mbox series

[0/4] backlight: pwm_bl: support linear interpolation and brightness to human eye

Message ID 20180110223046.17696-1-enric.balletbo@collabora.com
Headers show
Series backlight: pwm_bl: support linear interpolation and brightness to human eye | expand

Message

Enric Balletbo i Serra Jan. 10, 2018, 10:30 p.m. UTC
Dear all,

This series is a first patchset based on the discussion of two previous RFCs
[1] and [2].

The first and second patch what tries to solve is the problem of granularity
for high resolution PWMs. The idea is simple interpolate between 2
brightness values so we can have a high PWM duty cycle (a 16 bits PWM is up
to 65535 possible steps) without having to list out every possible value in
the dts. I think that this patch is required to not break backward
compability, to be more flexible and also extend the functionality to be
able to use high resolution PWM with enough steps to have a good UI
experience in userspace.

The thirth and fourth patch is a bit more ambicious, the idea is let decide
the driver the brightness-levels required in function of the PWM resolution.
To do this create a brightness-levels table filled with the CIE 1931
algorithm values to convert brightness to PWM duty cycle.

More detailed info is available in the commit message of every patch.

Both functionalities were tested on a Samsung Chromebook Plus (that has a
16 bits PWM) and a SL50 device (with a 8 bits PWM)

Waiting for your feedback.

[1] http://www.spinics.net/lists/devicetree/msg193262.html
[2] https://lkml.org/lkml/2017/11/16/301

Best regards,

Enric Balletbo i Serra (4):
  backlight: pwm_bl: linear interpolation between brightness-levels
  dt-bindings: pwm-backlight: add a num-interpolation-steps property.
  backlight: pwm_bl: compute brightness of LED linearly to human eye.
  dt-bindings: pwm-backlight: move brightness-levels to optional.

 .../bindings/leds/backlight/pwm-backlight.txt      |  36 +++-
 drivers/video/backlight/pwm_bl.c                   | 237 +++++++++++++++++++--
 2 files changed, 253 insertions(+), 20 deletions(-)

