Patchwork [26/29] i2400m/SDIO: TX and RX path backends

login
register
mail settings
Submitter Inaky Perez-Gonzalez
Date Dec. 21, 2008, 12:57 a.m.
Message ID <a6f9b48c9c5e41549f314205bb023f84fca8633e.1229820957.git.inaky@linux.intel.com>
Download mbox | patch
Permalink /patch/15117/
State Not Applicable
Delegated to: David Miller
Headers show

Comments

Inaky Perez-Gonzalez - Dec. 21, 2008, 12:57 a.m.
Implements the backend so that the generic driver can TX/RX to/from
the SDIO device.

For RX, when data is ready the SDIO IRQ is fired and that will
allocate an skb, put all the data there and then pass it to the
generic driver RX code for processing and delivery.

TX, when kicked by the generic driver, will schedule work on a
driver-specific workqueue that pulls data from the TX FIFO and sends
it to the device until it drains it.

Thread contexts are needed as SDIO functions are blocking.

Signed-off-by: Inaky Perez-Gonzalez <inaky@linux.intel.com>
---
 drivers/net/wimax/i2400m/sdio-rx.c |  255 ++++++++++++++++++++++++++++++++++++
 drivers/net/wimax/i2400m/sdio-tx.c |  153 +++++++++++++++++++++
 2 files changed, 408 insertions(+), 0 deletions(-)
 create mode 100644 drivers/net/wimax/i2400m/sdio-rx.c
 create mode 100644 drivers/net/wimax/i2400m/sdio-tx.c

