diff mbox series

[v5,5/9] target/arm/kvm64: Add kvm_arch_get/put_sve

Message ID 20191001125845.8793-6-drjones@redhat.com
State New
Headers show
Series target/arm/kvm: enable SVE in guests | expand

Commit Message

Andrew Jones Oct. 1, 2019, 12:58 p.m. UTC
These are the SVE equivalents to kvm_arch_get/put_fpsimd. Note, the
swabbing is different than it is for fpsmid because the vector format
is a little-endian stream of words.

Signed-off-by: Andrew Jones <drjones@redhat.com>
---
 target/arm/kvm64.c | 183 ++++++++++++++++++++++++++++++++++++++-------
 1 file changed, 155 insertions(+), 28 deletions(-)

Comments

Andrew Jones Oct. 1, 2019, 1:52 p.m. UTC | #1
On Tue, Oct 01, 2019 at 02:58:41PM +0200, Andrew Jones wrote:
> These are the SVE equivalents to kvm_arch_get/put_fpsimd. Note, the
> swabbing is different than it is for fpsmid because the vector format
> is a little-endian stream of words.
> 
> Signed-off-by: Andrew Jones <drjones@redhat.com>

Hi Eric and Richard,

I dropped your tags from this patch because it changed too much.
I apologize for requiring a second look.