Comments

Enric Balletbo Serra Jan. 12, 2018, 10:14 a.m. UTC | #1
2018-01-10 23:30 GMT+01:00 Enric Balletbo i Serra
<enric.balletbo@collabora.com>:
> When you want to change the brightness using a PWM signal, one thing you
> need to consider is how human perceive the brightness. Human perceive
> the brightness change non-linearly, we have better sensitivity at low
> luminance than high luminance, so to achieve perceived linear dimming,
> the brightness must be matches to the way our eyes behave. The CIE 1931
> lightness formula is what actually describes how we perceive light.
>
> This patch computes a default table with the brightness levels filled
> with the numbers provided by the CIE 1931 algorithm, the number of the
> brightness levels is calculated based on the PWM resolution.
>
> The calculation of the table using the CIE 1931 algorithm is enabled by
> default when you do not define the 'brightness-levels' propriety in your
> device tree.
>
> Signed-off-by: Enric Balletbo i Serra <enric.balletbo@collabora.com>
> ---
> Changes since RFCv2:
> - Pre-compute the table at boot using the cie 1931 algorithm, this
>   introduced again the fixed point calculations that needs to be
>   reviewed.
> - Calculate the number of needed steps based on the number of bits of
>   the PWM.
> - Improve some code documentation.
>
> Changes since RFCv1:
> - Get rid of fixed point calculations and use a table instead.
>
>  drivers/video/backlight/pwm_bl.c | 149 +++++++++++++++++++++++++++++++++++----
>  1 file changed, 136 insertions(+), 13 deletions(-)
>
> diff --git a/drivers/video/backlight/pwm_bl.c b/drivers/video/backlight/pwm_bl.c
> index eabe0a4462af..9398516db0ce 100644
> --- a/drivers/video/backlight/pwm_bl.c
> +++ b/drivers/video/backlight/pwm_bl.c
> @@ -143,6 +143,107 @@ static const struct backlight_ops pwm_backlight_ops = {
>  };
>
>  #ifdef CONFIG_OF
> +#define PWM_LUMINANCE_SCALE    10000 /* luminance scale */
> +
> +/* An integer based power function */
> +static u64 int_pow(u64 base, int exp)
> +{
> +       u64 result = 1;
> +
> +       while (exp) {
> +               if (exp & 1)
> +                       result *= base;
> +               exp >>= 1;
> +               base *= base;
> +       }
> +
> +       return result;
> +}
> +
> +/*
> + * CIE lightness to PWM conversion.
> + *
> + * The CIE 1931 lightness formula is what actually describes how we perceive
> + * light:
> + *          Y = (L* / 902.3)           if L* ≤ 0.08856
> + *          Y = ((L* + 16) / 116)^3    if L* > 0.08856
> + *
> + * Where Y is the luminance, the amount of light coming out of the screen, and
> + * is a number between 0.0 and 1.0; and L* is the lightness, how bright a human
> + * perceives the screen to be, and is a number between 0 and 100.
> + *
> + * The following function does the fixed point maths needed to implement the
> + * above formula.
> + */
> +static u64 cie1931(unsigned int lightness, unsigned int scale)
> +{
> +       u64 retval;
> +
> +       lightness *= 100;
> +       if (lightness <= (8 * scale)) {
> +               retval = DIV_ROUND_CLOSEST_ULL(lightness * 10, 9023);
> +       } else {
> +               retval = int_pow((lightness + (16 * scale)) / 116, 3);
> +               retval = DIV_ROUND_CLOSEST_ULL(retval, (scale * scale));
> +       }
> +
> +       return retval;
> +}
> +
> +/*
> + * Create a default correction table for PWM values to create linear brightness
> + * for LED based backlights using the CIE1931 algorithm.
> + */
> +static
> +int pwm_backlight_brightness_default(struct device *dev,
> +                                    struct platform_pwm_backlight_data *data,
> +                                    unsigned int period)
> +{
> +       unsigned int counter = 0;
> +       unsigned int i, n;
> +       u64 retval;
> +
> +       /*
> +        * Count the number of bits needed to represent the period number. The
> +        * number of bits is used to calculate the number of levels used for the
> +        * brightness-levels table, the purpose of this calculation is have a
> +        * pre-computed table with enough levels to get linear brightness
> +        * perception. The period is divided by the number of bits so for a
> +        * 8-bit PWM we have 255 / 8 = 32 brightness levels or for a 16-bit PWM
> +        * we have 65535 / 16 = 4096 brightness levels.
> +        *
> +        * Note that this method is based on empirical testing on different
> +        * devices with PWM of 8 and 16 bits of resolution.
> +        */
> +       n = period;
> +       while (n) {
> +               counter += n % 2;
> +               n >>= 1;
> +       }
> +
> +       data->max_brightness = DIV_ROUND_UP(period, counter);
> +       data->levels = devm_kcalloc(dev, data->max_brightness,
> +                                   sizeof(*data->levels), GFP_KERNEL);
> +       if (!data->levels)
> +               return -ENOMEM;
> +
> +       /* Fill the table using the cie1931 algorithm */
> +       for (i = 0; i < data->max_brightness; i++) {
> +               retval = cie1931((i * PWM_LUMINANCE_SCALE) /
> +                                data->max_brightness, PWM_LUMINANCE_SCALE) *
> +                                period;
> +               retval = DIV_ROUND_CLOSEST_ULL(retval, PWM_LUMINANCE_SCALE);
> +               if (retval > UINT_MAX)
> +                       return -EINVAL;
> +               data->levels[i] = (unsigned int)retval;
> +       }
> +
> +       data->dft_brightness = data->max_brightness / 2;
> +       data->max_brightness--;
> +
> +       return 0;
> +}
> +
>  static int pwm_backlight_parse_dt(struct device *dev,
>                                   struct platform_pwm_backlight_data *data)
>  {
> @@ -161,10 +262,13 @@ static int pwm_backlight_parse_dt(struct device *dev,
>
>         memset(data, 0, sizeof(*data));
>
> -       /* determine the number of brightness levels */
> +       /*
> +        * Determine the number of brightness levels, if this property is not
> +        * set a default table of brightness levels will be used.
> +        */
>         prop = of_find_property(node, "brightness-levels", &length);
>         if (!prop)
> -               return -EINVAL;
> +               return 0;
>
>         data->max_brightness = length / sizeof(u32);
>
> @@ -299,6 +403,14 @@ static int pwm_backlight_parse_dt(struct device *dev,
>  {
>         return -ENODEV;
>  }
> +
> +static
> +int pwm_backlight_brightness_default(struct device *dev,
> +                                    struct platform_pwm_backlight_data *data,
> +                                    unsigned int period)
> +{
> +       return -ENODEV;
> +}
>  #endif
>
>  static int pwm_backlight_initial_power_state(const struct pwm_bl_data *pb)
> @@ -339,7 +451,9 @@ static int pwm_backlight_probe(struct platform_device *pdev)
>         struct backlight_device *bl;
>         struct device_node *node = pdev->dev.of_node;
>         struct pwm_bl_data *pb;
> +       struct pwm_state state;
>         struct pwm_args pargs;
> +       unsigned int i;
>         int ret;
>
>         if (!data) {
> @@ -364,17 +478,6 @@ static int pwm_backlight_probe(struct platform_device *pdev)
>                 goto err_alloc;
>         }
>
> -       if (data->levels) {
> -               unsigned int i;
> -
> -               for (i = 0; i <= data->max_brightness; i++)
> -                       if (data->levels[i] > pb->scale)
> -                               pb->scale = data->levels[i];
> -
> -               pb->levels = data->levels;
> -       } else
> -               pb->scale = data->max_brightness;
> -
>         pb->notify = data->notify;
>         pb->notify_after = data->notify_after;
>         pb->check_fb = data->check_fb;
> @@ -441,6 +544,26 @@ static int pwm_backlight_probe(struct platform_device *pdev)
>
>         dev_dbg(&pdev->dev, "got pwm for backlight\n");
>
> +       if (!data->levels) {
> +               /* Get the PWM period (in nanoseconds) */
> +               pwm_get_state(pb->pwm, &state);
> +
> +               ret = pwm_backlight_brightness_default(&pdev->dev, data,
> +                                                      state.period);
> +               if (ret < 0) {
> +                       dev_err(&pdev->dev,
> +                               "failed to setup default brightness table\n");
> +                       goto err_alloc;
> +               }
> +       }
> +
> +       for (i = 0; i <= data->max_brightness; i++)