Patch

diff --git a/drivers/net/wimax/i2400m/sdio-rx.c b/drivers/net/wimax/i2400m/sdio-rx.c
new file mode 100644
index 0000000..a3008b9
--- /dev/null
+++ b/drivers/net/wimax/i2400m/sdio-rx.c
@@ -0,0 +1,255 @@ 
+/*
+ * Intel Wireless WiMAX Connection 2400m
+ * SDIO RX handling
+ *
+ *
+ * Copyright (C) 2007-2008 Intel Corporation. All rights reserved.
+ *
+ * Redistribution and use in source and binary forms, with or without
+ * modification, are permitted provided that the following conditions
+ * are met:
+ *
+ *   * Redistributions of source code must retain the above copyright
+ *     notice, this list of conditions and the following disclaimer.
+ *   * Redistributions in binary form must reproduce the above copyright
+ *     notice, this list of conditions and the following disclaimer in
+ *     the documentation and/or other materials provided with the
+ *     distribution.
+ *   * Neither the name of Intel Corporation nor the names of its
+ *     contributors may be used to endorse or promote products derived
+ *     from this software without specific prior written permission.
+ *
+ * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
+ * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
+ * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
+ * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
+ * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
+ * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
+ * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
+ * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
+ * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
+ * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
+ * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+ *
+ *
+ * Intel Corporation <linux-wimax@intel.com>
+ * Dirk Brandewie <dirk.j.brandewie@intel.com>
+ *  - Initial implementation
+ *
+ *
+ * This handles the RX path on SDIO.
+ *
+ * The SDIO bus driver calls the "irq" routine when data is available.
+ * This is not a traditional interrupt routine since the SDIO bus
+ * driver calls us from its irq thread context.  Because of this
+ * sleeping in the SDIO RX IRQ routine is okay.
+ *
+ * From there on, we obtain the size of the data that is available,
+ * allocate an skb, copy it and then pass it to the generic driver's
+ * RX routine [i2400m_rx()].
+ *
+ * ROADMAP
+ *
+ * i2400ms_irq()
+ *   i2400ms_rx()
+ *     __i2400ms_rx_get_size()
+ *     i2400m_rx()
+ *
+ * i2400ms_rx_setup()
+ *
+ * i2400ms_rx_release()
+ */
+#include <linux/workqueue.h>
+#include <linux/wait.h>
+#include <linux/skbuff.h>
+#include <linux/mmc/sdio.h>
+#include <linux/mmc/sdio_func.h>
+#include "i2400m-sdio.h"
+
+#define D_SUBMODULE rx
+#include "sdio-debug-levels.h"
+
+
+/*
+ * Read and return the amount of bytes available for RX
+ *
+ * The RX size has to be read like this: byte reads of three
+ * sequential locations; then glue'em together.
+ *
+ * sdio_readl() doesn't work.
+ */
+ssize_t __i2400ms_rx_get_size(struct i2400ms *i2400ms)
+{
+	int ret, cnt, val;
+	ssize_t rx_size;
+	unsigned xfer_size_addr;
+	struct sdio_func *func = i2400ms->func;
+	struct device *dev = &i2400ms->func->dev;
+
+	d_fnstart(7, dev, "(i2400ms %p)\n", i2400ms);
+	xfer_size_addr = I2400MS_INTR_GET_SIZE_ADDR;
+	rx_size = 0;
+	for (cnt = 0; cnt < 3; cnt++) {
+		val = sdio_readb(func, xfer_size_addr + cnt, &ret);
+		if (ret < 0) {
+			dev_err(dev, "RX: Can't read byte %d of RX size from "
+				"0x%08x: %d\n", cnt, xfer_size_addr + cnt, ret);
+			rx_size = ret;
+			goto error_read;
+		}
+		rx_size = rx_size << 8 | (val & 0xff);
+	}
+	d_printf(6, dev, "RX: rx_size is %ld\n", (long) rx_size);
+error_read:
+	d_fnend(7, dev, "(i2400ms %p) = %ld\n", i2400ms, (long) rx_size);
+	return rx_size;
+}
+
+
+/*
+ * Read data from the device (when in normal)
+ *
+ * Allocate an SKB of the right size, read the data in and then
+ * deliver it to the generic layer.
+ *
+ * We also check for a reboot barker. That means the device died and
+ * we have to reboot it.
+ */
+static
+void i2400ms_rx(struct i2400ms *i2400ms)
+{
+	int ret;
+	struct sdio_func *func = i2400ms->func;
+	struct device *dev = &func->dev;
+	struct i2400m *i2400m = &i2400ms->i2400m;
+	struct sk_buff *skb;