Thanks,
drew

> ---
>  target/arm/kvm64.c | 183 ++++++++++++++++++++++++++++++++++++++-------
>  1 file changed, 155 insertions(+), 28 deletions(-)
> 
> diff --git a/target/arm/kvm64.c b/target/arm/kvm64.c
> index 28f6db57d5ee..4c0b11d105a4 100644
> --- a/target/arm/kvm64.c
> +++ b/target/arm/kvm64.c
> @@ -671,11 +671,12 @@ int kvm_arch_destroy_vcpu(CPUState *cs)
>  bool kvm_arm_reg_syncs_via_cpreg_list(uint64_t regidx)
>  {
>      /* Return true if the regidx is a register we should synchronize
> -     * via the cpreg_tuples array (ie is not a core reg we sync by
> -     * hand in kvm_arch_get/put_registers())
> +     * via the cpreg_tuples array (ie is not a core or sve reg that
> +     * we sync by hand in kvm_arch_get/put_registers())
>       */
>      switch (regidx & KVM_REG_ARM_COPROC_MASK) {
>      case KVM_REG_ARM_CORE:
> +    case KVM_REG_ARM64_SVE:
>          return false;
>      default:
>          return true;
> @@ -721,10 +722,8 @@ int kvm_arm_cpreg_level(uint64_t regidx)
>  
>  static int kvm_arch_put_fpsimd(CPUState *cs)
>  {
> -    ARMCPU *cpu = ARM_CPU(cs);
> -    CPUARMState *env = &cpu->env;
> +    CPUARMState *env = &ARM_CPU(cs)->env;
>      struct kvm_one_reg reg;
> -    uint32_t fpr;
>      int i, ret;
>  
>      for (i = 0; i < 32; i++) {
> @@ -742,17 +741,73 @@ static int kvm_arch_put_fpsimd(CPUState *cs)
>          }
>      }
>  
> -    reg.addr = (uintptr_t)(&fpr);
> -    fpr = vfp_get_fpsr(env);
> -    reg.id = AARCH64_SIMD_CTRL_REG(fp_regs.fpsr);
> -    ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
> -    if (ret) {
> -        return ret;
> +    return 0;
> +}
> +
> +/*
> + * SVE registers are encoded in KVM's memory in an endianness-invariant format.
> + * The byte at offset i from the start of the in-memory representation contains
> + * the bits [(7 + 8 * i) : (8 * i)] of the register value. As this means the
> + * lowest offsets are stored in the lowest memory addresses, then that nearly
> + * matches QEMU's representation, which is to use an array of host-endian
> + * uint64_t's, where the lower offsets are at the lower indices. To complete
> + * the translation we just need to byte swap the uint64_t's on big-endian hosts.
> + */
> +static uint64_t *sve_bswap64(uint64_t *dst, uint64_t *src, int nr)
> +{
> +#ifdef HOST_WORDS_BIGENDIAN
> +    int i;
> +
> +    for (i = 0; i < nr; ++i) {
> +        dst[i] = bswap64(src[i]);
>      }
>  
> -    reg.addr = (uintptr_t)(&fpr);
> -    fpr = vfp_get_fpcr(env);
> -    reg.id = AARCH64_SIMD_CTRL_REG(fp_regs.fpcr);
> +    return dst;
> +#else
> +    return src;
> +#endif
> +}
> +
> +/*
> + * KVM SVE registers come in slices where ZREGs have a slice size of 2048 bits
> + * and PREGS and the FFR have a slice size of 256 bits. However we simply hard
> + * code the slice index to zero for now as it's unlikely we'll need more than
> + * one slice for quite some time.
> + */
> +static int kvm_arch_put_sve(CPUState *cs)
> +{
> +    ARMCPU *cpu = ARM_CPU(cs);
> +    CPUARMState *env = &cpu->env;
> +    uint64_t tmp[ARM_MAX_VQ * 2];
> +    uint64_t *r;
> +    struct kvm_one_reg reg;
> +    int n, ret;
> +
> +    for (n = 0; n < KVM_ARM64_SVE_NUM_ZREGS; ++n) {
> +        r = sve_bswap64(tmp, &env->vfp.zregs[n].d[0], cpu->sve_max_vq * 2);
> +        reg.addr = (uintptr_t)r;
> +        reg.id = KVM_REG_ARM64_SVE_ZREG(n, 0);
> +        ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
> +        if (ret) {
> +            return ret;
> +        }
> +    }
> +
> +    for (n = 0; n < KVM_ARM64_SVE_NUM_PREGS; ++n) {
> +        r = sve_bswap64(tmp, r = &env->vfp.pregs[n].p[0],
> +                        DIV_ROUND_UP(cpu->sve_max_vq * 2, 8));
> +        reg.addr = (uintptr_t)r;
> +        reg.id = KVM_REG_ARM64_SVE_PREG(n, 0);
> +        ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
> +        if (ret) {
> +            return ret;
> +        }
> +    }
> +
> +    r = sve_bswap64(tmp, &env->vfp.pregs[FFR_PRED_NUM].p[0],
> +                    DIV_ROUND_UP(cpu->sve_max_vq * 2, 8));
> +    reg.addr = (uintptr_t)r;
> +    reg.id = KVM_REG_ARM64_SVE_FFR(0);
>      ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
>      if (ret) {
>          return ret;
> @@ -765,6 +820,7 @@ int kvm_arch_put_registers(CPUState *cs, int level)
>  {
>      struct kvm_one_reg reg;
>      uint64_t val;
> +    uint32_t fpr;
>      int i, ret;
>      unsigned int el;
>  
> @@ -855,7 +911,27 @@ int kvm_arch_put_registers(CPUState *cs, int level)
>          }
>      }
>  
> -    ret = kvm_arch_put_fpsimd(cs);
> +    if (cpu_isar_feature(aa64_sve, cpu)) {
> +        ret = kvm_arch_put_sve(cs);
> +    } else {