Oops, horrible and unjustifiable mistake, missing { here :/

> +               if (data->levels[i] > pb->scale)
> +                       pb->scale = data->levels[i];
> +
> +               pb->levels = data->levels;
> +       }
> +
>         /*
>          * FIXME: pwm_apply_args() should be removed when switching to
>          * the atomic PWM API.
> --
> 2.15.1
>
--
To unsubscribe from this list: send the line "unsubscribe devicetree" in
the body of a message to majordomo@vger.kernel.org
More majordomo info at  http://vger.kernel.org/majordomo-info.html
Daniel Thompson Jan. 12, 2018, 11:50 a.m. UTC | #2
On Fri, Jan 12, 2018 at 11:14:54AM +0100, Enric Balletbo Serra wrote:
> > @@ -441,6 +544,26 @@ static int pwm_backlight_probe(struct platform_device *pdev)
> >
> >         dev_dbg(&pdev->dev, "got pwm for backlight\n");
> >
> > +       if (!data->levels) {
> > +               /* Get the PWM period (in nanoseconds) */
> > +               pwm_get_state(pb->pwm, &state);
> > +
> > +               ret = pwm_backlight_brightness_default(&pdev->dev, data,
> > +                                                      state.period);
> > +               if (ret < 0) {
> > +                       dev_err(&pdev->dev,
> > +                               "failed to setup default brightness table\n");
> > +                       goto err_alloc;
> > +               }
> > +       }
> > +
> > +       for (i = 0; i <= data->max_brightness; i++)
> 
> Oops, horrible and unjustifiable mistake, missing { here :/

Well, at least you found it rather than us :-)


Daniel.
--
To unsubscribe from this list: send the line "unsubscribe devicetree" in
the body of a message to majordomo@vger.kernel.org
More majordomo info at  http://vger.kernel.org/majordomo-info.html