Patchwork [v3] NAND Machine support for Integrated Flash Controller

login
register
mail settings
Submitter Prabhakar Kushwaha
Date Jan. 20, 2012, 12:52 p.m.
Message ID <1327063925-3580-1-git-send-email-prabhakar@freescale.com>
Download mbox | patch
Permalink /patch/137024/
State Superseded
Delegated to: Kumar Gala
Headers show

Comments

Prabhakar Kushwaha - Jan. 20, 2012, 12:52 p.m.
Integrated Flash Controller(IFC) can be used to hook NAND Flash
chips using NAND Flash Machine available on it.

Signed-off-by: Dipen Dudhat <Dipen.Dudhat@freescale.com>
Signed-off-by: Scott Wood <scottwood@freescale.com>
Signed-off-by: Li Yang <leoli@freescale.com>
Signed-off-by: Liu Shuo <b35362@freescale.com>
Signed-off-by: Poonam Aggrwal <poonam.aggrwal@freescale.com>
Signed-off-by: Prabhakar Kushwaha <prabhakar@freescale.com>
---
 Based upon git://git.kernel.org/pub/scm/linux/kernel/git/galak/powerpc.git (branch next)

 Tested on P1010RDB

 Changes for v2: Ported IFC driver for linux-3.2.0-rc3 
	- Use chip->bbt_options for BBT
	- Use mtd_device_parse_register instead of old parse_mtd_partitions

  Changes for v3: Squashed following patch to make singe NAND driver patch
	- mtd/nand:Fix wrong usage of is_blank() in fsl_ifc_run_command
		http://patchwork.ozlabs.org/patch/136547/
	- mtd/nand: Fix IFC driver to support 2K NAND page
		http://patchwork.ozlabs.org/patch/135010/

 drivers/mtd/nand/Kconfig        |   10 +
 drivers/mtd/nand/Makefile       |    1 +
 drivers/mtd/nand/fsl_ifc_nand.c | 1071 +++++++++++++++++++++++++++++++++++++++
 3 files changed, 1082 insertions(+), 0 deletions(-)
 create mode 100644 drivers/mtd/nand/fsl_ifc_nand.c
Prabhakar Kushwaha - March 1, 2012, 2:25 a.m.
Hi Kumar,

This patch is supposed to be pushed via powerpc.git repository to main-line.
Because of dependent patch in powerpc/mpc85xx: " powerpc/fsl: Add support for Integrated Flash Controller support"
And it is already picked by you.
	Commit ID: a20cbdeffce247a2b6fb83cd8d22433994068565

So, can you please pick this patch in powerpc.git for future main-line pull request as early as possible.
It will avoid future rebasing of this :)

Regards,
Prabhakar

> -----Original Message-----
> From: Kushwaha Prabhakar-B32579
> Sent: Friday, January 20, 2012 6:22 PM
> To: linuxppc-dev@lists.ozlabs.org; linux-mtd@lists.infradead.org
> Cc: Kushwaha Prabhakar-B32579; Dipen Dudhat; Wood Scott-B07421; Li Yang-
> R58472; Liu Shuo-B35362; Aggrwal Poonam-B10812
> Subject: [PATCH][v3] NAND Machine support for Integrated Flash Controller
> 
> Integrated Flash Controller(IFC) can be used to hook NAND Flash chips
> using NAND Flash Machine available on it.
> 
> Signed-off-by: Dipen Dudhat <Dipen.Dudhat@freescale.com>
> Signed-off-by: Scott Wood <scottwood@freescale.com>
> Signed-off-by: Li Yang <leoli@freescale.com>
> Signed-off-by: Liu Shuo <b35362@freescale.com>
> Signed-off-by: Poonam Aggrwal <poonam.aggrwal@freescale.com>
> Signed-off-by: Prabhakar Kushwaha <prabhakar@freescale.com>
> ---
>  Based upon
> git://git.kernel.org/pub/scm/linux/kernel/git/galak/powerpc.git (branch
> next)
> 
>  Tested on P1010RDB
> 
>  Changes for v2: Ported IFC driver for linux-3.2.0-rc3
> 	- Use chip->bbt_options for BBT
> 	- Use mtd_device_parse_register instead of old parse_mtd_partitions
> 
>   Changes for v3: Squashed following patch to make singe NAND driver
> patch
> 	- mtd/nand:Fix wrong usage of is_blank() in fsl_ifc_run_command
> 		http://patchwork.ozlabs.org/patch/136547/
> 	- mtd/nand: Fix IFC driver to support 2K NAND page
> 		http://patchwork.ozlabs.org/patch/135010/
>

Patch

diff --git a/drivers/mtd/nand/Kconfig b/drivers/mtd/nand/Kconfig
index cce7b70..2fff5c7 100644
--- a/drivers/mtd/nand/Kconfig
+++ b/drivers/mtd/nand/Kconfig
@@ -463,6 +463,16 @@  config MTD_NAND_FSL_ELBC
 	  Enabling this option will enable you to use this to control
 	  external NAND devices.
 
