diff mbox

[-V2,2/2] powerpc: Update kernel VSID range

Message ID 1360942778-21795-2-git-send-email-aneesh.kumar@linux.vnet.ibm.com (mailing list archive)
State Not Applicable
Delegated to: Benjamin Herrenschmidt
Headers show

Commit Message

Aneesh Kumar K.V Feb. 15, 2013, 3:39 p.m. UTC
From: "Aneesh Kumar K.V" <aneesh.kumar@linux.vnet.ibm.com>

This patch change the kernel VSID range so that we limit VSID_BITS to 37.
This enables us to support 64TB with 65 bit VA (37+28). Without this patch
we have boot hangs on platforms that only support 65 bit VA.

With this patch we now have proto vsid generated as below:

We first generate a 37-bit "proto-VSID". Proto-VSIDs are generated
from mmu context id and effective segment id of the address.

For user processes max context id is limited to ((1ul << 19) - 6)
for kernel space, we use the top 4 context ids to map address as below
0x7fffc -  [ 0xc000000000000000 - 0xc0003fffffffffff ]
0x7fffd -  [ 0xd000000000000000 - 0xd0003fffffffffff ]
0x7fffe -  [ 0xe000000000000000 - 0xe0003fffffffffff ]
0x7ffff -  [ 0xf000000000000000 - 0xf0003fffffffffff ]

Signed-off-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com>
---
 arch/powerpc/include/asm/mmu-hash64.h |  115 +++++++++++++++++----------------
 arch/powerpc/kernel/exceptions-64s.S  |   37 ++++++++---
 arch/powerpc/mm/hash_utils_64.c       |   20 ++++--
 arch/powerpc/mm/mmu_context_hash64.c  |   12 +---
 arch/powerpc/mm/slb_low.S             |   44 +++++++++----
 arch/powerpc/mm/tlb_hash64.c          |    2 +-
 6 files changed, 136 insertions(+), 94 deletions(-)

Comments

David Laight Feb. 15, 2013, 4:52 p.m. UTC | #1
>   * The proto-VSIDs are then scrambled into real VSIDs with the
>   * multiplicative hash:
> ...
>   * VSID_MULTIPLIER is prime, so in particular it is
>   * co-prime to VSID_MODULUS, making this a 1:1 scrambling function.
>   * Because the modulus is 2^n-1 we can compute it efficiently without
> + * robust scattering in the hash * table (at least based on some initial
> + * results).

Are VSIDs a value that the kernel has a 'free choice' over the
value to allocate, and that only have to be unique over the
allocated values?

If so, instead of using hash chains it is probably better to
pick a free 'hash' table entry, and then allocate a VSID value
that maps directly into that table slot.
Reusing values can be avoided by incrementing the high bits
every time a table entry is reused, the free slots can also
easily be kept on a FIFO list.

If the table gets nearly full its size can be doubled (protect
with rcu?).

	David
Geoff Levand March 12, 2013, 12:41 a.m. UTC | #2
Hi,

On Fri, 2013-02-15 at 21:09 +0530, Aneesh Kumar K.V wrote:
> From: "Aneesh Kumar K.V" <aneesh.kumar@linux.vnet.ibm.com>
> 
> This patch change the kernel VSID range so that we limit VSID_BITS to 37.
> This enables us to support 64TB with 65 bit VA (37+28). Without this patch
> we have boot hangs on platforms that only support 65 bit VA.

I didn't seen this fix go in for 3.8.  Did I miss it, or is there some
reason we don't want it?

I need this to boot PS3.

-Geoff
Benjamin Herrenschmidt March 12, 2013, 1:05 a.m. UTC | #3
On Mon, 2013-03-11 at 17:41 -0700, Geoff Levand wrote:
> I didn't seen this fix go in for 3.8.  Did I miss it, or is there some
> reason we don't want it?
> 
> I need this to boot PS3.

Working on it. There's a couple of issues, among others testing on STAB
and a couple of comments from David, I'm hoping to have that sorted some
time today.

Ben.
Aneesh Kumar K.V March 12, 2013, 2:58 a.m. UTC | #4
Ben, Paul,

Any update on this ? 


-aneesh

"Aneesh Kumar K.V" <aneesh.kumar@linux.vnet.ibm.com> writes:

> From: "Aneesh Kumar K.V" <aneesh.kumar@linux.vnet.ibm.com>
>
> This patch change the kernel VSID range so that we limit VSID_BITS to 37.
> This enables us to support 64TB with 65 bit VA (37+28). Without this patch
> we have boot hangs on platforms that only support 65 bit VA.
>
> With this patch we now have proto vsid generated as below:
>
> We first generate a 37-bit "proto-VSID". Proto-VSIDs are generated
> from mmu context id and effective segment id of the address.
>
> For user processes max context id is limited to ((1ul << 19) - 6)
> for kernel space, we use the top 4 context ids to map address as below
> 0x7fffc -  [ 0xc000000000000000 - 0xc0003fffffffffff ]
> 0x7fffd -  [ 0xd000000000000000 - 0xd0003fffffffffff ]
> 0x7fffe -  [ 0xe000000000000000 - 0xe0003fffffffffff ]
> 0x7ffff -  [ 0xf000000000000000 - 0xf0003fffffffffff ]
>
> Signed-off-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com>
> ---
>  arch/powerpc/include/asm/mmu-hash64.h |  115 +++++++++++++++++----------------
>  arch/powerpc/kernel/exceptions-64s.S  |   37 ++++++++---
>  arch/powerpc/mm/hash_utils_64.c       |   20 ++++--
>  arch/powerpc/mm/mmu_context_hash64.c  |   12 +---
>  arch/powerpc/mm/slb_low.S             |   44 +++++++++----
>  arch/powerpc/mm/tlb_hash64.c          |    2 +-
>  6 files changed, 136 insertions(+), 94 deletions(-)
>
> diff --git a/arch/powerpc/include/asm/mmu-hash64.h b/arch/powerpc/include/asm/mmu-hash64.h
> index 5f8c2bd..35bb51e 100644
> --- a/arch/powerpc/include/asm/mmu-hash64.h
> +++ b/arch/powerpc/include/asm/mmu-hash64.h
> @@ -343,17 +343,16 @@ extern void slb_set_size(u16 size);
>  /*
>   * VSID allocation (256MB segment)
>   *
> - * We first generate a 38-bit "proto-VSID".  For kernel addresses this
> - * is equal to the ESID | 1 << 37, for user addresses it is:
> - *	(context << USER_ESID_BITS) | (esid & ((1U << USER_ESID_BITS) - 1)
> + * We first generate a 37-bit "proto-VSID". Proto-VSIDs are generated
> + * from mmu context id and effective segment id of the address.
>   *
> - * This splits the proto-VSID into the below range
> - *  0 - (2^(CONTEXT_BITS + USER_ESID_BITS) - 1) : User proto-VSID range
> - *  2^(CONTEXT_BITS + USER_ESID_BITS) - 2^(VSID_BITS) : Kernel proto-VSID range
> - *
> - * We also have CONTEXT_BITS + USER_ESID_BITS = VSID_BITS - 1
> - * That is, we assign half of the space to user processes and half
> - * to the kernel.
> + * For user processes max context id is limited to ((1ul << 19) - 6)
> + * for kernel space, we use the top 4 context ids to map address as below
> + * NOTE: each context only support 64TB now.
> + * 0x7fffc -  [ 0xc000000000000000 - 0xc0003fffffffffff ]
> + * 0x7fffd -  [ 0xd000000000000000 - 0xd0003fffffffffff ]
> + * 0x7fffe -  [ 0xe000000000000000 - 0xe0003fffffffffff ]
> + * 0x7ffff -  [ 0xf000000000000000 - 0xf0003fffffffffff ]
>   *
>   * The proto-VSIDs are then scrambled into real VSIDs with the
>   * multiplicative hash:
> @@ -363,22 +362,19 @@ extern void slb_set_size(u16 size);
>   * VSID_MULTIPLIER is prime, so in particular it is
>   * co-prime to VSID_MODULUS, making this a 1:1 scrambling function.
>   * Because the modulus is 2^n-1 we can compute it efficiently without
> - * a divide or extra multiply (see below).
> - *
> - * This scheme has several advantages over older methods:
> + * a divide or extra multiply (see below). The scramble function gives
> + * robust scattering in the hash * table (at least based on some initial
> + * results).
>   *
> - *	- We have VSIDs allocated for every kernel address
> - * (i.e. everything above 0xC000000000000000), except the very top
> - * segment, which simplifies several things.
> + * We also consider VSID 0 special. We use VSID 0 for slb entries mapping
> + * bad address. This enables us to consolidate bad address handling in
> + * hash_page.
>   *
> - *	- We allow for USER_ESID_BITS significant bits of ESID and
> - * CONTEXT_BITS  bits of context for user addresses.
> - *  i.e. 64T (46 bits) of address space for up to half a million contexts.
> - *
> - *	- The scramble function gives robust scattering in the hash
> - * table (at least based on some initial results).  The previous
> - * method was more susceptible to pathological cases giving excessive
> - * hash collisions.
> + * We also need to avoid the last segment of the last context, because that