+	ssize_t rx_size;
+
+	d_fnstart(7, dev, "(i2400ms %p)\n", i2400ms);
+	rx_size = __i2400ms_rx_get_size(i2400ms);
+	if (rx_size < 0) {
+		ret = rx_size;
+		goto error_get_size;
+	}
+	ret = -ENOMEM;
+	skb = alloc_skb(rx_size, GFP_ATOMIC);
+	if (NULL == skb) {
+		dev_err(dev, "RX: unable to alloc skb\n");
+		goto error_alloc_skb;
+	}
+
+	ret = sdio_memcpy_fromio(func, skb->data,
+				 I2400MS_DATA_ADDR, rx_size);
+	if (ret < 0) {
+		dev_err(dev, "RX: SDIO data read failed: %d\n", ret);
+		goto error_memcpy_fromio;
+	}
+	/* Check if device has reset */
+	if (!memcmp(skb->data, i2400m_NBOOT_BARKER,
+		    sizeof(i2400m_NBOOT_BARKER))
+	    || !memcmp(skb->data, i2400m_SBOOT_BARKER,
+		       sizeof(i2400m_SBOOT_BARKER))) {
+		ret = i2400m_dev_reset_handle(i2400m);
+		kfree_skb(skb);
+	} else {
+		skb_put(skb, rx_size);
+		i2400m_rx(i2400m, skb);
+	}
+	d_fnend(7, dev, "(i2400ms %p) = void\n", i2400ms);
+	return;
+
+error_memcpy_fromio:
+	kfree_skb(skb);
+error_alloc_skb:
+error_get_size:
+	d_fnend(7, dev, "(i2400ms %p) = %d\n", i2400ms, ret);
+	return;
+}
+
+
+/*
+ * Process an interrupt from the SDIO card
+ *
+ * FIXME: need to process other events that are not just ready-to-read
+ *
+ * Checks there is data ready and then proceeds to read it.
+ */
+static
+void i2400ms_irq(struct sdio_func *func)
+{
+	int ret;
+	struct i2400ms *i2400ms = sdio_get_drvdata(func);
+	struct i2400m *i2400m = &i2400ms->i2400m;
+	struct device *dev = &func->dev;
+	int val;
+
+	d_fnstart(6, dev, "(i2400ms %p)\n", i2400ms);
+	val = sdio_readb(func, I2400MS_INTR_STATUS_ADDR, &ret);
+	if (ret < 0) {
+		dev_err(dev, "RX: Can't read interrupt status: %d\n", ret);
+		goto error_no_irq;
+	}
+	if (!val) {
+		dev_err(dev, "RX: BUG? got IRQ but no interrupt ready?\n");
+		goto error_no_irq;
+	}
+	sdio_writeb(func, 1, I2400MS_INTR_CLEAR_ADDR, &ret);
+	if (WARN_ON(i2400m->boot_mode != 0))
+		dev_err(dev, "RX: SW BUG? boot mode and IRQ is up?\n");
+	else
+		i2400ms_rx(i2400ms);
+error_no_irq:
+	d_fnend(6, dev, "(i2400ms %p) = void\n", i2400ms);
+	return;
+}
+
+
+/*
+ * Setup SDIO RX
+ *
+ * Hooks up the IRQ handler and then enables IRQs.
+ */
+int i2400ms_rx_setup(struct i2400ms *i2400ms)
+{
+	int result;
+	struct sdio_func *func = i2400ms->func;
+	struct device *dev = &func->dev;
+
+	d_fnstart(5, dev, "(i2400ms %p)\n", i2400ms);
+	sdio_claim_host(func);
+	result = sdio_claim_irq(func, i2400ms_irq);
+	if (result < 0) {
+		dev_err(dev, "Cannot claim IRQ: %d\n", result);
+		goto error_irq_claim;
+	}
+	result = 0;
+	sdio_writeb(func, 1, I2400MS_INTR_ENABLE_ADDR, &result);
+	if (result < 0) {
+		sdio_release_irq(func);
+		dev_err(dev, "Failed to enable interrupts %d\n", result);
+	}
+error_irq_claim:
+	sdio_release_host(func);
+	d_fnend(5, dev, "(i2400ms %p) = %d\n", i2400ms, result);
+	return result;
+}
+
+
+/*
+ * Tear down SDIO RX
+ *
+ * Disables IRQs in the device and removes the IRQ handler.
+ */
+void i2400ms_rx_release(struct i2400ms *i2400ms)
+{
+	int result;
+	struct sdio_func *func = i2400ms->func;
+	struct device *dev = &func->dev;
+
+	d_fnstart(5, dev, "(i2400ms %p)\n", i2400ms);
+	sdio_claim_host(func);
+	sdio_writeb(func, 0, I2400MS_INTR_ENABLE_ADDR, &result);
+	sdio_release_irq(func);
+	sdio_release_host(func);
+	d_fnend(5, dev, "(i2400ms %p) = %d\n", i2400ms, result);
+}
diff --git a/drivers/net/wimax/i2400m/sdio-tx.c b/drivers/net/wimax/i2400m/sdio-tx.c
new file mode 100644
index 0000000..5105a5e
--- /dev/null
+++ b/drivers/net/wimax/i2400m/sdio-tx.c
@@ -0,0 +1,153 @@ 
+/*
+ * Intel Wireless WiMAX Connection 2400m
+ * SDIO TX transaction backends
+ *
+ *
+ * Copyright (C) 2007-2008 Intel Corporation. All rights reserved.
+ *
+ * Redistribution and use in source and binary forms, with or without
+ * modification, are permitted provided that the following conditions
+ * are met:
+ *
+ *   * Redistributions of source code must retain the above copyright
+ *     notice, this list of conditions and the following disclaimer.
+ *   * Redistributions in binary form must reproduce the above copyright
+ *     notice, this list of conditions and the following disclaimer in
+ *     the documentation and/or other materials provided with the
+ *     distribution.