+config MTD_NAND_FSL_IFC
+	tristate "NAND support for Freescale IFC controller"
+	depends on MTD_NAND && FSL_SOC
+	select FSL_IFC
+	help
+	  Various Freescale chips e.g P1010, include a NAND Flash machine
+	  with built-in hardware ECC capabilities.
+	  Enabling this option will enable you to use this to control
+	  external NAND devices.
+
 config MTD_NAND_FSL_UPM
 	tristate "Support for NAND on Freescale UPM"
 	depends on PPC_83xx || PPC_85xx
diff --git a/drivers/mtd/nand/Makefile b/drivers/mtd/nand/Makefile
index 618f4ba..19bc8cb 100644
--- a/drivers/mtd/nand/Makefile
+++ b/drivers/mtd/nand/Makefile
@@ -37,6 +37,7 @@  obj-$(CONFIG_MTD_ALAUDA)		+= alauda.o
 obj-$(CONFIG_MTD_NAND_PASEMI)		+= pasemi_nand.o
 obj-$(CONFIG_MTD_NAND_ORION)		+= orion_nand.o
 obj-$(CONFIG_MTD_NAND_FSL_ELBC)		+= fsl_elbc_nand.o
+obj-$(CONFIG_MTD_NAND_FSL_IFC)		+= fsl_ifc_nand.o
 obj-$(CONFIG_MTD_NAND_FSL_UPM)		+= fsl_upm.o
 obj-$(CONFIG_MTD_NAND_SH_FLCTL)		+= sh_flctl.o
 obj-$(CONFIG_MTD_NAND_MXC)		+= mxc_nand.o
diff --git a/drivers/mtd/nand/fsl_ifc_nand.c b/drivers/mtd/nand/fsl_ifc_nand.c
new file mode 100644
index 0000000..33b55d2
--- /dev/null
+++ b/drivers/mtd/nand/fsl_ifc_nand.c
@@ -0,0 +1,1071 @@ 
+/*
+ * Freescale Integrated Flash Controller NAND driver
+ *
+ * Copyright 2011,2012 Freescale Semiconductor, Inc
+ *
+ * Author: Dipen Dudhat <Dipen.Dudhat@freescale.com>
+ *
+ * This program is free software; you can redistribute it and/or modify
+ * it under the terms of the GNU General Public License as published by
+ * the Free Software Foundation; either version 2 of the License, or
+ * (at your option) any later version.
+ *
+ * This program is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
+ * GNU General Public License for more details.
+ *
+ * You should have received a copy of the GNU General Public License
+ * along with this program; if not, write to the Free Software
+ * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
+ */
+
+#include <linux/module.h>
+#include <linux/types.h>
+#include <linux/init.h>
+#include <linux/kernel.h>
+#include <linux/slab.h>
+#include <linux/mtd/mtd.h>
+#include <linux/mtd/nand.h>
+#include <linux/mtd/partitions.h>
+#include <linux/mtd/nand_ecc.h>
+#include <asm/fsl_ifc.h>
+
+#define ERR_BYTE		0xFF /* Value returned for read
+					bytes when read failed	*/
+#define IFC_TIMEOUT_MSECS	500  /* Maximum number of mSecs to wait
+					for IFC NAND Machine	*/
+
+struct fsl_ifc_ctrl;
+
+/* mtd information per set */
+struct fsl_ifc_mtd {
+	struct mtd_info mtd;
+	struct nand_chip chip;
+	struct fsl_ifc_ctrl *ctrl;
+
+	struct device *dev;
+	int bank;		/* Chip select bank number		*/
+	unsigned int bufnum_mask; /* bufnum = page & bufnum_mask */
+	u8 __iomem *vbase;      /* Chip select base virtual address	*/
+};
+
+/* overview of the fsl ifc controller */
+struct fsl_ifc_nand_ctrl {
+	struct nand_hw_control controller;
+	struct fsl_ifc_mtd *chips[FSL_IFC_BANK_COUNT];
+
+	u8 __iomem *addr;	/* Address of assigned IFC buffer	*/
+	unsigned int page;	/* Last page written to / read from	*/
+	unsigned int read_bytes;/* Number of bytes read during command	*/
+	unsigned int column;	/* Saved column from SEQIN		*/
+	unsigned int index;	/* Pointer to next byte to 'read'	*/
+	unsigned int oob;	/* Non zero if operating on OOB data	*/
+	unsigned int eccread;	/* Non zero for a full-page ECC read	*/
+	unsigned int counter;	/* counter for the initializations	*/
+};
+
+static struct fsl_ifc_nand_ctrl *ifc_nand_ctrl;
+
+/* 512-byte page with 4-bit ECC, 8-bit */
+static struct nand_ecclayout oob_512_8bit_ecc4 = {
+	.eccbytes = 8,
+	.eccpos = {8, 9, 10, 11, 12, 13, 14, 15},
+	.oobfree = { {0, 5}, {6, 2} },
+};
+
+/* 512-byte page with 4-bit ECC, 16-bit */
+static struct nand_ecclayout oob_512_16bit_ecc4 = {
+	.eccbytes = 8,
+	.eccpos = {8, 9, 10, 11, 12, 13, 14, 15},
+	.oobfree = { {2, 6}, },
+};
+
+/* 2048-byte page size with 4-bit ECC */
+static struct nand_ecclayout oob_2048_ecc4 = {
+	.eccbytes = 32,
+	.eccpos = {
+		8, 9, 10, 11, 12, 13, 14, 15,
+		16, 17, 18, 19, 20, 21, 22, 23,
+		24, 25, 26, 27, 28, 29, 30, 31,
+		32, 33, 34, 35, 36, 37, 38, 39,
+	},
+	.oobfree = { {2, 6}, {40, 24} },
+};
+
+/* 4096-byte page size with 4-bit ECC */
+static struct nand_ecclayout oob_4096_ecc4 = {
+	.eccbytes = 64,
+	.eccpos = {
+		8, 9, 10, 11, 12, 13, 14, 15,
+		16, 17, 18, 19, 20, 21, 22, 23,
+		24, 25, 26, 27, 28, 29, 30, 31,
+		32, 33, 34, 35, 36, 37, 38, 39,
+		40, 41, 42, 43, 44, 45, 46, 47,