> + * would give a protovsid of 0x1fffffffff. That will result in a VSID 0
> + * because of the modulo operation in vsid scramble. But the vmemmap
> + * (which is what uses region 0xf) will never be close to 64TB in size
> + * (it's 56 bytes per page of system memory).
>   */
>
>  #define CONTEXT_BITS		19
> @@ -386,15 +382,25 @@ extern void slb_set_size(u16 size);
>  #define USER_ESID_BITS_1T	6
>
>  /*
> + * 256MB segment
> + * The proto-VSID space has 2^(CONTEX_BITS + USER_ESID_BITS) - 1 segments
> + * available for user + kernel mapping. The top 4 contexts are used for
> + * kernel mapping. Each segment contains 2^28 bytes. Each
> + * context maps 2^46 bytes (64TB) so we can support 2^19-1 contexts
> + * (19 == 37 + 28 - 46).
> + */
> +#define MAX_CONTEXT	((ASM_CONST(1) << CONTEXT_BITS) - 1)
> +
> +/*
>   * This should be computed such that protovosid * vsid_mulitplier
>   * doesn't overflow 64 bits. It should also be co-prime to vsid_modulus
>   */
>  #define VSID_MULTIPLIER_256M	ASM_CONST(12538073)	/* 24-bit prime */
> -#define VSID_BITS_256M		(CONTEXT_BITS + USER_ESID_BITS + 1)
> +#define VSID_BITS_256M		(CONTEXT_BITS + USER_ESID_BITS)
>  #define VSID_MODULUS_256M	((1UL<<VSID_BITS_256M)-1)
>
>  #define VSID_MULTIPLIER_1T	ASM_CONST(12538073)	/* 24-bit prime */
> -#define VSID_BITS_1T		(CONTEXT_BITS + USER_ESID_BITS_1T + 1)
> +#define VSID_BITS_1T		(CONTEXT_BITS + USER_ESID_BITS_1T)
>  #define VSID_MODULUS_1T		((1UL<<VSID_BITS_1T)-1)
>
>
> @@ -422,7 +428,8 @@ extern void slb_set_size(u16 size);
>  	srdi	rx,rt,VSID_BITS_##size;					\
>  	clrldi	rt,rt,(64-VSID_BITS_##size);				\
>  	add	rt,rt,rx;		/* add high and low bits */	\
> -	/* Now, r3 == VSID (mod 2^36-1), and lies between 0 and		\
> +	/* NOTE: explanation based on VSID_BITS_##size = 36		\
> +	 * Now, r3 == VSID (mod 2^36-1), and lies between 0 and		\
>  	 * 2^36-1+2^28-1.  That in particular means that if r3 >=	\
>  	 * 2^36-1, then r3+1 has the 2^36 bit set.  So, if r3+1 has	\
>  	 * the bit clear, r3 already has the answer we want, if it	\
> @@ -514,34 +521,6 @@ typedef struct {
>  	})
>  #endif /* 1 */
>
> -/*
> - * This is only valid for addresses >= PAGE_OFFSET
> - * The proto-VSID space is divided into two class
> - * User:   0 to 2^(CONTEXT_BITS + USER_ESID_BITS) -1
> - * kernel: 2^(CONTEXT_BITS + USER_ESID_BITS) to 2^(VSID_BITS) - 1
> - *
> - * With KERNEL_START at 0xc000000000000000, the proto vsid for
> - * the kernel ends up with 0xc00000000 (36 bits). With 64TB
> - * support we need to have kernel proto-VSID in the
> - * [2^37 to 2^38 - 1] range due to the increased USER_ESID_BITS.
> - */
> -static inline unsigned long get_kernel_vsid(unsigned long ea, int ssize)
> -{
> -	unsigned long proto_vsid;
> -	/*
> -	 * We need to make sure proto_vsid for the kernel is
> -	 * >= 2^(CONTEXT_BITS + USER_ESID_BITS[_1T])
> -	 */
> -	if (ssize == MMU_SEGSIZE_256M) {
> -		proto_vsid = ea >> SID_SHIFT;
> -		proto_vsid |= (1UL << (CONTEXT_BITS + USER_ESID_BITS));
> -		return vsid_scramble(proto_vsid, 256M);
> -	}
> -	proto_vsid = ea >> SID_SHIFT_1T;
> -	proto_vsid |= (1UL << (CONTEXT_BITS + USER_ESID_BITS_1T));
> -	return vsid_scramble(proto_vsid, 1T);
> -}
> -
>  /* Returns the segment size indicator for a user address */
>  static inline int user_segment_size(unsigned long addr)
>  {
> @@ -551,10 +530,15 @@ static inline int user_segment_size(unsigned long addr)
>  	return MMU_SEGSIZE_256M;
>  }
>
> -/* This is only valid for user addresses (which are below 2^44) */
>  static inline unsigned long get_vsid(unsigned long context, unsigned long ea,
>  				     int ssize)
>  {
> +	/*
> +	 * Bad address. We return VSID 0 for that
> +	 */
> +	if ((ea & ~REGION_MASK) >= PGTABLE_RANGE)
> +		return 0;
> +
>  	if (ssize == MMU_SEGSIZE_256M)
>  		return vsid_scramble((context << USER_ESID_BITS)
>  				     | (ea >> SID_SHIFT), 256M);
> @@ -562,6 +546,25 @@ static inline unsigned long get_vsid(unsigned long context, unsigned long ea,
>  			     | (ea >> SID_SHIFT_1T), 1T);
>  }
>
> +/*
> + * This is only valid for addresses >= PAGE_OFFSET
> + *
> + * For kernel space, we use the top 4 context ids to map address as below
> + * 0x7fffc -  [ 0xc000000000000000 - 0xc0003fffffffffff ]
> + * 0x7fffd -  [ 0xd000000000000000 - 0xd0003fffffffffff ]
> + * 0x7fffe -  [ 0xe000000000000000 - 0xe0003fffffffffff ]