> +        ret = kvm_arch_put_fpsimd(cs);
> +    }
> +    if (ret) {
> +        return ret;
> +    }
> +
> +    reg.addr = (uintptr_t)(&fpr);
> +    fpr = vfp_get_fpsr(env);
> +    reg.id = AARCH64_SIMD_CTRL_REG(fp_regs.fpsr);
> +    ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
> +    if (ret) {
> +        return ret;
> +    }
> +
> +    reg.addr = (uintptr_t)(&fpr);
> +    fpr = vfp_get_fpcr(env);
> +    reg.id = AARCH64_SIMD_CTRL_REG(fp_regs.fpcr);
> +    ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
>      if (ret) {
>          return ret;
>      }
> @@ -878,10 +954,8 @@ int kvm_arch_put_registers(CPUState *cs, int level)
>  
>  static int kvm_arch_get_fpsimd(CPUState *cs)
>  {
> -    ARMCPU *cpu = ARM_CPU(cs);
> -    CPUARMState *env = &cpu->env;
> +    CPUARMState *env = &ARM_CPU(cs)->env;
>      struct kvm_one_reg reg;
> -    uint32_t fpr;
>      int i, ret;
>  
>      for (i = 0; i < 32; i++) {
> @@ -899,21 +973,53 @@ static int kvm_arch_get_fpsimd(CPUState *cs)
>          }
>      }
>  
> -    reg.addr = (uintptr_t)(&fpr);
> -    reg.id = AARCH64_SIMD_CTRL_REG(fp_regs.fpsr);
> -    ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
> -    if (ret) {
> -        return ret;
> +    return 0;
> +}
> +
> +/*
> + * KVM SVE registers come in slices where ZREGs have a slice size of 2048 bits
> + * and PREGS and the FFR have a slice size of 256 bits. However we simply hard
> + * code the slice index to zero for now as it's unlikely we'll need more than
> + * one slice for quite some time.
> + */
> +static int kvm_arch_get_sve(CPUState *cs)
> +{
> +    ARMCPU *cpu = ARM_CPU(cs);
> +    CPUARMState *env = &cpu->env;
> +    struct kvm_one_reg reg;
> +    uint64_t *r;
> +    int n, ret;
> +
> +    for (n = 0; n < KVM_ARM64_SVE_NUM_ZREGS; ++n) {
> +        r = &env->vfp.zregs[n].d[0];
> +        reg.addr = (uintptr_t)r;
> +        reg.id = KVM_REG_ARM64_SVE_ZREG(n, 0);
> +        ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
> +        if (ret) {
> +            return ret;
> +        }
> +        sve_bswap64(r, r, cpu->sve_max_vq * 2);
>      }
> -    vfp_set_fpsr(env, fpr);
>  
> -    reg.addr = (uintptr_t)(&fpr);
> -    reg.id = AARCH64_SIMD_CTRL_REG(fp_regs.fpcr);
> +    for (n = 0; n < KVM_ARM64_SVE_NUM_PREGS; ++n) {
> +        r = &env->vfp.pregs[n].p[0];
> +        reg.addr = (uintptr_t)r;
> +        reg.id = KVM_REG_ARM64_SVE_PREG(n, 0);
> +        ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
> +        if (ret) {
> +            return ret;
> +        }
> +        sve_bswap64(r, r, DIV_ROUND_UP(cpu->sve_max_vq * 2, 8));
> +    }
> +
> +    r = &env->vfp.pregs[FFR_PRED_NUM].p[0];
> +    reg.addr = (uintptr_t)r;
> +    reg.id = KVM_REG_ARM64_SVE_FFR(0);
>      ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
>      if (ret) {
>          return ret;
>      }
> -    vfp_set_fpcr(env, fpr);
> +    sve_bswap64(r, r, DIV_ROUND_UP(cpu->sve_max_vq * 2, 8));
>  
>      return 0;
>  }
> @@ -923,6 +1029,7 @@ int kvm_arch_get_registers(CPUState *cs)
>      struct kvm_one_reg reg;
>      uint64_t val;
>      unsigned int el;
> +    uint32_t fpr;
>      int i, ret;
>  
>      ARMCPU *cpu = ARM_CPU(cs);
> @@ -1012,10 +1119,30 @@ int kvm_arch_get_registers(CPUState *cs)
>          env->spsr = env->banked_spsr[i];
>      }
>  
> -    ret = kvm_arch_get_fpsimd(cs);
> +    if (cpu_isar_feature(aa64_sve, cpu)) {
> +        ret = kvm_arch_get_sve(cs);
> +    } else {
> +        ret = kvm_arch_get_fpsimd(cs);
> +    }
> +    if (ret) {
> +        return ret;
> +    }
> +
> +    reg.addr = (uintptr_t)(&fpr);
> +    reg.id = AARCH64_SIMD_CTRL_REG(fp_regs.fpsr);
> +    ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
> +    if (ret) {
> +        return ret;
> +    }
> +    vfp_set_fpsr(env, fpr);
> +
> +    reg.addr = (uintptr_t)(&fpr);
> +    reg.id = AARCH64_SIMD_CTRL_REG(fp_regs.fpcr);
> +    ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
>      if (ret) {
>          return ret;
>      }
> +    vfp_set_fpcr(env, fpr);
>  
>      ret = kvm_get_vcpu_events(cpu);
>      if (ret) {
> -- 
> 2.20.1
>
Andrew Jones Oct. 1, 2019, 1:58 p.m. UTC | #2
On Tue, Oct 01, 2019 at 03:52:46PM +0200, Andrew Jones wrote:
> On Tue, Oct 01, 2019 at 02:58:41PM +0200, Andrew Jones wrote:
> > These are the SVE equivalents to kvm_arch_get/put_fpsimd. Note, the
> > swabbing is different than it is for fpsmid because the vector format
> > is a little-endian stream of words.
> > 
> > Signed-off-by: Andrew Jones <drjones@redhat.com>
> 
> Hi Eric and Richard,
> 
> I dropped your tags from this patch because it changed too much.
> I apologize for requiring a second look.