+		48, 49, 50, 51, 52, 53, 54, 55,
+		56, 57, 58, 59, 60, 61, 62, 63,
+		64, 65, 66, 67, 68, 69, 70, 71,
+	},
+	.oobfree = { {2, 6}, {72, 56} },
+};
+
+/* 4096-byte page size with 8-bit ECC -- requires 218-byte OOB */
+static struct nand_ecclayout oob_4096_ecc8 = {
+	.eccbytes = 128,
+	.eccpos = {
+		8, 9, 10, 11, 12, 13, 14, 15,
+		16, 17, 18, 19, 20, 21, 22, 23,
+		24, 25, 26, 27, 28, 29, 30, 31,
+		32, 33, 34, 35, 36, 37, 38, 39,
+		40, 41, 42, 43, 44, 45, 46, 47,
+		48, 49, 50, 51, 52, 53, 54, 55,
+		56, 57, 58, 59, 60, 61, 62, 63,
+		64, 65, 66, 67, 68, 69, 70, 71,
+		72, 73, 74, 75, 76, 77, 78, 79,
+		80, 81, 82, 83, 84, 85, 86, 87,
+		88, 89, 90, 91, 92, 93, 94, 95,
+		96, 97, 98, 99, 100, 101, 102, 103,
+		104, 105, 106, 107, 108, 109, 110, 111,
+		112, 113, 114, 115, 116, 117, 118, 119,
+		120, 121, 122, 123, 124, 125, 126, 127,
+		128, 129, 130, 131, 132, 133, 134, 135,
+	},
+	.oobfree = { {2, 6}, {136, 82} },
+};
+
+
+/*
+ * Generic flash bbt descriptors
+ */
+static u8 bbt_pattern[] = {'B', 'b', 't', '0' };
+static u8 mirror_pattern[] = {'1', 't', 'b', 'B' };
+
+static struct nand_bbt_descr bbt_main_descr = {
+	.options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE |
+		   NAND_BBT_2BIT | NAND_BBT_VERSION,
+	.offs =	2, /* 0 on 8-bit small page */
+	.len = 4,
+	.veroffs = 6,
+	.maxblocks = 4,
+	.pattern = bbt_pattern,
+};
+
+static struct nand_bbt_descr bbt_mirror_descr = {
+	.options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE |
+		   NAND_BBT_2BIT | NAND_BBT_VERSION,
+	.offs =	2, /* 0 on 8-bit small page */
+	.len = 4,
+	.veroffs = 6,
+	.maxblocks = 4,
+	.pattern = mirror_pattern,
+};
+
+/*
+ * Set up the IFC hardware block and page address fields, and the ifc nand
+ * structure addr field to point to the correct IFC buffer in memory
+ */
+static void set_addr(struct mtd_info *mtd, int column, int page_addr, int oob)
+{
+	struct nand_chip *chip = mtd->priv;
+	struct fsl_ifc_mtd *priv = chip->priv;
+	struct fsl_ifc_ctrl *ctrl = priv->ctrl;
+	struct fsl_ifc_regs __iomem *ifc = ctrl->regs;
+	int buf_num;
+
+	ifc_nand_ctrl->page = page_addr;
+	/* Program ROW0/COL0 */
+	out_be32(&ifc->ifc_nand.row0, page_addr);
+	out_be32(&ifc->ifc_nand.col0, (oob ? IFC_NAND_COL_MS : 0) | column);
+
+	buf_num = page_addr & priv->bufnum_mask;
+
+	ifc_nand_ctrl->addr = priv->vbase + buf_num * (mtd->writesize * 2);
+	ifc_nand_ctrl->index = column;
+
+	/* for OOB data point to the second half of the buffer */
+	if (oob)
+		ifc_nand_ctrl->index += mtd->writesize;
+}
+
+static int is_blank(struct mtd_info *mtd, unsigned int bufnum)
+{
+	struct nand_chip *chip = mtd->priv;
+	struct fsl_ifc_mtd *priv = chip->priv;
+	u8 __iomem *addr = priv->vbase + bufnum * (mtd->writesize * 2);
+	u32 __iomem *mainarea = (u32 *)addr;
+	u8 __iomem *oob = addr + mtd->writesize;
+	int i;
+
+	for (i = 0; i < mtd->writesize / 4; i++) {
+		if (__raw_readl(&mainarea[i]) != 0xffffffff)
+			return 0;
+	}
+
+	for (i = 0; i < chip->ecc.layout->eccbytes; i++) {
+		int pos = chip->ecc.layout->eccpos[i];
+
+		if (__raw_readb(&oob[pos]) != 0xff)
+			return 0;
+	}
+
+	return 1;
+}
+
+/* returns nonzero if entire page is blank */
+static int check_read_ecc(struct mtd_info *mtd, struct fsl_ifc_ctrl *ctrl,
+			  u32 *eccstat, unsigned int bufnum)
+{
+	u32 reg = eccstat[bufnum / 4];
+	int errors;
+
+	errors = (reg >> ((3 - bufnum % 4) * 8)) & 15;
+
+	return errors;
+}
+
+/*
+ * execute IFC NAND command and wait for it to complete
+ */
+static void fsl_ifc_run_command(struct mtd_info *mtd)
+{
+	struct nand_chip *chip = mtd->priv;
+	struct fsl_ifc_mtd *priv = chip->priv;
+	struct fsl_ifc_ctrl *ctrl = priv->ctrl;
+	struct fsl_ifc_nand_ctrl *nctrl = ifc_nand_ctrl;
+	struct fsl_ifc_regs __iomem *ifc = ctrl->regs;
+	u32 eccstat[4];
+	int i;
+
+	/* set the chip select for NAND Transaction */
+	out_be32(&ifc->ifc_nand.nand_csel, priv->bank << IFC_NAND_CSEL_SHIFT);
+
+	dev_vdbg(priv->dev,
+			"%s: fir0=%08x fcr0=%08x\n",
+			__func__,
+			in_be32(&ifc->ifc_nand.nand_fir0),
+			in_be32(&ifc->ifc_nand.nand_fcr0));
+
+	ctrl->nand_stat = 0;
+
+	/* start read/write seq */
+	out_be32(&ifc->ifc_nand.nandseq_strt, IFC_NAND_SEQ_STRT_FIR_STRT);
+
+	/* wait for command complete flag or timeout */
+	wait_event_timeout(ctrl->nand_wait, ctrl->nand_stat,
+			   IFC_TIMEOUT_MSECS * HZ/1000);
+
+	if (ctrl->nand_stat & IFC_NAND_EVTER_STAT_FTOER)
+		dev_err(priv->dev, "NAND Flash Timeout Error\n");
+	if (ctrl->nand_stat & IFC_NAND_EVTER_STAT_WPER)