> + * 0x7ffff -  [ 0xf000000000000000 - 0xf0003fffffffffff ]
> + */
> +static inline unsigned long get_kernel_vsid(unsigned long ea, int ssize)
> +{
> +	unsigned long context;
> +
> +	/*
> +	 * kernel take the top 4 context from the available range
> +	 */
> +	context = (MAX_CONTEXT - 3) +  ((ea >> 60) - 0xc);
> +	return get_vsid(context, ea, ssize);
> +}
>  #endif /* __ASSEMBLY__ */
>
>  #endif /* _ASM_POWERPC_MMU_HASH64_H_ */
> diff --git a/arch/powerpc/kernel/exceptions-64s.S b/arch/powerpc/kernel/exceptions-64s.S
> index 4665e82..0e9c48c 100644
> --- a/arch/powerpc/kernel/exceptions-64s.S
> +++ b/arch/powerpc/kernel/exceptions-64s.S
> @@ -1268,20 +1268,39 @@ do_ste_alloc:
>  _GLOBAL(do_stab_bolted)
>  	stw	r9,PACA_EXSLB+EX_CCR(r13)	/* save CR in exc. frame */
>  	std	r11,PACA_EXSLB+EX_SRR0(r13)	/* save SRR0 in exc. frame */
> +	mfspr	r11,SPRN_DAR			/* ea */
>
> +	/*
> +	 * check for bad kernel/user address
> +	 * (ea & ~REGION_MASK) >= PGTABLE_RANGE
> +	 */
> +	clrldi  r9,r11,4
> +	li	r10,-1
> +	clrldi  r10,r10,(64 - 46)
> +	cmpld	cr7,r9,r10
> +	li	r9,0	/* VSID = 0 for bad address */
> +	bgt	cr7,0f
> +
> +	/*
> +	 * Calculate VSID:
> +	 * This is the kernel vsid, we take the top for context from
> +	 * the range. context = (MAX_CONTEXT - 3) + ((ea >> 60) - 0xc)
> +	 * Here we know that (ea >> 60) == 0xc
> +	 */
> +	lis	r9,8
> +	subi	r9,r9,(3 + 1)		/* context */
> +
> +	srdi	r10,r11,SID_SHIFT
> +	rldimi  r10,r9,USER_ESID_BITS,0 /* proto vsid */
> +	ASM_VSID_SCRAMBLE(r10, r9, 256M)
> +	rldic	r9,r10,12,16	/* r9 = vsid << 12 */
> +
> +0:
>  	/* Hash to the primary group */
>  	ld	r10,PACASTABVIRT(r13)
> -	mfspr	r11,SPRN_DAR
> -	srdi	r11,r11,28
> +	srdi	r11,r11,SID_SHIFT
>  	rldimi	r10,r11,7,52	/* r10 = first ste of the group */
>
> -	/* Calculate VSID */
> -	/* This is a kernel address, so protovsid = ESID | 1 << 37 */
> -	li	r9,0x1
> -	rldimi  r11,r9,(CONTEXT_BITS + USER_ESID_BITS),0
> -	ASM_VSID_SCRAMBLE(r11, r9, 256M)
> -	rldic	r9,r11,12,16	/* r9 = vsid << 12 */
> -
>  	/* Search the primary group for a free entry */
>  1:	ld	r11,0(r10)	/* Test valid bit of the current ste	*/
>  	andi.	r11,r11,0x80
> diff --git a/arch/powerpc/mm/hash_utils_64.c b/arch/powerpc/mm/hash_utils_64.c
> index 3a292be..bfeab83 100644
> --- a/arch/powerpc/mm/hash_utils_64.c
> +++ b/arch/powerpc/mm/hash_utils_64.c
> @@ -194,6 +194,11 @@ int htab_bolt_mapping(unsigned long vstart, unsigned long vend,
>  		unsigned long vpn  = hpt_vpn(vaddr, vsid, ssize);
>  		unsigned long tprot = prot;
>
> +		/*
> +		 * If we hit a bad address return error.
> +		 */
> +		if (!vsid)
> +			return -1;
>  		/* Make kernel text executable */
>  		if (overlaps_kernel_text(vaddr, vaddr + step))
>  			tprot &= ~HPTE_R_N;
> @@ -921,11 +926,6 @@ int hash_page(unsigned long ea, unsigned long access, unsigned long trap)
>  	DBG_LOW("hash_page(ea=%016lx, access=%lx, trap=%lx\n",
>  		ea, access, trap);
>
> -	if ((ea & ~REGION_MASK) >= PGTABLE_RANGE) {
> -		DBG_LOW(" out of pgtable range !\n");
> - 		return 1;
> -	}
> -
>  	/* Get region & vsid */
>   	switch (REGION_ID(ea)) {
>  	case USER_REGION_ID:
> @@ -956,6 +956,11 @@ int hash_page(unsigned long ea, unsigned long access, unsigned long trap)
>  	}
>  	DBG_LOW(" mm=%p, mm->pgdir=%p, vsid=%016lx\n", mm, mm->pgd, vsid);
>
> +	/* Bad address. */
> +	if (!vsid) {
> +		DBG_LOW("Bad address!\n");
> +		return 1;
> +	}
>  	/* Get pgdir */
>  	pgdir = mm->pgd;
>  	if (pgdir == NULL)
> @@ -1125,6 +1130,8 @@ void hash_preload(struct mm_struct *mm, unsigned long ea,
>  	/* Get VSID */
>  	ssize = user_segment_size(ea);
>  	vsid = get_vsid(mm->context.id, ea, ssize);
> +	if (!vsid)
> +		return;
>
>  	/* Hash doesn't like irqs */
>  	local_irq_save(flags);
> @@ -1217,6 +1224,9 @@ static void kernel_map_linear_page(unsigned long vaddr, unsigned long lmi)
>  	hash = hpt_hash(vpn, PAGE_SHIFT, mmu_kernel_ssize);
>  	hpteg = ((hash & htab_hash_mask) * HPTES_PER_GROUP);
>
> +	/* Don't create HPTE entries for bad address */
> +	if (!vsid)
> +		return;
>  	ret = ppc_md.hpte_insert(hpteg, vpn, __pa(vaddr),
>  				 mode, HPTE_V_BOLTED,
>  				 mmu_linear_psize, mmu_kernel_ssize);
> diff --git a/arch/powerpc/mm/mmu_context_hash64.c b/arch/powerpc/mm/mmu_context_hash64.c
> index 40bc5b0..59cd773 100644
> --- a/arch/powerpc/mm/mmu_context_hash64.c