Also it looks like I should have generated it with --patience, as this
diff isn't the easiest thing to review. Let me know if you'd like me to
repost it.

drew

> 
> Thanks,
> drew
> 
> > ---
> >  target/arm/kvm64.c | 183 ++++++++++++++++++++++++++++++++++++++-------
> >  1 file changed, 155 insertions(+), 28 deletions(-)
> > 
> > diff --git a/target/arm/kvm64.c b/target/arm/kvm64.c
> > index 28f6db57d5ee..4c0b11d105a4 100644
> > --- a/target/arm/kvm64.c
> > +++ b/target/arm/kvm64.c
> > @@ -671,11 +671,12 @@ int kvm_arch_destroy_vcpu(CPUState *cs)
> >  bool kvm_arm_reg_syncs_via_cpreg_list(uint64_t regidx)
> >  {
> >      /* Return true if the regidx is a register we should synchronize
> > -     * via the cpreg_tuples array (ie is not a core reg we sync by
> > -     * hand in kvm_arch_get/put_registers())
> > +     * via the cpreg_tuples array (ie is not a core or sve reg that
> > +     * we sync by hand in kvm_arch_get/put_registers())
> >       */
> >      switch (regidx & KVM_REG_ARM_COPROC_MASK) {
> >      case KVM_REG_ARM_CORE:
> > +    case KVM_REG_ARM64_SVE:
> >          return false;
> >      default:
> >          return true;
> > @@ -721,10 +722,8 @@ int kvm_arm_cpreg_level(uint64_t regidx)
> >  
> >  static int kvm_arch_put_fpsimd(CPUState *cs)
> >  {
> > -    ARMCPU *cpu = ARM_CPU(cs);
> > -    CPUARMState *env = &cpu->env;
> > +    CPUARMState *env = &ARM_CPU(cs)->env;
> >      struct kvm_one_reg reg;
> > -    uint32_t fpr;
> >      int i, ret;
> >  
> >      for (i = 0; i < 32; i++) {
> > @@ -742,17 +741,73 @@ static int kvm_arch_put_fpsimd(CPUState *cs)
> >          }
> >      }
> >  
> > -    reg.addr = (uintptr_t)(&fpr);
> > -    fpr = vfp_get_fpsr(env);
> > -    reg.id = AARCH64_SIMD_CTRL_REG(fp_regs.fpsr);
> > -    ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
> > -    if (ret) {
> > -        return ret;
> > +    return 0;
> > +}
> > +
> > +/*
> > + * SVE registers are encoded in KVM's memory in an endianness-invariant format.
> > + * The byte at offset i from the start of the in-memory representation contains
> > + * the bits [(7 + 8 * i) : (8 * i)] of the register value. As this means the
> > + * lowest offsets are stored in the lowest memory addresses, then that nearly
> > + * matches QEMU's representation, which is to use an array of host-endian
> > + * uint64_t's, where the lower offsets are at the lower indices. To complete
> > + * the translation we just need to byte swap the uint64_t's on big-endian hosts.
> > + */
> > +static uint64_t *sve_bswap64(uint64_t *dst, uint64_t *src, int nr)
> > +{
> > +#ifdef HOST_WORDS_BIGENDIAN
> > +    int i;
> > +
> > +    for (i = 0; i < nr; ++i) {
> > +        dst[i] = bswap64(src[i]);
> >      }
> >  
> > -    reg.addr = (uintptr_t)(&fpr);
> > -    fpr = vfp_get_fpcr(env);
> > -    reg.id = AARCH64_SIMD_CTRL_REG(fp_regs.fpcr);
> > +    return dst;
> > +#else
> > +    return src;
> > +#endif
> > +}
> > +
> > +/*
> > + * KVM SVE registers come in slices where ZREGs have a slice size of 2048 bits
> > + * and PREGS and the FFR have a slice size of 256 bits. However we simply hard
> > + * code the slice index to zero for now as it's unlikely we'll need more than
> > + * one slice for quite some time.
> > + */
> > +static int kvm_arch_put_sve(CPUState *cs)
> > +{
> > +    ARMCPU *cpu = ARM_CPU(cs);
> > +    CPUARMState *env = &cpu->env;
> > +    uint64_t tmp[ARM_MAX_VQ * 2];
> > +    uint64_t *r;
> > +    struct kvm_one_reg reg;
> > +    int n, ret;
> > +
> > +    for (n = 0; n < KVM_ARM64_SVE_NUM_ZREGS; ++n) {
> > +        r = sve_bswap64(tmp, &env->vfp.zregs[n].d[0], cpu->sve_max_vq * 2);
> > +        reg.addr = (uintptr_t)r;
> > +        reg.id = KVM_REG_ARM64_SVE_ZREG(n, 0);
> > +        ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
> > +        if (ret) {
> > +            return ret;
> > +        }
> > +    }
> > +
> > +    for (n = 0; n < KVM_ARM64_SVE_NUM_PREGS; ++n) {
> > +        r = sve_bswap64(tmp, r = &env->vfp.pregs[n].p[0],
> > +                        DIV_ROUND_UP(cpu->sve_max_vq * 2, 8));
> > +        reg.addr = (uintptr_t)r;
> > +        reg.id = KVM_REG_ARM64_SVE_PREG(n, 0);
> > +        ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
> > +        if (ret) {
> > +            return ret;
> > +        }
> > +    }
> > +
> > +    r = sve_bswap64(tmp, &env->vfp.pregs[FFR_PRED_NUM].p[0],
> > +                    DIV_ROUND_UP(cpu->sve_max_vq * 2, 8));
> > +    reg.addr = (uintptr_t)r;
> > +    reg.id = KVM_REG_ARM64_SVE_FFR(0);
> >      ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
> >      if (ret) {
> >          return ret;
> > @@ -765,6 +820,7 @@ int kvm_arch_put_registers(CPUState *cs, int level)
> >  {
> >      struct kvm_one_reg reg;
> >      uint64_t val;
> > +    uint32_t fpr;
> >      int i, ret;
> >      unsigned int el;
> >  
> > @@ -855,7 +911,27 @@ int kvm_arch_put_registers(CPUState *cs, int level)
> >          }
> >      }
> >  
> > -    ret = kvm_arch_put_fpsimd(cs);