+		dev_err(priv->dev, "NAND Flash Write Protect Error\n");
+
+	if (nctrl->eccread) {
+		int errors;
+		int bufnum = nctrl->page & priv->bufnum_mask;
+		int sector = bufnum * chip->ecc.steps;
+		int sector_end = sector + chip->ecc.steps - 1;
+
+		for (i = sector / 4; i <= sector_end / 4; i++)
+			eccstat[i] = in_be32(&ifc->ifc_nand.nand_eccstat[i]);
+
+		for (i = sector; i <= sector_end; i++) {
+			errors = check_read_ecc(mtd, ctrl, eccstat, i);
+
+			if (errors == 15) {
+				/*
+				 * Uncorrectable error.
+				 * OK only if the whole page is blank.
+				 *
+				 * We disable ECCER reporting due to...
+				 * erratum IFC-A002770 -- so report it now if we
+				 * see an uncorrectable error in ECCSTAT.
+				 */
+				if (!is_blank(mtd, bufnum))
+					ctrl->nand_stat |=
+						IFC_NAND_EVTER_STAT_ECCER;
+				break;
+			}
+
+			mtd->ecc_stats.corrected += errors;
+		}
+
+		nctrl->eccread = 0;
+	}
+}
+
+static void fsl_ifc_do_read(struct nand_chip *chip,
+			    int oob,
+			    struct mtd_info *mtd)
+{
+	struct fsl_ifc_mtd *priv = chip->priv;
+	struct fsl_ifc_ctrl *ctrl = priv->ctrl;
+	struct fsl_ifc_regs __iomem *ifc = ctrl->regs;
+
+	/* Program FIR/IFC_NAND_FCR0 for Small/Large page */
+	if (mtd->writesize > 512) {
+		out_be32(&ifc->ifc_nand.nand_fir0,
+			 (IFC_FIR_OP_CW0 << IFC_NAND_FIR0_OP0_SHIFT) |
+			 (IFC_FIR_OP_CA0 << IFC_NAND_FIR0_OP1_SHIFT) |
+			 (IFC_FIR_OP_RA0 << IFC_NAND_FIR0_OP2_SHIFT) |
+			 (IFC_FIR_OP_CMD1 << IFC_NAND_FIR0_OP3_SHIFT) |
+			 (IFC_FIR_OP_RBCD << IFC_NAND_FIR0_OP4_SHIFT));
+		out_be32(&ifc->ifc_nand.nand_fir1, 0x0);
+
+		out_be32(&ifc->ifc_nand.nand_fcr0,
+			(NAND_CMD_READ0 << IFC_NAND_FCR0_CMD0_SHIFT) |
+			(NAND_CMD_READSTART << IFC_NAND_FCR0_CMD1_SHIFT));
+	} else {
+		out_be32(&ifc->ifc_nand.nand_fir0,
+			 (IFC_FIR_OP_CW0 << IFC_NAND_FIR0_OP0_SHIFT) |
+			 (IFC_FIR_OP_CA0 << IFC_NAND_FIR0_OP1_SHIFT) |
+			 (IFC_FIR_OP_RA0  << IFC_NAND_FIR0_OP2_SHIFT) |
+			 (IFC_FIR_OP_RBCD << IFC_NAND_FIR0_OP3_SHIFT));
+		out_be32(&ifc->ifc_nand.nand_fir1, 0x0);
+
+		if (oob)
+			out_be32(&ifc->ifc_nand.nand_fcr0,
+				 NAND_CMD_READOOB << IFC_NAND_FCR0_CMD0_SHIFT);
+		else
+			out_be32(&ifc->ifc_nand.nand_fcr0,
+				NAND_CMD_READ0 << IFC_NAND_FCR0_CMD0_SHIFT);
+	}
+}
+
+/* cmdfunc send commands to the IFC NAND Machine */
+static void fsl_ifc_cmdfunc(struct mtd_info *mtd, unsigned int command,
+			     int column, int page_addr) {
+	struct nand_chip *chip = mtd->priv;
+	struct fsl_ifc_mtd *priv = chip->priv;
+	struct fsl_ifc_ctrl *ctrl = priv->ctrl;
+	struct fsl_ifc_regs __iomem *ifc = ctrl->regs;
+
+	/* clear the read buffer */
+	ifc_nand_ctrl->read_bytes = 0;
+	if (command != NAND_CMD_PAGEPROG)
+		ifc_nand_ctrl->index = 0;
+
+	switch (command) {
+	/* READ0 read the entire buffer to use hardware ECC. */
+	case NAND_CMD_READ0:
+		out_be32(&ifc->ifc_nand.nand_fbcr, 0);
+		set_addr(mtd, 0, page_addr, 0);
+
+		ifc_nand_ctrl->read_bytes = mtd->writesize + mtd->oobsize;
+		ifc_nand_ctrl->index += column;
+
+		if (chip->ecc.mode == NAND_ECC_HW)
+			ifc_nand_ctrl->eccread = 1;
+
+		fsl_ifc_do_read(chip, 0, mtd);
+		fsl_ifc_run_command(mtd);
+		return;
+
+	/* READOOB reads only the OOB because no ECC is performed. */
+	case NAND_CMD_READOOB:
+		out_be32(&ifc->ifc_nand.nand_fbcr, mtd->oobsize - column);
+		set_addr(mtd, column, page_addr, 1);
+
+		ifc_nand_ctrl->read_bytes = mtd->writesize + mtd->oobsize;
+
+		fsl_ifc_do_read(chip, 1, mtd);
+		fsl_ifc_run_command(mtd);
+
+		return;
+
+	/* READID must read all 8 possible bytes */
+	case NAND_CMD_READID:
+		out_be32(&ifc->ifc_nand.nand_fir0,
+				(IFC_FIR_OP_CMD0 << IFC_NAND_FIR0_OP0_SHIFT) |
+				(IFC_FIR_OP_UA  << IFC_NAND_FIR0_OP1_SHIFT) |
+				(IFC_FIR_OP_RB << IFC_NAND_FIR0_OP2_SHIFT));
+		out_be32(&ifc->ifc_nand.nand_fcr0,
+				NAND_CMD_READID << IFC_NAND_FCR0_CMD0_SHIFT);
+		/* 8 bytes for manuf, device and exts */
+		out_be32(&ifc->ifc_nand.nand_fbcr, 8);
+		ifc_nand_ctrl->read_bytes = 8;
+
+		set_addr(mtd, 0, 0, 0);
+		fsl_ifc_run_command(mtd);
+		return;
+
+	/* ERASE1 stores the block and page address */
+	case NAND_CMD_ERASE1:
+		set_addr(mtd, 0, page_addr, 0);
+		return;
+
+	/* ERASE2 uses the block and page address from ERASE1 */
+	case NAND_CMD_ERASE2:
+		out_be32(&ifc->ifc_nand.nand_fir0,
+			 (IFC_FIR_OP_CW0 << IFC_NAND_FIR0_OP0_SHIFT) |
+			 (IFC_FIR_OP_RA0 << IFC_NAND_FIR0_OP1_SHIFT) |
+			 (IFC_FIR_OP_CMD1 << IFC_NAND_FIR0_OP2_SHIFT));
+
+		out_be32(&ifc->ifc_nand.nand_fcr0,
+			 (NAND_CMD_ERASE1 << IFC_NAND_FCR0_CMD0_SHIFT) |