> +++ b/arch/powerpc/mm/mmu_context_hash64.c
> @@ -29,15 +29,6 @@
>  static DEFINE_SPINLOCK(mmu_context_lock);
>  static DEFINE_IDA(mmu_context_ida);
>
> -/*
> - * 256MB segment
> - * The proto-VSID space has 2^(CONTEX_BITS + USER_ESID_BITS) - 1 segments
> - * available for user mappings. Each segment contains 2^28 bytes. Each
> - * context maps 2^46 bytes (64TB) so we can support 2^19-1 contexts
> - * (19 == 37 + 28 - 46).
> - */
> -#define MAX_CONTEXT	((1UL << CONTEXT_BITS) - 1)
> -
>  int __init_new_context(void)
>  {
>  	int index;
> @@ -56,7 +47,8 @@ again:
>  	else if (err)
>  		return err;
>
> -	if (index > MAX_CONTEXT) {
> +	if (index > (MAX_CONTEXT - 4)) {
> +		/* Top 4 context id values are used for kernel */
>  		spin_lock(&mmu_context_lock);
>  		ida_remove(&mmu_context_ida, index);
>  		spin_unlock(&mmu_context_lock);
> diff --git a/arch/powerpc/mm/slb_low.S b/arch/powerpc/mm/slb_low.S
> index 1a16ca2..c066d00 100644
> --- a/arch/powerpc/mm/slb_low.S
> +++ b/arch/powerpc/mm/slb_low.S
> @@ -31,13 +31,20 @@
>   * No other registers are examined or changed.
>   */
>  _GLOBAL(slb_allocate_realmode)
> -	/* r3 = faulting address */
> +	/*
> +	 * check for bad kernel/user address
> +	 * (ea & ~REGION_MASK) >= PGTABLE_RANGE
> +	 */
> +	clrldi  r9,r3,4
> +	li	r10,-1
> +	clrldi  r10,r10,(64 - 46)
> +	cmpld	cr7,r9,r10
> +	bgt	cr7,8f
>
>  	srdi	r9,r3,60		/* get region */
> -	srdi	r10,r3,28		/* get esid */
>  	cmpldi	cr7,r9,0xc		/* cmp PAGE_OFFSET for later use */
>
> -	/* r3 = address, r10 = esid, cr7 = <> PAGE_OFFSET */
> +	/* r3 = address, cr7 = <> PAGE_OFFSET */
>  	blt	cr7,0f			/* user or kernel? */
>
>  	/* kernel address: proto-VSID = ESID */
> @@ -56,18 +63,26 @@ _GLOBAL(slb_allocate_realmode)
>  	 */
>  _GLOBAL(slb_miss_kernel_load_linear)
>  	li	r11,0
> -	li	r9,0x1
> +	/*
> +	 * context = (MAX_CONTEXT - 3) + ((ea >> 60) - 0xc)
> +	 */
> +	srdi	r9,r3,60
> +	subi	r9,r9,(0xc + 3 + 1)
> +	lis	r10, 8
> +	add	r9,r9,r10
> +	srdi	r10,r3,SID_SHIFT	/* get esid */
>  	/*
>  	 * for 1T we shift 12 bits more.  slb_finish_load_1T will do
>  	 * the necessary adjustment
>  	 */
> -	rldimi  r10,r9,(CONTEXT_BITS + USER_ESID_BITS),0
> +	rldimi  r10,r9,USER_ESID_BITS,0
>  BEGIN_FTR_SECTION
>  	b	slb_finish_load
>  END_MMU_FTR_SECTION_IFCLR(MMU_FTR_1T_SEGMENT)
>  	b	slb_finish_load_1T
>
>  1:
> +	srdi	r10,r3,SID_SHIFT	/* get esid */
>  #ifdef CONFIG_SPARSEMEM_VMEMMAP
>  	/* Check virtual memmap region. To be patches at kernel boot */
>  	cmpldi	cr0,r9,0xf
> @@ -91,23 +106,26 @@ _GLOBAL(slb_miss_kernel_load_vmemmap)
>  	_GLOBAL(slb_miss_kernel_load_io)
>  	li	r11,0
>  6:
> -	li	r9,0x1
> +	/*
> +	 * context = (MAX_CONTEXT - 3) + ((ea >> 60) - 0xc)
> +	 */
> +	srdi	r9,r3,60
> +	subi	r9,r9,(0xc + 3 + 1)
> +	lis	r10,8
> +	add	r9,r9,r10
> +	srdi	r10,r3,SID_SHIFT
>  	/*
>  	 * for 1T we shift 12 bits more.  slb_finish_load_1T will do
>  	 * the necessary adjustment
>  	 */
> -	rldimi  r10,r9,(CONTEXT_BITS + USER_ESID_BITS),0
> +	rldimi  r10,r9,USER_ESID_BITS,0
>  BEGIN_FTR_SECTION
>  	b	slb_finish_load
>  END_MMU_FTR_SECTION_IFCLR(MMU_FTR_1T_SEGMENT)
>  	b	slb_finish_load_1T
>
> -0:	/* user address: proto-VSID = context << 15 | ESID. First check
> -	 * if the address is within the boundaries of the user region
> -	 */
> -	srdi.	r9,r10,USER_ESID_BITS
> -	bne-	8f			/* invalid ea bits set */
> -
> +0:
> +	srdi	r10,r3,SID_SHIFT	/* get esid */
>
>  	/* when using slices, we extract the psize off the slice bitmaps
>  	 * and then we need to get the sllp encoding off the mmu_psize_defs
> diff --git a/arch/powerpc/mm/tlb_hash64.c b/arch/powerpc/mm/tlb_hash64.c
> index 0d82ef5..023ec8a 100644
> --- a/arch/powerpc/mm/tlb_hash64.c
> +++ b/arch/powerpc/mm/tlb_hash64.c
> @@ -82,11 +82,11 @@ void hpte_need_flush(struct mm_struct *mm, unsigned long addr,
>  	if (!is_kernel_addr(addr)) {
>  		ssize = user_segment_size(addr);
>  		vsid = get_vsid(mm->context.id, addr, ssize);
> -		WARN_ON(vsid == 0);
>  	} else {
>  		vsid = get_kernel_vsid(addr, mmu_kernel_ssize);
>  		ssize = mmu_kernel_ssize;
>  	}
> +	WARN_ON(vsid == 0);
>  	vpn = hpt_vpn(addr, vsid, ssize);
>  	rpte = __real_pte(__pte(pte), ptep);
>
> -- 
> 1.7.10
Benjamin Herrenschmidt March 12, 2013, 3:02 a.m. UTC | #5
On Tue, 2013-03-12 at 08:28 +0530, Aneesh Kumar K.V wrote:
> Ben, Paul,
> 
> Any update on this ? 