> > +    if (cpu_isar_feature(aa64_sve, cpu)) {
> > +        ret = kvm_arch_put_sve(cs);
> > +    } else {
> > +        ret = kvm_arch_put_fpsimd(cs);
> > +    }
> > +    if (ret) {
> > +        return ret;
> > +    }
> > +
> > +    reg.addr = (uintptr_t)(&fpr);
> > +    fpr = vfp_get_fpsr(env);
> > +    reg.id = AARCH64_SIMD_CTRL_REG(fp_regs.fpsr);
> > +    ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
> > +    if (ret) {
> > +        return ret;
> > +    }
> > +
> > +    reg.addr = (uintptr_t)(&fpr);
> > +    fpr = vfp_get_fpcr(env);
> > +    reg.id = AARCH64_SIMD_CTRL_REG(fp_regs.fpcr);
> > +    ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
> >      if (ret) {
> >          return ret;
> >      }
> > @@ -878,10 +954,8 @@ int kvm_arch_put_registers(CPUState *cs, int level)
> >  
> >  static int kvm_arch_get_fpsimd(CPUState *cs)
> >  {
> > -    ARMCPU *cpu = ARM_CPU(cs);
> > -    CPUARMState *env = &cpu->env;
> > +    CPUARMState *env = &ARM_CPU(cs)->env;
> >      struct kvm_one_reg reg;
> > -    uint32_t fpr;
> >      int i, ret;
> >  
> >      for (i = 0; i < 32; i++) {
> > @@ -899,21 +973,53 @@ static int kvm_arch_get_fpsimd(CPUState *cs)
> >          }
> >      }
> >  
> > -    reg.addr = (uintptr_t)(&fpr);
> > -    reg.id = AARCH64_SIMD_CTRL_REG(fp_regs.fpsr);
> > -    ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
> > -    if (ret) {
> > -        return ret;
> > +    return 0;
> > +}
> > +
> > +/*
> > + * KVM SVE registers come in slices where ZREGs have a slice size of 2048 bits
> > + * and PREGS and the FFR have a slice size of 256 bits. However we simply hard
> > + * code the slice index to zero for now as it's unlikely we'll need more than
> > + * one slice for quite some time.
> > + */
> > +static int kvm_arch_get_sve(CPUState *cs)
> > +{
> > +    ARMCPU *cpu = ARM_CPU(cs);
> > +    CPUARMState *env = &cpu->env;
> > +    struct kvm_one_reg reg;
> > +    uint64_t *r;
> > +    int n, ret;
> > +
> > +    for (n = 0; n < KVM_ARM64_SVE_NUM_ZREGS; ++n) {
> > +        r = &env->vfp.zregs[n].d[0];
> > +        reg.addr = (uintptr_t)r;
> > +        reg.id = KVM_REG_ARM64_SVE_ZREG(n, 0);
> > +        ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
> > +        if (ret) {
> > +            return ret;
> > +        }
> > +        sve_bswap64(r, r, cpu->sve_max_vq * 2);
> >      }
> > -    vfp_set_fpsr(env, fpr);
> >  
> > -    reg.addr = (uintptr_t)(&fpr);
> > -    reg.id = AARCH64_SIMD_CTRL_REG(fp_regs.fpcr);
> > +    for (n = 0; n < KVM_ARM64_SVE_NUM_PREGS; ++n) {
> > +        r = &env->vfp.pregs[n].p[0];
> > +        reg.addr = (uintptr_t)r;
> > +        reg.id = KVM_REG_ARM64_SVE_PREG(n, 0);
> > +        ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
> > +        if (ret) {
> > +            return ret;
> > +        }
> > +        sve_bswap64(r, r, DIV_ROUND_UP(cpu->sve_max_vq * 2, 8));
> > +    }
> > +
> > +    r = &env->vfp.pregs[FFR_PRED_NUM].p[0];
> > +    reg.addr = (uintptr_t)r;
> > +    reg.id = KVM_REG_ARM64_SVE_FFR(0);
> >      ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
> >      if (ret) {
> >          return ret;
> >      }
> > -    vfp_set_fpcr(env, fpr);
> > +    sve_bswap64(r, r, DIV_ROUND_UP(cpu->sve_max_vq * 2, 8));
> >  
> >      return 0;
> >  }
> > @@ -923,6 +1029,7 @@ int kvm_arch_get_registers(CPUState *cs)
> >      struct kvm_one_reg reg;
> >      uint64_t val;
> >      unsigned int el;
> > +    uint32_t fpr;
> >      int i, ret;
> >  
> >      ARMCPU *cpu = ARM_CPU(cs);
> > @@ -1012,10 +1119,30 @@ int kvm_arch_get_registers(CPUState *cs)
> >          env->spsr = env->banked_spsr[i];
> >      }
> >  
> > -    ret = kvm_arch_get_fpsimd(cs);
> > +    if (cpu_isar_feature(aa64_sve, cpu)) {
> > +        ret = kvm_arch_get_sve(cs);
> > +    } else {
> > +        ret = kvm_arch_get_fpsimd(cs);
> > +    }
> > +    if (ret) {
> > +        return ret;
> > +    }
> > +
> > +    reg.addr = (uintptr_t)(&fpr);
> > +    reg.id = AARCH64_SIMD_CTRL_REG(fp_regs.fpsr);
> > +    ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
> > +    if (ret) {
> > +        return ret;
> > +    }
> > +    vfp_set_fpsr(env, fpr);
> > +
> > +    reg.addr = (uintptr_t)(&fpr);
> > +    reg.id = AARCH64_SIMD_CTRL_REG(fp_regs.fpcr);
> > +    ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
> >      if (ret) {
> >          return ret;
> >      }
> > +    vfp_set_fpcr(env, fpr);
> >  
> >      ret = kvm_get_vcpu_events(cpu);
> >      if (ret) {
> > -- 
> > 2.20.1
> >
Richard Henderson Oct. 1, 2019, 5:52 p.m. UTC | #3
On 10/1/19 5:58 AM, Andrew Jones wrote:
> These are the SVE equivalents to kvm_arch_get/put_fpsimd. Note, the
> swabbing is different than it is for fpsmid because the vector format
> is a little-endian stream of words.
> 
> Signed-off-by: Andrew Jones <drjones@redhat.com>
> ---
>  target/arm/kvm64.c | 183 ++++++++++++++++++++++++++++++++++++++-------
>  1 file changed, 155 insertions(+), 28 deletions(-)

