2(z2) ! FIXME: Segfault +! call s2elem_t2(z3) ! FIXME: Segfault +! call s2elem_t2(z4) ! FIXME: Segfault +! call s2elem_t2(z5) ! FIXME: Segfault + end subroutine a1ac + + subroutine a2(x) + class(t), intent(in), optional :: x(:) + if (present (x)) call abort () + ! print *, present(x) + end subroutine a2 + subroutine a2p(x, psnt) + class(t), pointer, intent(in), optional :: x(:) + logical psnt + if (present (x).neqv. psnt) call abort () + ! print *, present(x) + end subroutine a2p + subroutine a2caf(x) + class(t), intent(in), optional :: x(:)[*] + if (present (x)) call abort () + ! print *, present(x) + end subroutine a2caf + + + subroutine a3a1(z, z2, z3, z4, z5) + type(t), optional :: z(4), z4(4)[*] + type(t), optional, pointer :: z2(:) + type(t), optional, allocatable :: z3(:), z5(:)[:] + type(t), allocatable :: x(:) + type(t), pointer :: y(:) + y => null() + call a4(x) + call a4(y) + call a4(z) + call a4(z2) + call a4(z3) + call a4(z4) + call a4(z5) + call a4p(y,psnt=.true.) + call a4p(z2,psnt=.false.) + call a4t(x) + call a4t(y) + call a4t(z) +! call a4t(z2) ! FIXME: Segfault +! call a4t(z3) ! FIXME: Segfault +! call a4t(z4) ! FIXME: Segfault +! call a4t(z5) ! FIXME: Segfault + call a4tp(y,psnt=.true.) + call a4tp(z2,psnt=.false.) + call a4caf(z4) + call a4caf(z5) + call ar(x) + call ar(y) + call ar(z) + call ar(z2) + call ar(z3) + call ar(z4) + call ar(z5) + call arp(y,psnt=.true.) + call arp(z2,psnt=.false.) +! call s2elem(x) ! FIXME: Segfault +! call s2elem(y) ! FIXME: Segfault +! call s2elem(z) ! FIXME: Segfault +! call s2elem(z2) ! FIXME: Segfault +! call s2elem(z3) ! FIXME: Segfault +! call s2elem(z4) ! FIXME: Segfault +! call s2elem(z5) ! FIXME: Segfault + call s2elem_t(x) + call s2elem_t(y) + call s2elem_t(z) +! call s2elem_t(z2) ! FIXME: Segfault +! call s2elem_t(z3) ! FIXME: Segfault +! call s2elem_t(z4) ! FIXME: Segfault +! call s2elem_t(z5) ! FIXME: Segfault + end subroutine a3a1 + subroutine a3a(z, z2, z3) + type(t2), optional :: z(4) + type(t2), optional, pointer :: z2(:) + type(t2), optional, allocatable :: z3(:) + type(t2), allocatable :: x(:) + type(t2), pointer :: y(:) + y => null() + call a4(x) + call a4(y) + call a4(z) + call a4(z2) + call a4(z3) + call a4p(y,psnt=.true.) + call a4p(z2,psnt=.false.) + call a4t2(x) + call a4t2(y) + call a4t2(z) +! call a4t2(z2) ! FIXME: Segfault +! call a4t2(z3) ! FIXME: Segfault + call a4t2p(y,psnt=.true.) + call a4t2p(z2,psnt=.false.) + call ar(x) + call ar(y) + call ar(z) + call ar(z2) + call ar(z3) + call arp(y,psnt=.true.) + call arp(z2,psnt=.false.) +! call s2elem(x) ! FIXME: Segfault +! call s2elem(y) ! FIXME: Segfault +! call s2elem(z) ! FIXME: Segfault +! call s2elem(z2) ! FIXME: Segfault +! call s2elem(z3) ! FIXME: Segfault +! call s2elem(z4) ! FIXME: Segfault +! call s2elem(z5) ! FIXME: Segfault + call s2elem_t2(x) + call s2elem_t2(y) + call s2elem_t2(z) +! call s2elem_t2(z2) ! FIXME: Segfault +! call s2elem_t2(z3) ! FIXME: Segfault +! call s2elem_t2(z4) ! FIXME: Segfault +! call s2elem_t2(z5) ! FIXME: Segfault + end subroutine a3a + subroutine a3ac1(z, z2, z3, z4, z5) + class(t), optional :: z(4), z4(4)[*] + class(t), optional, pointer :: z2(:) + class(t), optional, allocatable :: z3(:), z5(:)[:] + class(t), allocatable :: x(:) + class(t), pointer :: y(:) + y => null() + call a4(x) + call a4(y) + call a4(z) + call a4(z2) + call a4(z3) + call a4(z4) + call a4(z5) + call a4p(y,psnt=.true.) + call a4p(z2,psnt=.false.) +! call a4t(x) ! FIXME: Segfault +! call a4t(y) ! FIXME: Segfault +! call a4t(z) ! FIXME: Segfault +! call a4t(z2) ! FIXME: Segfault +! call a4t(z3) ! FIXME: Segfault +! call a4t(z4) ! FIXME: Segfault +! call a4t(z5) ! FIXME: Segfault +! call a4tp(y,psnt=.true.) ! FIXME: Segfault +! call a4tp(z2,psnt=.false.) ! FIXME: Segfault + call a4caf(z4) + call a4caf(z5) + call ar(x) + call ar(y) + call ar(z) + call ar(z2) + call ar(z3) + call ar(z4) + call ar(z5) + call arp(y,psnt=.true.) + call arp(z2,psnt=.false.) + call s2elem(x) + call s2elem(y) +! call s2elem(z) ! FIXME: Segfault +! call s2elem(z2) ! FIXME: Segfault +! call s2elem(z3) ! FIXME: Segfault +! call s2elem(z4) ! FIXME: Segfault +! call s2elem(z5) ! FIXME: Segfault + call s2elem_t(x) + call