Paul and David are reviewing it and I was trying to test on POWER3 (STAB
vs. SLB) but ended up bisecting instead why POWER3 stopped working in
3.4 ... :-)

Cheers,
Ben.
David Gibson March 12, 2013, 4:25 a.m. UTC | #6
On Fri, Feb 15, 2013 at 09:09:38PM +0530, Aneesh Kumar K.V wrote:
> From: "Aneesh Kumar K.V" <aneesh.kumar@linux.vnet.ibm.com>
> 
> This patch change the kernel VSID range so that we limit VSID_BITS to 37.
> This enables us to support 64TB with 65 bit VA (37+28). Without this patch
> we have boot hangs on platforms that only support 65 bit VA.
> 
> With this patch we now have proto vsid generated as below:
> 
> We first generate a 37-bit "proto-VSID". Proto-VSIDs are generated
> from mmu context id and effective segment id of the address.
> 
> For user processes max context id is limited to ((1ul << 19) - 6)
> for kernel space, we use the top 4 context ids to map address as below
> 0x7fffc -  [ 0xc000000000000000 - 0xc0003fffffffffff ]
> 0x7fffd -  [ 0xd000000000000000 - 0xd0003fffffffffff ]
> 0x7fffe -  [ 0xe000000000000000 - 0xe0003fffffffffff ]
> 0x7ffff -  [ 0xf000000000000000 - 0xf0003fffffffffff ]
> 
> Signed-off-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com>
> ---
>  arch/powerpc/include/asm/mmu-hash64.h |  115 +++++++++++++++++----------------
>  arch/powerpc/kernel/exceptions-64s.S  |   37 ++++++++---
>  arch/powerpc/mm/hash_utils_64.c       |   20 ++++--
>  arch/powerpc/mm/mmu_context_hash64.c  |   12 +---
>  arch/powerpc/mm/slb_low.S             |   44 +++++++++----
>  arch/powerpc/mm/tlb_hash64.c          |    2 +-
>  6 files changed, 136 insertions(+), 94 deletions(-)
> 
> diff --git a/arch/powerpc/include/asm/mmu-hash64.h b/arch/powerpc/include/asm/mmu-hash64.h
> index 5f8c2bd..35bb51e 100644
> --- a/arch/powerpc/include/asm/mmu-hash64.h
> +++ b/arch/powerpc/include/asm/mmu-hash64.h
> @@ -343,17 +343,16 @@ extern void slb_set_size(u16 size);
>  /*
>   * VSID allocation (256MB segment)
>   *
> - * We first generate a 38-bit "proto-VSID".  For kernel addresses this
> - * is equal to the ESID | 1 << 37, for user addresses it is:
> - *	(context << USER_ESID_BITS) | (esid & ((1U << USER_ESID_BITS) - 1)
> + * We first generate a 37-bit "proto-VSID". Proto-VSIDs are generated
> + * from mmu context id and effective segment id of the address.
>   *
> - * This splits the proto-VSID into the below range
> - *  0 - (2^(CONTEXT_BITS + USER_ESID_BITS) - 1) : User proto-VSID range
> - *  2^(CONTEXT_BITS + USER_ESID_BITS) - 2^(VSID_BITS) : Kernel proto-VSID range
> - *
> - * We also have CONTEXT_BITS + USER_ESID_BITS = VSID_BITS - 1
> - * That is, we assign half of the space to user processes and half
> - * to the kernel.
> + * For user processes max context id is limited to ((1ul << 19) - 6)
> + * for kernel space, we use the top 4 context ids to map address as below
> + * NOTE: each context only support 64TB now.
> + * 0x7fffc -  [ 0xc000000000000000 - 0xc0003fffffffffff ]
> + * 0x7fffd -  [ 0xd000000000000000 - 0xd0003fffffffffff ]
> + * 0x7fffe -  [ 0xe000000000000000 - 0xe0003fffffffffff ]
> + * 0x7ffff -  [ 0xf000000000000000 - 0xf0003fffffffffff ]
>   *
>   * The proto-VSIDs are then scrambled into real VSIDs with the
>   * multiplicative hash:
> @@ -363,22 +362,19 @@ extern void slb_set_size(u16 size);
>   * VSID_MULTIPLIER is prime, so in particular it is
>   * co-prime to VSID_MODULUS, making this a 1:1 scrambling function.
>   * Because the modulus is 2^n-1 we can compute it efficiently without
> - * a divide or extra multiply (see below).
> - *
> - * This scheme has several advantages over older methods:
> + * a divide or extra multiply (see below). The scramble function gives
> + * robust scattering in the hash * table (at least based on some initial
> + * results).
>   *
> - *	- We have VSIDs allocated for every kernel address
> - * (i.e. everything above 0xC000000000000000), except the very top
> - * segment, which simplifies several things.
> + * We also consider VSID 0 special. We use VSID 0 for slb entries mapping
> + * bad address. This enables us to consolidate bad address handling in
> + * hash_page.
>   *
> - *	- We allow for USER_ESID_BITS significant bits of ESID and
> - * CONTEXT_BITS  bits of context for user addresses.
> - *  i.e. 64T (46 bits) of address space for up to half a million contexts.
> - *
> - *	- The scramble function gives robust scattering in the hash
> - * table (at least based on some initial results).  The previous
> - * method was more susceptible to pathological cases giving excessive
> - * hash collisions.
> + * We also need to avoid the last segment of the last context, because that
> + * would give a protovsid of 0x1fffffffff. That will result in a VSID 0
> + * because of the modulo operation in vsid scramble. But the vmemmap
> + * (which is what uses region 0xf) will never be close to 64TB in size
> + * (it's 56 bytes per page of system memory).
>   */
>  
>  #define CONTEXT_BITS		19
> @@ -386,15 +382,25 @@ extern void slb_set_size(u16 size);
>  #define USER_ESID_BITS_1T	6