Reviewed-by: Richard Henderson <richard.henderson@linaro.org>


r~
Eric Auger Oct. 7, 2019, 7:22 a.m. UTC | #4
Hi Drew,

On 10/1/19 2:58 PM, Andrew Jones wrote:
> These are the SVE equivalents to kvm_arch_get/put_fpsimd. Note, the
> swabbing is different than it is for fpsmid because the vector format
> is a little-endian stream of words.
> 
> Signed-off-by: Andrew Jones <drjones@redhat.com>
Reviewed-by: Eric Auger <eric.auger@redhat.com>

Eric
> ---
>  target/arm/kvm64.c | 183 ++++++++++++++++++++++++++++++++++++++-------
>  1 file changed, 155 insertions(+), 28 deletions(-)
> 
> diff --git a/target/arm/kvm64.c b/target/arm/kvm64.c
> index 28f6db57d5ee..4c0b11d105a4 100644
> --- a/target/arm/kvm64.c
> +++ b/target/arm/kvm64.c
> @@ -671,11 +671,12 @@ int kvm_arch_destroy_vcpu(CPUState *cs)
>  bool kvm_arm_reg_syncs_via_cpreg_list(uint64_t regidx)
>  {
>      /* Return true if the regidx is a register we should synchronize
> -     * via the cpreg_tuples array (ie is not a core reg we sync by
> -     * hand in kvm_arch_get/put_registers())
> +     * via the cpreg_tuples array (ie is not a core or sve reg that
> +     * we sync by hand in kvm_arch_get/put_registers())
>       */
>      switch (regidx & KVM_REG_ARM_COPROC_MASK) {
>      case KVM_REG_ARM_CORE:
> +    case KVM_REG_ARM64_SVE:
>          return false;
>      default:
>          return true;
> @@ -721,10 +722,8 @@ int kvm_arm_cpreg_level(uint64_t regidx)
>  
>  static int kvm_arch_put_fpsimd(CPUState *cs)
>  {
> -    ARMCPU *cpu = ARM_CPU(cs);
> -    CPUARMState *env = &cpu->env;
> +    CPUARMState *env = &ARM_CPU(cs)->env;
>      struct kvm_one_reg reg;
> -    uint32_t fpr;
>      int i, ret;
>  
>      for (i = 0; i < 32; i++) {
> @@ -742,17 +741,73 @@ static int kvm_arch_put_fpsimd(CPUState *cs)
>          }
>      }
>  
> -    reg.addr = (uintptr_t)(&fpr);
> -    fpr = vfp_get_fpsr(env);
> -    reg.id = AARCH64_SIMD_CTRL_REG(fp_regs.fpsr);
> -    ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
> -    if (ret) {
> -        return ret;
> +    return 0;
> +}
> +
> +/*
> + * SVE registers are encoded in KVM's memory in an endianness-invariant format.
> + * The byte at offset i from the start of the in-memory representation contains
> + * the bits [(7 + 8 * i) : (8 * i)] of the register value. As this means the
> + * lowest offsets are stored in the lowest memory addresses, then that nearly
> + * matches QEMU's representation, which is to use an array of host-endian
> + * uint64_t's, where the lower offsets are at the lower indices. To complete
> + * the translation we just need to byte swap the uint64_t's on big-endian hosts.
> + */
> +static uint64_t *sve_bswap64(uint64_t *dst, uint64_t *src, int nr)
> +{
> +#ifdef HOST_WORDS_BIGENDIAN
> +    int i;
> +
> +    for (i = 0; i < nr; ++i) {
> +        dst[i] = bswap64(src[i]);
>      }
>  
> -    reg.addr = (uintptr_t)(&fpr);
> -    fpr = vfp_get_fpcr(env);
> -    reg.id = AARCH64_SIMD_CTRL_REG(fp_regs.fpcr);
> +    return dst;
> +#else
> +    return src;
> +#endif
> +}
> +
> +/*
> + * KVM SVE registers come in slices where ZREGs have a slice size of 2048 bits
> + * and PREGS and the FFR have a slice size of 256 bits. However we simply hard
> + * code the slice index to zero for now as it's unlikely we'll need more than
> + * one slice for quite some time.
> + */
> +static int kvm_arch_put_sve(CPUState *cs)
> +{
> +    ARMCPU *cpu = ARM_CPU(cs);
> +    CPUARMState *env = &cpu->env;
> +    uint64_t tmp[ARM_MAX_VQ * 2];
> +    uint64_t *r;
> +    struct kvm_one_reg reg;
> +    int n, ret;
> +
> +    for (n = 0; n < KVM_ARM64_SVE_NUM_ZREGS; ++n) {
> +        r = sve_bswap64(tmp, &env->vfp.zregs[n].d[0], cpu->sve_max_vq * 2);
> +        reg.addr = (uintptr_t)r;
> +        reg.id = KVM_REG_ARM64_SVE_ZREG(n, 0);
> +        ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
> +        if (ret) {
> +            return ret;
> +        }
> +    }
> +
> +    for (n = 0; n < KVM_ARM64_SVE_NUM_PREGS; ++n) {
> +        r = sve_bswap64(tmp, r = &env->vfp.pregs[n].p[0],
> +                        DIV_ROUND_UP(cpu->sve_max_vq * 2, 8));
> +        reg.addr = (uintptr_t)r;
> +        reg.id = KVM_REG_ARM64_SVE_PREG(n, 0);
> +        ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
> +        if (ret) {
> +            return ret;
> +        }
> +    }
> +
> +    r = sve_bswap64(tmp, &env->vfp.pregs[FFR_PRED_NUM].p[0],
> +                    DIV_ROUND_UP(cpu->sve_max_vq * 2, 8));
> +    reg.addr = (uintptr_t)r;
> +    reg.id = KVM_REG_ARM64_SVE_FFR(0);
>      ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
>      if (ret) {
>          return ret;
> @@ -765,6 +820,7 @@ int kvm_arch_put_registers(CPUState *cs, int level)
>  {
>      struct kvm_one_reg reg;
>      uint64_t val;
> +    uint32_t fpr;
>      int i, ret;
>      unsigned int el;
>  
> @@ -855,7 +911,27 @@ int kvm_arch_put_registers(CPUState *cs, int level)
>          }
>      }
>  
> -    ret = kvm_arch_put_fpsimd(cs);
> +    if (cpu_isar_feature(aa64_sve, cpu)) {
> +        ret = kvm_arch_put_sve(cs);
> +    } else {
> +        ret = kvm_arch_put_fpsimd(cs);
> +    }
> +    if (ret) {
> +        return ret;
> +    }
> +
> +    reg.addr = (uintptr_t)(&fpr);
> +    fpr = vfp_get_fpsr(env);
> +    reg.id = AARCH64_SIMD_CTRL_REG(fp_regs.fpsr);
> +    ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
> +    if (ret) {
> +        return ret;
> +    }
> +
> +    reg.addr = (uintptr_t)(&fpr);
> +    fpr = vfp_get_fpcr(env);
> +    reg.id = AARCH64_SIMD_CTRL_REG(fp_regs.fpcr);
> +    ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
>      if (ret) {
>          return ret;
>      }
> @@ -878,10 +954,8 @@ int kvm_arch_put_registers(CPUState *cs, int level)
>  
>  static int kvm_arch_get_fpsimd(CPUState *cs)
>  {
> -    ARMCPU *cpu = ARM_CPU(cs);
> -    CPUARMState *env = &cpu->env;
> +    CPUARMState *env = &ARM_CPU(cs)->env;
>      struct kvm_one_reg reg;
> -    uint32_t fpr;
>      int i, ret;
>  
>      for (i = 0; i < 32; i++) {
> @@ -899,21 +973,53 @@ static int kvm_arch_get_fpsimd(CPUState *cs)
>          }
>      }
>  
> -    reg.addr = (uintptr_t)(&fpr);
> -    reg.id = AARCH64_SIMD_CTRL_REG(fp_regs.fpsr);
> -    ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
> -    if (ret) {
> -        return ret;
> +    return 0;
> +}
> +
> +/*
> + * KVM SVE registers come in slices where ZREGs have a slice size of 2048 bits
> + * and PREGS and the FFR have a slice size of 256 bits. However we simply hard
> + * code the slice index to zero for now as it's unlikely we'll need more than
> + * one slice for quite some time.
> + */
> +static int kvm_arch_get_sve(CPUState *cs)
> +{
> +    ARMCPU *cpu = ARM_CPU(cs);
> +    CPUARMState *env = &cpu->env;
> +    struct kvm_one_reg reg;
> +    uint64_t *r;
> +    int n, ret;
> +
> +    for (n = 0; n < KVM_ARM64_SVE_NUM_ZREGS; ++n) {
> +        r = &env->vfp.zregs[n].d[0];
> +        reg.addr = (uintptr_t)r;
> +        reg.id = KVM_REG_ARM64_SVE_ZREG(n, 0);
> +        ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
> +        if (ret) {
> +            return ret;
> +        }
> +        sve_bswap64(r, r, cpu->sve_max_vq * 2);
>      }
> -    vfp_set_fpsr(env, fpr);
>  
> -    reg.addr = (uintptr_t)(&fpr);
> -    reg.id = AARCH64_SIMD_CTRL_REG(fp_regs.fpcr);
> +    for (n = 0; n < KVM_ARM64_SVE_NUM_PREGS; ++n) {
> +        r = &env->vfp.pregs[n].p[0];
> +        reg.addr = (uintptr_t)r;
> +        reg.id = KVM_REG_ARM64_SVE_PREG(n, 0);
> +        ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
> +        if (ret) {
> +            return ret;
> +        }
> +        sve_bswap64(r, r, DIV_ROUND_UP(cpu->sve_max_vq * 2, 8));
> +    }
> +
> +    r = &env->vfp.pregs[FFR_PRED_NUM].p[0];
> +    reg.addr = (uintptr_t)r;
> +    reg.id = KVM_REG_ARM64_SVE_FFR(0);
>      ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
>      if (ret) {
>          return ret;
>      }
> -    vfp_set_fpcr(env, fpr);
> +    sve_bswap64(r, r, DIV_ROUND_UP(cpu->sve_max_vq * 2, 8));
>  
>      return 0;
>  }
> @@ -923,6 +1029,7 @@ int kvm_arch_get_registers(CPUState *cs)
>      struct kvm_one_reg reg;
>      uint64_t val;
>      unsigned int el;
> +    uint32_t fpr;
>      int i, ret;
>  
>      ARMCPU *cpu = ARM_CPU(cs);
> @@ -1012,10 +1119,30 @@ int kvm_arch_get_registers(CPUState *cs)
>          env->spsr = env->banked_spsr[i];
>      }
>  
> -    ret = kvm_arch_get_fpsimd(cs);
> +    if (cpu_isar_feature(aa64_sve, cpu)) {
> +        ret = kvm_arch_get_sve(cs);
> +    } else {
> +        ret = kvm_arch_get_fpsimd(cs);
> +    }
> +    if (ret) {
> +        return ret;
> +    }
> +
> +    reg.addr = (uintptr_t)(&fpr);
> +    reg.id = AARCH64_SIMD_CTRL_REG(fp_regs.fpsr);
> +    ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
> +    if (ret) {
> +        return ret;
> +    }
> +    vfp_set_fpsr(env, fpr);
> +
> +    reg.addr = (uintptr_t)(&fpr);
> +    reg.id = AARCH64_SIMD_CTRL_REG(fp_regs.fpcr);
> +    ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
>      if (ret) {
>          return ret;
>      }
> +    vfp_set_fpcr(env, fpr);
>  
>      ret = kvm_get_vcpu_events(cpu);
>      if (ret) {
>
diff mbox series