+			 (NAND_CMD_ERASE2 << IFC_NAND_FCR0_CMD1_SHIFT));
+
+		out_be32(&ifc->ifc_nand.nand_fbcr, 0);
+		ifc_nand_ctrl->read_bytes = 0;
+		fsl_ifc_run_command(mtd);
+		return;
+
+	/* SEQIN sets up the addr buffer and all registers except the length */
+	case NAND_CMD_SEQIN: {
+		u32 nand_fcr0;
+		ifc_nand_ctrl->column = column;
+		ifc_nand_ctrl->oob = 0;
+
+		if (mtd->writesize > 512) {
+			nand_fcr0 =
+				(NAND_CMD_SEQIN << IFC_NAND_FCR0_CMD0_SHIFT) |
+				(NAND_CMD_PAGEPROG << IFC_NAND_FCR0_CMD1_SHIFT);
+
+			out_be32(&ifc->ifc_nand.nand_fir0,
+				 (IFC_FIR_OP_CW0 << IFC_NAND_FIR0_OP0_SHIFT) |
+				 (IFC_FIR_OP_CA0 << IFC_NAND_FIR0_OP1_SHIFT) |
+				 (IFC_FIR_OP_RA0 << IFC_NAND_FIR0_OP2_SHIFT) |
+				 (IFC_FIR_OP_WBCD  << IFC_NAND_FIR0_OP3_SHIFT) |
+				 (IFC_FIR_OP_CW1 << IFC_NAND_FIR0_OP4_SHIFT));
+		} else {
+			nand_fcr0 = ((NAND_CMD_PAGEPROG <<
+					IFC_NAND_FCR0_CMD1_SHIFT) |
+				    (NAND_CMD_SEQIN <<
+					IFC_NAND_FCR0_CMD2_SHIFT));
+
+			out_be32(&ifc->ifc_nand.nand_fir0,
+				 (IFC_FIR_OP_CW0 << IFC_NAND_FIR0_OP0_SHIFT) |
+				 (IFC_FIR_OP_CMD2 << IFC_NAND_FIR0_OP1_SHIFT) |
+				 (IFC_FIR_OP_CA0 << IFC_NAND_FIR0_OP2_SHIFT) |
+				 (IFC_FIR_OP_RA0 << IFC_NAND_FIR0_OP3_SHIFT) |
+				 (IFC_FIR_OP_WBCD << IFC_NAND_FIR0_OP4_SHIFT));
+			out_be32(&ifc->ifc_nand.nand_fir1,
+				 (IFC_FIR_OP_CW1 << IFC_NAND_FIR1_OP5_SHIFT));
+
+			if (column >= mtd->writesize)
+				nand_fcr0 |=
+				NAND_CMD_READOOB << IFC_NAND_FCR0_CMD0_SHIFT;
+			else
+				nand_fcr0 |=
+				NAND_CMD_READ0 << IFC_NAND_FCR0_CMD0_SHIFT;
+		}
+
+		if (column >= mtd->writesize) {
+			/* OOB area --> READOOB */
+			column -= mtd->writesize;
+			ifc_nand_ctrl->oob = 1;
+		}
+		out_be32(&ifc->ifc_nand.nand_fcr0, nand_fcr0);
+		set_addr(mtd, column, page_addr, ifc_nand_ctrl->oob);
+		return;
+	}
+
+	/* PAGEPROG reuses all of the setup from SEQIN and adds the length */
+	case NAND_CMD_PAGEPROG: {
+		int full_page;
+		if (ifc_nand_ctrl->oob) {
+			out_be32(&ifc->ifc_nand.nand_fbcr,
+				ifc_nand_ctrl->index - ifc_nand_ctrl->column);
+			full_page = 0;
+		} else {
+			out_be32(&ifc->ifc_nand.nand_fbcr, 0);
+			full_page = 1;
+		}
+
+		fsl_ifc_run_command(mtd);
+		return;
+	}
+
+	case NAND_CMD_STATUS:
+		out_be32(&ifc->ifc_nand.nand_fir0,
+				(IFC_FIR_OP_CW0 << IFC_NAND_FIR0_OP0_SHIFT) |
+				(IFC_FIR_OP_RB << IFC_NAND_FIR0_OP1_SHIFT));
+		out_be32(&ifc->ifc_nand.nand_fcr0,
+				NAND_CMD_STATUS << IFC_NAND_FCR0_CMD0_SHIFT);
+		out_be32(&ifc->ifc_nand.nand_fbcr, 1);
+		set_addr(mtd, 0, 0, 0);
+		ifc_nand_ctrl->read_bytes = 1;
+
+		fsl_ifc_run_command(mtd);
+
+		/*
+		 * The chip always seems to report that it is
+		 * write-protected, even when it is not.
+		 */
+		setbits8(ifc_nand_ctrl->addr, NAND_STATUS_WP);
+		return;
+
+	case NAND_CMD_RESET:
+		out_be32(&ifc->ifc_nand.nand_fir0,
+				IFC_FIR_OP_CW0 << IFC_NAND_FIR0_OP0_SHIFT);
+		out_be32(&ifc->ifc_nand.nand_fcr0,
+				NAND_CMD_RESET << IFC_NAND_FCR0_CMD0_SHIFT);
+		fsl_ifc_run_command(mtd);
+		return;
+
+	default:
+		dev_err(priv->dev, "%s: error, unsupported command 0x%x.\n",
+					__func__, command);
+	}
+}
+
+static void fsl_ifc_select_chip(struct mtd_info *mtd, int chip)
+{
+	/* The hardware does not seem to support multiple
+	 * chips per bank.
+	 */
+}
+
+/*
+ * Write buf to the IFC NAND Controller Data Buffer
+ */
+static void fsl_ifc_write_buf(struct mtd_info *mtd, const u8 *buf, int len)
+{
+	struct nand_chip *chip = mtd->priv;
+	struct fsl_ifc_mtd *priv = chip->priv;
+	unsigned int bufsize = mtd->writesize + mtd->oobsize;
+
+	if (len <= 0) {
+		dev_err(priv->dev, "%s: len %d bytes", __func__, len);
+		return;
+	}
+
+	if ((unsigned int)len > bufsize - ifc_nand_ctrl->index) {
+		dev_err(priv->dev,
+			"%s: beyond end of buffer (%d requested, %u available)\n",
+			__func__, len, bufsize - ifc_nand_ctrl->index);
+		len = bufsize - ifc_nand_ctrl->index;
+	}
+
+	memcpy_toio(&ifc_nand_ctrl->addr[ifc_nand_ctrl->index], buf, len);
+	ifc_nand_ctrl->index += len;
+}
+
+/*
+ * Read a byte from either the IFC hardware buffer
+ * read function for 8-bit buswidth
+ */
+static uint8_t fsl_ifc_read_byte(struct mtd_info *mtd)
+{
+	struct nand_chip *chip = mtd->priv;
+	struct fsl_ifc_mtd *priv = chip->priv;
+
+	/*
+	 * If there are still bytes in the IFC buffer, then use the
+	 * next byte.
+	 */
+	if (ifc_nand_ctrl->index < ifc_nand_ctrl->read_bytes)
+		return in_8(&ifc_nand_ctrl->addr[ifc_nand_ctrl->index++]);
+
+	dev_err(priv->dev, "%s: beyond end of buffer\n", __func__);