s2elem_t(y) +! call s2elem_t(z) ! FIXME: Segfault +! call s2elem_t(z2) ! FIXME: Segfault +! call s2elem_t(z3) ! FIXME: Segfault +! call s2elem_t(z4) ! FIXME: Segfault +! call s2elem_t(z5) ! FIXME: Segfault + end subroutine a3ac1 + subroutine a3ac(z, z2, z3, z4, z5) + class(t2), optional :: z(4), z4(4)[*] + class(t2), optional, pointer :: z2(:) + class(t2), optional, allocatable :: z3(:), z5(:)[:] + class(t2), allocatable :: x(:) + class(t2), pointer :: y(:) + y => null() + call a4(x) + call a4(y) + call a4(z) + call a4(z2) + call a4(z3) + call a4(z4) + call a4(z5) + call a4p(y,psnt=.true.) + call a4p(z2,psnt=.false.) +! call a4t2(x) ! FIXME: Segfault +! call a4t2(y) ! FIXME: Segfault +! call a4t2(z) ! FIXME: Segfault +! call a4t2(z2) ! FIXME: Segfault +! call a4t2(z3) ! FIXME: Segfault +! call a4t2(z4) ! FIXME: Segfault +! call a4t2(z5) ! FIXME: Segfault +! call a4t2p(y,psnt=.true.) ! FIXME: Segfault +! call a4t2p(z2,psnt=.false.) ! FIXME: Segfault + call a4caf(z4) + call a4caf(z5) + call ar(x) + call ar(y) + call ar(z) + call ar(z2) + call ar(z3) + call ar(z4) + call ar(z5) + call arp(y,psnt=.true.) + call arp(z2,psnt=.false.) + end subroutine a3ac + + subroutine a4(x) + class(t), intent(in), optional :: x(4) + if (present (x)) call abort () + !print *, present(x) + end subroutine a4 + subroutine a4p(x, psnt) + class(t), pointer, intent(in), optional :: x(:) + logical psnt + if (present (x).neqv. psnt) call abort () + !print *, present(x) + end subroutine a4p + subroutine a4caf(x) + class(t), intent(in), optional :: x(4)[*] + if (present (x)) call abort () + !print *, present(x) + end subroutine a4caf + subroutine a4t(x) + type(t), intent(in), optional :: x(4) + if (present (x)) call abort () + !print *, present(x) + end subroutine a4t + subroutine a4t2(x) + type(t2), intent(in), optional :: x(4) + if (present (x)) call abort () + !print *, present(x) + end subroutine a4t2 + subroutine a4tp(x, psnt) + type(t), pointer, intent(in), optional :: x(:) + logical psnt + if (present (x).neqv. psnt) call abort () + !print *, present(x) + end subroutine a4tp + subroutine a4t2p(x, psnt) + type(t2), pointer, intent(in), optional :: x(:) + logical psnt + if (present (x).neqv. psnt) call abort () + !print *, present(x) + end subroutine a4t2p + + + subroutine ar(x) + class(t), intent(in), optional :: x(..) + if (present (x)) call abort () + !print *, present(x) + end subroutine ar + + subroutine art(x) + type(t), intent(in), optional :: x(..) + if (present (x)) call abort () + !print *, present(x) + end subroutine art + + subroutine arp(x, psnt) + class(t), pointer, intent(in), optional :: x(..) + logical psnt + if (present (x).neqv. psnt) call abort () + !print *, present(x) + end subroutine arp + + subroutine artp(x, psnt) + type(t), intent(in), pointer, optional :: x(..) + logical psnt + if (present (x).neqv. psnt) call abort () + !print *, present(x) + end subroutine artp + + + + subroutine ar1a1(z, z2, z3) + type(t), optional :: z(..) + type(t), pointer, optional :: z2(..) + type(t), allocatable, optional :: z3(..) + call ar(z) + call ar(z2) + call ar(z3) + call art(z) + call art(z2) + call art(z3) + call arp(z2, .false.) + call artp(z2, .false.) + end subroutine ar1a1 + subroutine ar1a(z, z2, z3) + type(t2), optional :: z(..) + type(t2), optional, pointer :: z2(..) + type(t2), optional, allocatable :: z3(..) + call ar(z) + call ar(z2) + call ar(z3) + call arp(z2, .false.) + end subroutine ar1a + subroutine ar1ac1(z, z2, z3) + class(t), optional :: z(..) + class(t), optional, pointer :: z2(..) + class(t), optional, allocatable :: z3(..) + call ar(z) + call ar(z2) + call ar(z3) +! call art(z) ! FIXME: ICE - This requires packing support for assumed-rank +! call art(z2)! FIXME: ICE - This requires packing support for assumed-rank +! call art(z3)! FIXME: ICE - This requires packing support for assumed-rank + call arp(z2, .false.) +! call artp(z2, .false.) ! FIXME: ICE + end subroutine ar1ac1 + subroutine ar1ac(z, z2, z3) + class(t2), optional :: z(..) + class(t2), optional, pointer :: z2(..) + class(t2), optional, allocatable :: z3(..) + call ar(z) + call ar(z2) + call ar(z3) + call arp(z2, .false.) + end subroutine ar1ac +end