Patch

diff --git a/target/arm/kvm64.c b/target/arm/kvm64.c
index 28f6db57d5ee..4c0b11d105a4 100644
--- a/target/arm/kvm64.c
+++ b/target/arm/kvm64.c
@@ -671,11 +671,12 @@  int kvm_arch_destroy_vcpu(CPUState *cs)
 bool kvm_arm_reg_syncs_via_cpreg_list(uint64_t regidx)
 {
     /* Return true if the regidx is a register we should synchronize
-     * via the cpreg_tuples array (ie is not a core reg we sync by
-     * hand in kvm_arch_get/put_registers())
+     * via the cpreg_tuples array (ie is not a core or sve reg that
+     * we sync by hand in kvm_arch_get/put_registers())
      */
     switch (regidx & KVM_REG_ARM_COPROC_MASK) {
     case KVM_REG_ARM_CORE:
+    case KVM_REG_ARM64_SVE:
         return false;
     default:
         return true;
@@ -721,10 +722,8 @@  int kvm_arm_cpreg_level(uint64_t regidx)
 
 static int kvm_arch_put_fpsimd(CPUState *cs)
 {
-    ARMCPU *cpu = ARM_CPU(cs);
-    CPUARMState *env = &cpu->env;
+    CPUARMState *env = &ARM_CPU(cs)->env;
     struct kvm_one_reg reg;
-    uint32_t fpr;
     int i, ret;
 
     for (i = 0; i < 32; i++) {
@@ -742,17 +741,73 @@  static int kvm_arch_put_fpsimd(CPUState *cs)
         }
     }
 
-    reg.addr = (uintptr_t)(&fpr);
-    fpr = vfp_get_fpsr(env);
-    reg.id = AARCH64_SIMD_CTRL_REG(fp_regs.fpsr);
-    ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
-    if (ret) {
-        return ret;
+    return 0;
+}
+
+/*
+ * SVE registers are encoded in KVM's memory in an endianness-invariant format.
+ * The byte at offset i from the start of the in-memory representation contains
+ * the bits [(7 + 8 * i) : (8 * i)] of the register value. As this means the
+ * lowest offsets are stored in the lowest memory addresses, then that nearly
+ * matches QEMU's representation, which is to use an array of host-endian
+ * uint64_t's, where the lower offsets are at the lower indices. To complete
+ * the translation we just need to byte swap the uint64_t's on big-endian hosts.
+ */
+static uint64_t *sve_bswap64(uint64_t *dst, uint64_t *src, int nr)
+{
+#ifdef HOST_WORDS_BIGENDIAN
+    int i;
+
+    for (i = 0; i < nr; ++i) {
+        dst[i] = bswap64(src[i]);
     }
 
-    reg.addr = (uintptr_t)(&fpr);
-    fpr = vfp_get_fpcr(env);
-    reg.id = AARCH64_SIMD_CTRL_REG(fp_regs.fpcr);
+    return dst;
+#else
+    return src;
+#endif
+}
+
+/*
+ * KVM SVE registers come in slices where ZREGs have a slice size of 2048 bits
+ * and PREGS and the FFR have a slice size of 256 bits. However we simply hard
+ * code the slice index to zero for now as it's unlikely we'll need more than
+ * one slice for quite some time.
+ */
+static int kvm_arch_put_sve(CPUState *cs)
+{
+    ARMCPU *cpu = ARM_CPU(cs);
+    CPUARMState *env = &cpu->env;
+    uint64_t tmp[ARM_MAX_VQ * 2];
+    uint64_t *r;
+    struct kvm_one_reg reg;
+    int n, ret;
+
+    for (n = 0; n < KVM_ARM64_SVE_NUM_ZREGS; ++n) {
+        r = sve_bswap64(tmp, &env->vfp.zregs[n].d[0], cpu->sve_max_vq * 2);
+        reg.addr = (uintptr_t)r;
+        reg.id = KVM_REG_ARM64_SVE_ZREG(n, 0);
+        ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
+        if (ret) {
+            return ret;
+        }
+    }
+
+    for (n = 0; n < KVM_ARM64_SVE_NUM_PREGS; ++n) {
+        r = sve_bswap64(tmp, r = &env->vfp.pregs[n].p[0],
+                        DIV_ROUND_UP(cpu->sve_max_vq * 2, 8));
+        reg.addr = (uintptr_t)r;
+        reg.id = KVM_REG_ARM64_SVE_PREG(n, 0);
+        ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
+        if (ret) {
+            return ret;
+        }
+    }
+
+    r = sve_bswap64(tmp, &env->vfp.pregs[FFR_PRED_NUM].p[0],
+                    DIV_ROUND_UP(cpu->sve_max_vq * 2, 8));
+    reg.addr = (uintptr_t)r;
+    reg.id = KVM_REG_ARM64_SVE_FFR(0);
     ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
     if (ret) {
         return ret;
@@ -765,6 +820,7 @@  int kvm_arch_put_registers(CPUState *cs, int level)
 {
     struct kvm_one_reg reg;
     uint64_t val;
+    uint32_t fpr;
     int i, ret;
     unsigned int el;
 