+	return ERR_BYTE;
+}
+
+/*
+ * Read two bytes from the IFC hardware buffer
+ * read function for 16-bit buswith
+ */
+static uint8_t fsl_ifc_read_byte16(struct mtd_info *mtd)
+{
+	struct nand_chip *chip = mtd->priv;
+	struct fsl_ifc_mtd *priv = chip->priv;
+	uint16_t data;
+
+	/*
+	 * If there are still bytes in the IFC buffer, then use the
+	 * next byte.
+	 */
+	if (ifc_nand_ctrl->index < ifc_nand_ctrl->read_bytes) {
+		data = in_be16((uint16_t *)&ifc_nand_ctrl->
+					addr[ifc_nand_ctrl->index]);
+		ifc_nand_ctrl->index += 2;
+		return (uint8_t) data;
+	}
+
+	dev_err(priv->dev, "%s: beyond end of buffer\n", __func__);
+	return ERR_BYTE;
+}
+
+/*
+ * Read from the IFC Controller Data Buffer
+ */
+static void fsl_ifc_read_buf(struct mtd_info *mtd, u8 *buf, int len)
+{
+	struct nand_chip *chip = mtd->priv;
+	struct fsl_ifc_mtd *priv = chip->priv;
+	int avail;
+
+	if (len < 0) {
+		dev_err(priv->dev, "%s: len %d bytes", __func__, len);
+		return;
+	}
+
+	avail = min((unsigned int)len,
+			ifc_nand_ctrl->read_bytes - ifc_nand_ctrl->index);
+	memcpy_fromio(buf, &ifc_nand_ctrl->addr[ifc_nand_ctrl->index], avail);
+	ifc_nand_ctrl->index += avail;
+
+	if (len > avail)
+		dev_err(priv->dev,
+			"%s: beyond end of buffer (%d requested, %d available)\n",
+			__func__, len, avail);
+}
+
+/*
+ * Verify buffer against the IFC Controller Data Buffer
+ */
+static int fsl_ifc_verify_buf(struct mtd_info *mtd,
+			       const u_char *buf, int len)
+{
+	struct nand_chip *chip = mtd->priv;
+	struct fsl_ifc_mtd *priv = chip->priv;
+	struct fsl_ifc_ctrl *ctrl = priv->ctrl;
+	struct fsl_ifc_nand_ctrl *nctrl = ifc_nand_ctrl;
+	int i;
+
+	if (len < 0) {
+		dev_err(priv->dev, "%s: write_buf of %d bytes", __func__, len);
+		return -EINVAL;
+	}
+
+	if ((unsigned int)len > nctrl->read_bytes - nctrl->index) {
+		dev_err(priv->dev,
+			"%s: beyond end of buffer (%d requested, %u available)\n",
+			__func__, len, nctrl->read_bytes - nctrl->index);
+
+		nctrl->index = nctrl->read_bytes;
+		return -EINVAL;
+	}
+
+	for (i = 0; i < len; i++)
+		if (in_8(&nctrl->addr[nctrl->index + i]) != buf[i])
+			break;
+
+	nctrl->index += len;
+
+	if (i != len)
+		return -EIO;
+	if (ctrl->nand_stat != IFC_NAND_EVTER_STAT_OPC)
+		return -EIO;
+
+	return 0;
+}
+
+/*
+ * This function is called after Program and Erase Operations to
+ * check for success or failure.
+ */
+static int fsl_ifc_wait(struct mtd_info *mtd, struct nand_chip *chip)
+{
+	struct fsl_ifc_mtd *priv = chip->priv;
+	struct fsl_ifc_ctrl *ctrl = priv->ctrl;
+	struct fsl_ifc_regs __iomem *ifc = ctrl->regs;
+	u32 nand_fsr;
+
+	/* Use READ_STATUS command, but wait for the device to be ready */
+	out_be32(&ifc->ifc_nand.nand_fir0,
+		 (IFC_FIR_OP_CW0 << IFC_NAND_FIR0_OP0_SHIFT) |
+		 (IFC_FIR_OP_RDSTAT << IFC_NAND_FIR0_OP1_SHIFT));
+	out_be32(&ifc->ifc_nand.nand_fcr0, NAND_CMD_STATUS <<
+			IFC_NAND_FCR0_CMD0_SHIFT);
+	out_be32(&ifc->ifc_nand.nand_fbcr, 1);
+	set_addr(mtd, 0, 0, 0);
+	ifc_nand_ctrl->read_bytes = 1;
+
+	fsl_ifc_run_command(mtd);
+
+	nand_fsr = in_be32(&ifc->ifc_nand.nand_fsr);
+
+	/*
+	 * The chip always seems to report that it is
+	 * write-protected, even when it is not.
+	 */
+	return nand_fsr | NAND_STATUS_WP;
+}
+
+static int fsl_ifc_read_page(struct mtd_info *mtd,
+			      struct nand_chip *chip,
+			      uint8_t *buf, int page)
+{
+	struct fsl_ifc_mtd *priv = chip->priv;
+	struct fsl_ifc_ctrl *ctrl = priv->ctrl;
+
+	fsl_ifc_read_buf(mtd, buf, mtd->writesize);
+	fsl_ifc_read_buf(mtd, chip->oob_poi, mtd->oobsize);
+
+	if (ctrl->nand_stat != IFC_NAND_EVTER_STAT_OPC) {
+		dev_err(priv->dev, "NAND Flash Write Protect Error\n");
+		mtd->ecc_stats.failed++;
+	}
+
+	return 0;
+}
+
+/* ECC will be calculated automatically, and errors will be detected in
+ * waitfunc.
+ */
+static void fsl_ifc_write_page(struct mtd_info *mtd,
+				struct nand_chip *chip,
+				const uint8_t *buf)
+{
+	fsl_ifc_write_buf(mtd, buf, mtd->writesize);
+	fsl_ifc_write_buf(mtd, chip->oob_poi, mtd->oobsize);
+}
+
+static int fsl_ifc_chip_init_tail(struct mtd_info *mtd)
+{
+	struct nand_chip *chip = mtd->priv;
+	struct fsl_ifc_mtd *priv = chip->priv;
+
+	dev_dbg(priv->dev, "%s: nand->numchips = %d\n", __func__,
+							chip->numchips);
+	dev_dbg(priv->dev, "%s: nand->chipsize = %lld\n", __func__,
+							chip->chipsize);
+	dev_dbg(priv->dev, "%s: nand->pagemask = %8x\n", __func__,
+							chip->pagemask);
+	dev_dbg(priv->dev, "%s: nand->chip_delay = %d\n", __func__,