+ *   * Neither the name of Intel Corporation nor the names of its
+ *     contributors may be used to endorse or promote products derived
+ *     from this software without specific prior written permission.
+ *
+ * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
+ * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
+ * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
+ * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
+ * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
+ * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
+ * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
+ * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
+ * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
+ * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
+ * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+ *
+ *
+ * Intel Corporation <linux-wimax@intel.com>
+ * Dirk Brandewie <dirk.j.brandewie@intel.com>
+ *  - Initial implementation
+ *
+ *
+ * Takes the TX messages in the i2400m's driver TX FIFO and sends them
+ * to the device until there are no more.
+ *
+ * If we fail sending the message, we just drop it. There isn't much
+ * we can do at this point. Most of the traffic is network, which has
+ * recovery methods for dropped packets.
+ *
+ * The SDIO functions are not atomic, so we can't run from the context
+ * where i2400m->bus_tx_kick() [i2400ms_bus_tx_kick()] is being called
+ * (some times atomic). Thus, the actual TX work is deferred to a
+ * workqueue.
+ *
+ * ROADMAP
+ *
+ * i2400ms_bus_tx_kick()
+ *   i2400ms_tx_submit()     [through workqueue]
+ *
+ * i2400m_tx_setup()
+ *
+ * i2400m_tx_release()
+ */
+#include <linux/mmc/sdio_func.h>
+#include "i2400m-sdio.h"
+
+#define D_SUBMODULE tx
+#include "sdio-debug-levels.h"
+
+
+/*
+ * Pull TX transations from the TX FIFO and send them to the device
+ * until there are no more.
+ */
+static
+void i2400ms_tx_submit(struct work_struct *ws)
+{
+	int result;
+	struct i2400ms *i2400ms = container_of(ws, struct i2400ms, tx_worker);
+	struct i2400m *i2400m = &i2400ms->i2400m;
+	struct sdio_func *func = i2400ms->func;
+	struct device *dev = &func->dev;
+	struct i2400m_msg_hdr *tx_msg;
+	size_t tx_msg_size;
+
+	d_fnstart(4, dev, "(i2400ms %p, i2400m %p)\n", i2400ms, i2400ms);
+
+	while (NULL != (tx_msg = i2400m_tx_msg_get(i2400m, &tx_msg_size))) {
+		d_printf(2, dev, "TX: submitting %zu bytes\n", tx_msg_size);
+		d_dump(5, dev, tx_msg, tx_msg_size);
+
+		sdio_claim_host(func);
+		result = sdio_memcpy_toio(func, 0, tx_msg, tx_msg_size);
+		sdio_release_host(func);
+
+		i2400m_tx_msg_sent(i2400m);
+
+		if (result < 0) {
+			dev_err(dev, "TX: cannot submit TX; tx_msg @%zu %zu B:"
+				" %d\n", (void *) tx_msg - i2400m->tx_buf,
+				tx_msg_size, result);
+		}
+
+		d_printf(2, dev, "TX: %zub submitted\n", tx_msg_size);
+	}
+
+	d_fnend(4, dev, "(i2400ms %p) = void\n", i2400ms);
+}
+
+
+/*
+ * The generic driver notifies us that there is data ready for TX
+ *
+ * Schedule a run of i2400ms_tx_submit() to handle it.
+ */
+void i2400ms_bus_tx_kick(struct i2400m *i2400m)
+{
+	struct i2400ms *i2400ms = container_of(i2400m, struct i2400ms, i2400m);
+	struct device *dev = &i2400ms->func->dev;
+
+	d_fnstart(3, dev, "(i2400m %p) = void\n", i2400m);
+
+	/* schedule tx work, this is because tx may block, therefore
+	 * it has to run in a thread context.
+	 */
+	queue_work(i2400ms->tx_workqueue, &i2400ms->tx_worker);
+
+	d_fnend(3, dev, "(i2400m %p) = void\n", i2400m);
+}
+
+int i2400ms_tx_setup(struct i2400ms *i2400ms)
+{
+	int result;
+	struct device *dev = &i2400ms->func->dev;
+	struct i2400m *i2400m = &i2400ms->i2400m;
+
+	d_fnstart(5, dev, "(i2400ms %p)\n", i2400ms);
+
+	INIT_WORK(&i2400ms->tx_worker, i2400ms_tx_submit);
+	snprintf(i2400ms->tx_wq_name, sizeof(i2400ms->tx_wq_name),
+		 "%s-tx", i2400m->wimax_dev.name);
+	i2400ms->tx_workqueue =
+		create_singlethread_workqueue(i2400ms->tx_wq_name);
+	if (NULL == i2400ms->tx_workqueue) {
+		dev_err(dev, "TX: failed to create workqueue\n");
+		result = -ENOMEM;
+	} else
+		result = 0;
+	d_fnend(5, dev, "(i2400ms %p) = %d\n", i2400ms, result);
+	return result;
+}
+
+void i2400ms_tx_release(struct i2400ms *i2400ms)
+{
+	destroy_workqueue(i2400ms->tx_workqueue);
+}