@@ -855,7 +911,27 @@  int kvm_arch_put_registers(CPUState *cs, int level)
         }
     }
 
-    ret = kvm_arch_put_fpsimd(cs);
+    if (cpu_isar_feature(aa64_sve, cpu)) {
+        ret = kvm_arch_put_sve(cs);
+    } else {
+        ret = kvm_arch_put_fpsimd(cs);
+    }
+    if (ret) {
+        return ret;
+    }
+
+    reg.addr = (uintptr_t)(&fpr);
+    fpr = vfp_get_fpsr(env);
+    reg.id = AARCH64_SIMD_CTRL_REG(fp_regs.fpsr);
+    ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
+    if (ret) {
+        return ret;
+    }
+
+    reg.addr = (uintptr_t)(&fpr);
+    fpr = vfp_get_fpcr(env);
+    reg.id = AARCH64_SIMD_CTRL_REG(fp_regs.fpcr);
+    ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
     if (ret) {
         return ret;
     }
@@ -878,10 +954,8 @@  int kvm_arch_put_registers(CPUState *cs, int level)
 
 static int kvm_arch_get_fpsimd(CPUState *cs)
 {
-    ARMCPU *cpu = ARM_CPU(cs);
-    CPUARMState *env = &cpu->env;
+    CPUARMState *env = &ARM_CPU(cs)->env;
     struct kvm_one_reg reg;
-    uint32_t fpr;
     int i, ret;
 
     for (i = 0; i < 32; i++) {
@@ -899,21 +973,53 @@  static int kvm_arch_get_fpsimd(CPUState *cs)
         }
     }
 
-    reg.addr = (uintptr_t)(&fpr);
-    reg.id = AARCH64_SIMD_CTRL_REG(fp_regs.fpsr);
-    ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
-    if (ret) {
-        return ret;
+    return 0;
+}
+
+/*
+ * KVM SVE registers come in slices where ZREGs have a slice size of 2048 bits
+ * and PREGS and the FFR have a slice size of 256 bits. However we simply hard
+ * code the slice index to zero for now as it's unlikely we'll need more than
+ * one slice for quite some time.
+ */
+static int kvm_arch_get_sve(CPUState *cs)
+{
+    ARMCPU *cpu = ARM_CPU(cs);
+    CPUARMState *env = &cpu->env;
+    struct kvm_one_reg reg;
+    uint64_t *r;
+    int n, ret;
+
+    for (n = 0; n < KVM_ARM64_SVE_NUM_ZREGS; ++n) {
+        r = &env->vfp.zregs[n].d[0];
+        reg.addr = (uintptr_t)r;
+        reg.id = KVM_REG_ARM64_SVE_ZREG(n, 0);
+        ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
+        if (ret) {
+            return ret;
+        }
+        sve_bswap64(r, r, cpu->sve_max_vq * 2);
     }
-    vfp_set_fpsr(env, fpr);
 
-    reg.addr = (uintptr_t)(&fpr);
-    reg.id = AARCH64_SIMD_CTRL_REG(fp_regs.fpcr);
+    for (n = 0; n < KVM_ARM64_SVE_NUM_PREGS; ++n) {
+        r = &env->vfp.pregs[n].p[0];
+        reg.addr = (uintptr_t)r;
+        reg.id = KVM_REG_ARM64_SVE_PREG(n, 0);
+        ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
+        if (ret) {
+            return ret;
+        }
+        sve_bswap64(r, r, DIV_ROUND_UP(cpu->sve_max_vq * 2, 8));
+    }
+
+    r = &env->vfp.pregs[FFR_PRED_NUM].p[0];
+    reg.addr = (uintptr_t)r;
+    reg.id = KVM_REG_ARM64_SVE_FFR(0);
     ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
     if (ret) {
         return ret;
     }
-    vfp_set_fpcr(env, fpr);
+    sve_bswap64(r, r, DIV_ROUND_UP(cpu->sve_max_vq * 2, 8));
 
     return 0;
 }
@@ -923,6 +1029,7 @@  int kvm_arch_get_registers(CPUState *cs)
     struct kvm_one_reg reg;
     uint64_t val;
     unsigned int el;
+    uint32_t fpr;
     int i, ret;
 
     ARMCPU *cpu = ARM_CPU(cs);
@@ -1012,10 +1119,30 @@  int kvm_arch_get_registers(CPUState *cs)
         env->spsr = env->banked_spsr[i];
     }
 
-    ret = kvm_arch_get_fpsimd(cs);
+    if (cpu_isar_feature(aa64_sve, cpu)) {
+        ret = kvm_arch_get_sve(cs);
+    } else {
+        ret = kvm_arch_get_fpsimd(cs);
+    }
+    if (ret) {
+        return ret;
+    }
+
+    reg.addr = (uintptr_t)(&fpr);
+    reg.id = AARCH64_SIMD_CTRL_REG(fp_regs.fpsr);
+    ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
+    if (ret) {
+        return ret;
+    }
+    vfp_set_fpsr(env, fpr);
+
+    reg.addr = (uintptr_t)(&fpr);
+    reg.id = AARCH64_SIMD_CTRL_REG(fp_regs.fpcr);
+    ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
     if (ret) {
         return ret;
     }
+    vfp_set_fpcr(env, fpr);
 
     ret = kvm_get_vcpu_events(cpu);
     if (ret) {