USER_ESID_BITS should probably be renamed just ESID_BITS, since it's
now relevant to kernel addresses too.

>  /*
> + * 256MB segment
> + * The proto-VSID space has 2^(CONTEX_BITS + USER_ESID_BITS) - 1 segments
> + * available for user + kernel mapping. The top 4 contexts are used for
> + * kernel mapping. Each segment contains 2^28 bytes. Each
> + * context maps 2^46 bytes (64TB) so we can support 2^19-1 contexts
> + * (19 == 37 + 28 - 46).
> + */
> +#define MAX_CONTEXT	((ASM_CONST(1) << CONTEXT_BITS) - 1)

Hrm.  I think it would be clearer to have MAX_CONTEXT (still) be the
maximum usable *user* context (i.e. 0x80000 - 5) and put the kernel
ones above that still.

> +
> +/*
>   * This should be computed such that protovosid * vsid_mulitplier
>   * doesn't overflow 64 bits. It should also be co-prime to vsid_modulus
>   */
>  #define VSID_MULTIPLIER_256M	ASM_CONST(12538073)	/* 24-bit prime */
> -#define VSID_BITS_256M		(CONTEXT_BITS + USER_ESID_BITS + 1)
> +#define VSID_BITS_256M		(CONTEXT_BITS + USER_ESID_BITS)
>  #define VSID_MODULUS_256M	((1UL<<VSID_BITS_256M)-1)
>  
>  #define VSID_MULTIPLIER_1T	ASM_CONST(12538073)	/* 24-bit prime */
> -#define VSID_BITS_1T		(CONTEXT_BITS + USER_ESID_BITS_1T + 1)
> +#define VSID_BITS_1T		(CONTEXT_BITS + USER_ESID_BITS_1T)
>  #define VSID_MODULUS_1T		((1UL<<VSID_BITS_1T)-1)
>  
>  
> @@ -422,7 +428,8 @@ extern void slb_set_size(u16 size);
>  	srdi	rx,rt,VSID_BITS_##size;					\
>  	clrldi	rt,rt,(64-VSID_BITS_##size);				\
>  	add	rt,rt,rx;		/* add high and low bits */	\
> -	/* Now, r3 == VSID (mod 2^36-1), and lies between 0 and		\
> +	/* NOTE: explanation based on VSID_BITS_##size = 36		\
> +	 * Now, r3 == VSID (mod 2^36-1), and lies between 0 and		\
>  	 * 2^36-1+2^28-1.  That in particular means that if r3 >=	\
>  	 * 2^36-1, then r3+1 has the 2^36 bit set.  So, if r3+1 has	\
>  	 * the bit clear, r3 already has the answer we want, if it	\
> @@ -514,34 +521,6 @@ typedef struct {
>  	})
>  #endif /* 1 */
>  
> -/*
> - * This is only valid for addresses >= PAGE_OFFSET
> - * The proto-VSID space is divided into two class
> - * User:   0 to 2^(CONTEXT_BITS + USER_ESID_BITS) -1
> - * kernel: 2^(CONTEXT_BITS + USER_ESID_BITS) to 2^(VSID_BITS) - 1
> - *
> - * With KERNEL_START at 0xc000000000000000, the proto vsid for
> - * the kernel ends up with 0xc00000000 (36 bits). With 64TB
> - * support we need to have kernel proto-VSID in the
> - * [2^37 to 2^38 - 1] range due to the increased USER_ESID_BITS.
> - */
> -static inline unsigned long get_kernel_vsid(unsigned long ea, int ssize)
> -{
> -	unsigned long proto_vsid;
> -	/*
> -	 * We need to make sure proto_vsid for the kernel is
> -	 * >= 2^(CONTEXT_BITS + USER_ESID_BITS[_1T])
> -	 */
> -	if (ssize == MMU_SEGSIZE_256M) {
> -		proto_vsid = ea >> SID_SHIFT;
> -		proto_vsid |= (1UL << (CONTEXT_BITS + USER_ESID_BITS));
> -		return vsid_scramble(proto_vsid, 256M);
> -	}
> -	proto_vsid = ea >> SID_SHIFT_1T;
> -	proto_vsid |= (1UL << (CONTEXT_BITS + USER_ESID_BITS_1T));
> -	return vsid_scramble(proto_vsid, 1T);
> -}
> -
>  /* Returns the segment size indicator for a user address */
>  static inline int user_segment_size(unsigned long addr)
>  {
> @@ -551,10 +530,15 @@ static inline int user_segment_size(unsigned long addr)
>  	return MMU_SEGSIZE_256M;
>  }
>  
> -/* This is only valid for user addresses (which are below 2^44) */
>  static inline unsigned long get_vsid(unsigned long context, unsigned long ea,
>  				     int ssize)
>  {
> +	/*
> +	 * Bad address. We return VSID 0 for that
> +	 */
> +	if ((ea & ~REGION_MASK) >= PGTABLE_RANGE)
> +		return 0;
> +
>  	if (ssize == MMU_SEGSIZE_256M)
>  		return vsid_scramble((context << USER_ESID_BITS)
>  				     | (ea >> SID_SHIFT), 256M);
> @@ -562,6 +546,25 @@ static inline unsigned long get_vsid(unsigned long context, unsigned long ea,
>  			     | (ea >> SID_SHIFT_1T), 1T);
>  }
>  
> +/*
> + * This is only valid for addresses >= PAGE_OFFSET
> + *
> + * For kernel space, we use the top 4 context ids to map address as below
> + * 0x7fffc -  [ 0xc000000000000000 - 0xc0003fffffffffff ]
> + * 0x7fffd -  [ 0xd000000000000000 - 0xd0003fffffffffff ]
> + * 0x7fffe -  [ 0xe000000000000000 - 0xe0003fffffffffff ]
> + * 0x7ffff -  [ 0xf000000000000000 - 0xf0003fffffffffff ]
> + */
> +static inline unsigned long get_kernel_vsid(unsigned long ea, int ssize)
> +{
> +	unsigned long context;
> +
> +	/*
> +	 * kernel take the top 4 context from the available range
> +	 */
> +	context = (MAX_CONTEXT - 3) +  ((ea >> 60) - 0xc);
> +	return get_vsid(context, ea, ssize);
> +}
>  #endif /* __ASSEMBLY__ */
>  
>  #endif /* _ASM_POWERPC_MMU_HASH64_H_ */
> diff --git a/arch/powerpc/kernel/exceptions-64s.S b/arch/powerpc/kernel/exceptions-64s.S
> index 4665e82..0e9c48c 100644
> --- a/arch/powerpc/kernel/exceptions-64s.S
> +++ b/arch/powerpc/kernel/exceptions-64s.S
> @@ -1268,20 +1268,39 @@ do_ste_alloc:
>  _GLOBAL(do_stab_bolted)

The stab path certainly hasn't been tested, since we've been broken on
stab machines for a long time.

>  	stw	r9,PACA_EXSLB+EX_CCR(r13)	/* save CR in exc. frame */
>  	std	r11,PACA_EXSLB+EX_SRR0(r13)	/* save SRR0 in exc. frame */
> +	mfspr	r11,SPRN_DAR			/* ea */
>  
> +	/*
> +	 * check for bad kernel/user address
> +	 * (ea & ~REGION_MASK) >= PGTABLE_RANGE
> +	 */
> +	clrldi  r9,r11,4
> +	li	r10,-1
> +	clrldi  r10,r10,(64 - 46)
> +	cmpld	cr7,r9,r10

You can replace the above 4 instructions with just:
	rldicr. r9,r11,4,(64-46-4)

> +	li	r9,0	/* VSID = 0 for bad address */
> +	bgt	cr7,0f
> +
> +	/*
> +	 * Calculate VSID:
> +	 * This is the kernel vsid, we take the top for context from
> +	 * the range. context = (MAX_CONTEXT - 3) + ((ea >> 60) - 0xc)
> +	 * Here we know that (ea >> 60) == 0xc
> +	 */
> +	lis	r9,8
> +	subi	r9,r9,(3 + 1)		/* context */
> +
> +	srdi	r10,r11,SID_SHIFT
> +	rldimi  r10,r9,USER_ESID_BITS,0 /* proto vsid */
> +	ASM_VSID_SCRAMBLE(r10, r9, 256M)
> +	rldic	r9,r10,12,16	/* r9 = vsid << 12 */
> +
> +0:
>  	/* Hash to the primary group */
>  	ld	r10,PACASTABVIRT(r13)
> -	mfspr	r11,SPRN_DAR
> -	srdi	r11,r11,28
> +	srdi	r11,r11,SID_SHIFT
>  	rldimi	r10,r11,7,52	/* r10 = first ste of the group */
>  
> -	/* Calculate VSID */
> -	/* This is a kernel address, so protovsid = ESID | 1 << 37 */
> -	li	r9,0x1
> -	rldimi  r11,r9,(CONTEXT_BITS + USER_ESID_BITS),0
> -	ASM_VSID_SCRAMBLE(r11, r9, 256M)
> -	rldic	r9,r11,12,16	/* r9 = vsid << 12 */
> -
>  	/* Search the primary group for a free entry */
>  1:	ld	r11,0(r10)	/* Test valid bit of the current ste	*/
>  	andi.	r11,r11,0x80
> diff --git a/arch/powerpc/mm/hash_utils_64.c b/arch/powerpc/mm/hash_utils_64.c
> index 3a292be..bfeab83 100644
> --- a/arch/powerpc/mm/hash_utils_64.c
> +++ b/arch/powerpc/mm/hash_utils_64.c
> @@ -194,6 +194,11 @@ int htab_bolt_mapping(unsigned long vstart, unsigned long vend,
>  		unsigned long vpn  = hpt_vpn(vaddr, vsid, ssize);
>  		unsigned long tprot = prot;
>  
> +		/*
> +		 * If we hit a bad address return error.
> +		 */
> +		if (!vsid)
> +			return -1;
>  		/* Make kernel text executable */
>  		if (overlaps_kernel_text(vaddr, vaddr + step))
>  			tprot &= ~HPTE_R_N;
> @@ -921,11 +926,6 @@ int hash_page(unsigned long ea, unsigned long access, unsigned long trap)
>  	DBG_LOW("hash_page(ea=%016lx, access=%lx, trap=%lx\n",
>  		ea, access, trap);
>  
> -	if ((ea & ~REGION_MASK) >= PGTABLE_RANGE) {
> -		DBG_LOW(" out of pgtable range !\n");
> - 		return 1;
> -	}
> -

Hrm.  This test is conceptually different, even if the logic is the
same as the vsid availablility test you may have performed earlier.
Perhaps add BUILD_BUG_ON()s to ensure that they really are the same.