+							chip->chip_delay);
+	dev_dbg(priv->dev, "%s: nand->badblockpos = %d\n", __func__,
+							chip->badblockpos);
+	dev_dbg(priv->dev, "%s: nand->chip_shift = %d\n", __func__,
+							chip->chip_shift);
+	dev_dbg(priv->dev, "%s: nand->page_shift = %d\n", __func__,
+							chip->page_shift);
+	dev_dbg(priv->dev, "%s: nand->phys_erase_shift = %d\n", __func__,
+							chip->phys_erase_shift);
+	dev_dbg(priv->dev, "%s: nand->ecclayout = %p\n", __func__,
+							chip->ecclayout);
+	dev_dbg(priv->dev, "%s: nand->ecc.mode = %d\n", __func__,
+							chip->ecc.mode);
+	dev_dbg(priv->dev, "%s: nand->ecc.steps = %d\n", __func__,
+							chip->ecc.steps);
+	dev_dbg(priv->dev, "%s: nand->ecc.bytes = %d\n", __func__,
+							chip->ecc.bytes);
+	dev_dbg(priv->dev, "%s: nand->ecc.total = %d\n", __func__,
+							chip->ecc.total);
+	dev_dbg(priv->dev, "%s: nand->ecc.layout = %p\n", __func__,
+							chip->ecc.layout);
+	dev_dbg(priv->dev, "%s: mtd->flags = %08x\n", __func__, mtd->flags);
+	dev_dbg(priv->dev, "%s: mtd->size = %lld\n", __func__, mtd->size);
+	dev_dbg(priv->dev, "%s: mtd->erasesize = %d\n", __func__,
+							mtd->erasesize);
+	dev_dbg(priv->dev, "%s: mtd->writesize = %d\n", __func__,
+							mtd->writesize);
+	dev_dbg(priv->dev, "%s: mtd->oobsize = %d\n", __func__,
+							mtd->oobsize);
+
+	return 0;
+}
+
+static int fsl_ifc_chip_init(struct fsl_ifc_mtd *priv)
+{
+	struct fsl_ifc_ctrl *ctrl = priv->ctrl;
+	struct fsl_ifc_regs __iomem *ifc = ctrl->regs;
+	struct nand_chip *chip = &priv->chip;
+	struct nand_ecclayout *layout;
+	u32 csor;
+
+	/* Fill in fsl_ifc_mtd structure */
+	priv->mtd.priv = chip;
+	priv->mtd.owner = THIS_MODULE;
+
+	/* fill in nand_chip structure */
+	/* set up function call table */
+	if ((in_be32(&ifc->cspr_cs[priv->bank].cspr)) & CSPR_PORT_SIZE_16)
+		chip->read_byte = fsl_ifc_read_byte16;
+	else
+		chip->read_byte = fsl_ifc_read_byte;
+
+	chip->write_buf = fsl_ifc_write_buf;
+	chip->read_buf = fsl_ifc_read_buf;
+	chip->verify_buf = fsl_ifc_verify_buf;
+	chip->select_chip = fsl_ifc_select_chip;
+	chip->cmdfunc = fsl_ifc_cmdfunc;
+	chip->waitfunc = fsl_ifc_wait;
+
+	chip->bbt_td = &bbt_main_descr;
+	chip->bbt_md = &bbt_mirror_descr;
+
+	out_be32(&ifc->ifc_nand.ncfgr, 0x0);
+
+	/* set up nand options */
+	chip->options = NAND_NO_READRDY | NAND_NO_AUTOINCR;
+	chip->bbt_options = NAND_BBT_USE_FLASH;
+
+
+	if (in_be32(&ifc->cspr_cs[priv->bank].cspr) & CSPR_PORT_SIZE_16) {
+		chip->read_byte = fsl_ifc_read_byte16;
+		chip->options |= NAND_BUSWIDTH_16;
+	} else {
+		chip->read_byte = fsl_ifc_read_byte;
+	}
+
+	chip->controller = &ifc_nand_ctrl->controller;
+	chip->priv = priv;
+
+	chip->ecc.read_page = fsl_ifc_read_page;
+	chip->ecc.write_page = fsl_ifc_write_page;
+
+	csor = in_be32(&ifc->csor_cs[priv->bank].csor);
+
+	/* Hardware generates ECC per 512 Bytes */
+	chip->ecc.size = 512;
+	chip->ecc.bytes = 8;
+
+	switch (csor & CSOR_NAND_PGS_MASK) {
+	case CSOR_NAND_PGS_512:
+		if (chip->options & NAND_BUSWIDTH_16) {
+			layout = &oob_512_16bit_ecc4;
+		} else {
+			layout = &oob_512_8bit_ecc4;
+
+			/* Avoid conflict with bad block marker */
+			bbt_main_descr.offs = 0;
+			bbt_mirror_descr.offs = 0;
+		}
+
+		priv->bufnum_mask = 15;
+		break;
+
+	case CSOR_NAND_PGS_2K:
+		layout = &oob_2048_ecc4;
+		priv->bufnum_mask = 3;
+		break;
+
+	case CSOR_NAND_PGS_4K:
+		if ((csor & CSOR_NAND_ECC_MODE_MASK) ==
+		    CSOR_NAND_ECC_MODE_4) {
+			layout = &oob_4096_ecc4;
+		} else {
+			layout = &oob_4096_ecc8;
+			chip->ecc.bytes = 16;
+		}
+
+		priv->bufnum_mask = 1;
+		break;
+
+	default:
+		dev_err(priv->dev, "bad csor %#x: bad page size\n", csor);
+		return -ENODEV;
+	}
+
+	/* Must also set CSOR_NAND_ECC_ENC_EN if DEC_EN set */
+	if (csor & CSOR_NAND_ECC_DEC_EN) {
+		chip->ecc.mode = NAND_ECC_HW;
+		chip->ecc.layout = layout;
+	} else {
+		chip->ecc.mode = NAND_ECC_SOFT;
+	}
+
+	return 0;
+}
+
+static int fsl_ifc_chip_remove(struct fsl_ifc_mtd *priv)
+{
+	nand_release(&priv->mtd);
+
+	kfree(priv->mtd.name);
+
+	if (priv->vbase)
+		iounmap(priv->vbase);
+
+	ifc_nand_ctrl->chips[priv->bank] = NULL;
+	dev_set_drvdata(priv->dev, NULL);
+	kfree(priv);
+
+	return 0;
+}
+
+static int match_bank(struct fsl_ifc_regs __iomem *ifc, int bank,
+		      phys_addr_t addr)
+{
+	u32 cspr = in_be32(&ifc->cspr_cs[bank].cspr);
+
+	if (!(cspr & CSPR_V))
+		return 0;
+	if ((cspr & CSPR_MSEL) != CSPR_MSEL_NAND)
+		return 0;
+
+	return (cspr & CSPR_BA) == convert_ifc_address(addr);
+}
+
+static DEFINE_MUTEX(fsl_ifc_nand_mutex);
+
+static int __devinit fsl_ifc_nand_probe(struct platform_device *dev)
+{
+	struct fsl_ifc_regs __iomem *ifc;
+	struct fsl_ifc_mtd *priv;
+	struct resource res;
+	static const char *part_probe_types[]
+		= { "cmdlinepart", "RedBoot", "ofpart", NULL };
+	int ret;
+	int bank;
+	struct device_node *node = dev->dev.of_node;
+	struct mtd_part_parser_data ppdata;
+
+	ppdata.of_node = dev->dev.of_node;
+	if (!fsl_ifc_ctrl_dev || !fsl_ifc_ctrl_dev->regs)
+		return -ENODEV;
+	ifc = fsl_ifc_ctrl_dev->regs;
+
+	/* get, allocate and map the memory resource */
+	ret = of_address_to_resource(node, 0, &res);
+	if (ret) {
+		dev_err(&dev->dev, "%s: failed to get resource\n", __func__);
+		return ret;
+	}
+
+	/* find which chip select it is connected to */
+	for (bank = 0; bank < FSL_IFC_BANK_COUNT; bank++) {
+		if (match_bank(ifc, bank, res.start))
+			break;
+	}
+
+	if (bank >= FSL_IFC_BANK_COUNT) {
+		dev_err(&dev->dev, "%s: address did not match any chip selects\n",
+			__func__);
+		return -ENODEV;
+	}
+
+	priv = kzalloc(sizeof(*priv), GFP_KERNEL);
+	if (!priv)
+		return -ENOMEM;
+
+	mutex_lock(&fsl_ifc_nand_mutex);
+	if (!fsl_ifc_ctrl_dev->nand) {
+		ifc_nand_ctrl = kzalloc(sizeof(*ifc_nand_ctrl), GFP_KERNEL);
+		if (!ifc_nand_ctrl) {
+			dev_err(&dev->dev, "failed to allocate memory\n");
+			mutex_unlock(&fsl_ifc_nand_mutex);
+			return -ENOMEM;
+		}
+
+		ifc_nand_ctrl->read_bytes = 0;
+		ifc_nand_ctrl->index = 0;
+		ifc_nand_ctrl->addr = NULL;
+		fsl_ifc_ctrl_dev->nand = ifc_nand_ctrl;
+
+		spin_lock_init(&ifc_nand_ctrl->controller.lock);
+		init_waitqueue_head(&ifc_nand_ctrl->controller.wq);
+	} else {
+		ifc_nand_ctrl = fsl_ifc_ctrl_dev->nand;
+	}
+	mutex_unlock(&fsl_ifc_nand_mutex);
+
+	ifc_nand_ctrl->chips[bank] = priv;
+	priv->bank = bank;
+	priv->ctrl = fsl_ifc_ctrl_dev;
+	priv->dev = &dev->dev;
+
+	priv->vbase = ioremap(res.start, resource_size(&res));
+	if (!priv->vbase) {
+		dev_err(priv->dev, "%s: failed to map chip region\n", __func__);
+		ret = -ENOMEM;
+		goto err;
+	}
+
+	dev_set_drvdata(priv->dev, priv);
+
+	out_be32(&ifc->ifc_nand.nand_evter_en,
+			IFC_NAND_EVTER_EN_OPC_EN |
+			IFC_NAND_EVTER_EN_FTOER_EN |
+			IFC_NAND_EVTER_EN_WPER_EN);
+
+	/* enable NAND Machine Interrupts */
+	out_be32(&ifc->ifc_nand.nand_evter_intr_en,
+			IFC_NAND_EVTER_INTR_OPCIR_EN |
+			IFC_NAND_EVTER_INTR_FTOERIR_EN |
+			IFC_NAND_EVTER_INTR_WPERIR_EN);
+
+	priv->mtd.name = kasprintf(GFP_KERNEL, "%x.flash", (unsigned)res.start);
+	if (!priv->mtd.name) {
+		ret = -ENOMEM;
+		goto err;
+	}
+
+	ret = fsl_ifc_chip_init(priv);
+	if (ret)
+		goto err;
+
+	ret = nand_scan_ident(&priv->mtd, 1, NULL);
+	if (ret)
+		goto err;
+
+	ret = fsl_ifc_chip_init_tail(&priv->mtd);
+	if (ret)
+		goto err;
+
+	ret = nand_scan_tail(&priv->mtd);
+	if (ret)
+		goto err;
+
+	/* First look for RedBoot table or partitions on the command
+	 * line, these take precedence over device tree information */
+	mtd_device_parse_register(&priv->mtd, part_probe_types, &ppdata,
+						NULL, 0);
+
+	dev_info(priv->dev, "IFC NAND device at 0x%llx, bank %d\n",
+		 (unsigned long long)res.start, priv->bank);
+	return 0;
+
+err:
+	fsl_ifc_chip_remove(priv);
+	return ret;
+}
+
+static int fsl_ifc_nand_remove(struct platform_device *dev)
+{
+	struct fsl_ifc_mtd *priv = dev_get_drvdata(&dev->dev);
+
+	fsl_ifc_chip_remove(priv);
+
+	mutex_lock(&fsl_ifc_nand_mutex);
+	ifc_nand_ctrl->counter--;
+	if (!ifc_nand_ctrl->counter) {
+		fsl_ifc_ctrl_dev->nand = NULL;
+		kfree(ifc_nand_ctrl);
+	}
+	mutex_unlock(&fsl_ifc_nand_mutex);
+
+	return 0;
+}
+
+static const struct of_device_id fsl_ifc_nand_match[] = {
+	{
+		.compatible = "fsl,ifc-nand",
+	},
+	{}
+};
+
+static struct platform_driver fsl_ifc_nand_driver = {
+	.driver = {
+		.name	= "fsl,ifc-nand",
+		.owner = THIS_MODULE,
+		.of_match_table = fsl_ifc_nand_match,
+	},
+	.probe       = fsl_ifc_nand_probe,
+	.remove      = fsl_ifc_nand_remove,
+};
+
+static int __init fsl_ifc_nand_init(void)
+{
+	int ret;
+
+	ret = platform_driver_register(&fsl_ifc_nand_driver);
+	if (ret)
+		printk(KERN_ERR "fsl-ifc: Failed to register platform"
+				"driver\n");
+
+	return ret;
+}
+
+static void __exit fsl_ifc_nand_exit(void)
+{
+	platform_driver_unregister(&fsl_ifc_nand_driver);
+}
+
+module_init(fsl_ifc_nand_init);
+module_exit(fsl_ifc_nand_exit);
+
+MODULE_LICENSE("GPL");
+MODULE_AUTHOR("Freescale");
+MODULE_DESCRIPTION("Freescale Integrated Flash Controller MTD NAND driver");