>  	/* Get region & vsid */
>   	switch (REGION_ID(ea)) {
>  	case USER_REGION_ID:
> @@ -956,6 +956,11 @@ int hash_page(unsigned long ea, unsigned long access, unsigned long trap)
>  	}
>  	DBG_LOW(" mm=%p, mm->pgdir=%p, vsid=%016lx\n", mm, mm->pgd, vsid);
>  
> +	/* Bad address. */
> +	if (!vsid) {
> +		DBG_LOW("Bad address!\n");
> +		return 1;
> +	}
>  	/* Get pgdir */
>  	pgdir = mm->pgd;
>  	if (pgdir == NULL)
> @@ -1125,6 +1130,8 @@ void hash_preload(struct mm_struct *mm, unsigned long ea,
>  	/* Get VSID */
>  	ssize = user_segment_size(ea);
>  	vsid = get_vsid(mm->context.id, ea, ssize);
> +	if (!vsid)
> +		return;
>  
>  	/* Hash doesn't like irqs */
>  	local_irq_save(flags);
> @@ -1217,6 +1224,9 @@ static void kernel_map_linear_page(unsigned long vaddr, unsigned long lmi)
>  	hash = hpt_hash(vpn, PAGE_SHIFT, mmu_kernel_ssize);
>  	hpteg = ((hash & htab_hash_mask) * HPTES_PER_GROUP);
>  
> +	/* Don't create HPTE entries for bad address */
> +	if (!vsid)
> +		return;
>  	ret = ppc_md.hpte_insert(hpteg, vpn, __pa(vaddr),
>  				 mode, HPTE_V_BOLTED,
>  				 mmu_linear_psize, mmu_kernel_ssize);
> diff --git a/arch/powerpc/mm/mmu_context_hash64.c b/arch/powerpc/mm/mmu_context_hash64.c
> index 40bc5b0..59cd773 100644
> --- a/arch/powerpc/mm/mmu_context_hash64.c
> +++ b/arch/powerpc/mm/mmu_context_hash64.c
> @@ -29,15 +29,6 @@
>  static DEFINE_SPINLOCK(mmu_context_lock);
>  static DEFINE_IDA(mmu_context_ida);
>  
> -/*
> - * 256MB segment
> - * The proto-VSID space has 2^(CONTEX_BITS + USER_ESID_BITS) - 1 segments
> - * available for user mappings. Each segment contains 2^28 bytes. Each
> - * context maps 2^46 bytes (64TB) so we can support 2^19-1 contexts
> - * (19 == 37 + 28 - 46).
> - */
> -#define MAX_CONTEXT	((1UL << CONTEXT_BITS) - 1)
> -
>  int __init_new_context(void)
>  {
>  	int index;
> @@ -56,7 +47,8 @@ again:
>  	else if (err)
>  		return err;
>  
> -	if (index > MAX_CONTEXT) {
> +	if (index > (MAX_CONTEXT - 4)) {
> +		/* Top 4 context id values are used for kernel */

This change would not be necessary if you changed MAX_CONTEXT as
suggested above.

>  		spin_lock(&mmu_context_lock);
>  		ida_remove(&mmu_context_ida, index);
>  		spin_unlock(&mmu_context_lock);
> diff --git a/arch/powerpc/mm/slb_low.S b/arch/powerpc/mm/slb_low.S
> index 1a16ca2..c066d00 100644
> --- a/arch/powerpc/mm/slb_low.S
> +++ b/arch/powerpc/mm/slb_low.S
> @@ -31,13 +31,20 @@
>   * No other registers are examined or changed.
>   */
>  _GLOBAL(slb_allocate_realmode)
> -	/* r3 = faulting address */
> +	/*
> +	 * check for bad kernel/user address
> +	 * (ea & ~REGION_MASK) >= PGTABLE_RANGE
> +	 */
> +	clrldi  r9,r3,4
> +	li	r10,-1
> +	clrldi  r10,r10,(64 - 46)
> +	cmpld	cr7,r9,r10
> +	bgt	cr7,8f

As in the stab path, you can accomplish this with a single rldicr.

>  
>  	srdi	r9,r3,60		/* get region */
> -	srdi	r10,r3,28		/* get esid */
>  	cmpldi	cr7,r9,0xc		/* cmp PAGE_OFFSET for later use */
>  
> -	/* r3 = address, r10 = esid, cr7 = <> PAGE_OFFSET */
> +	/* r3 = address, cr7 = <> PAGE_OFFSET */
>  	blt	cr7,0f			/* user or kernel? */
>  
>  	/* kernel address: proto-VSID = ESID */
> @@ -56,18 +63,26 @@ _GLOBAL(slb_allocate_realmode)
>  	 */
>  _GLOBAL(slb_miss_kernel_load_linear)
>  	li	r11,0
> -	li	r9,0x1
> +	/*
> +	 * context = (MAX_CONTEXT - 3) + ((ea >> 60) - 0xc)
> +	 */
> +	srdi	r9,r3,60
> +	subi	r9,r9,(0xc + 3 + 1)
> +	lis	r10, 8
> +	add	r9,r9,r10

Hrm.  You can avoid clobbering r10, which I assume is why you removed
the computation of esid from the common path by doing this instead:

	rldicl	r9,r3,4,62
	addis	r9,r9,8
	subi	r9,r9,4

> +	srdi	r10,r3,SID_SHIFT	/* get esid */
>  	/*
>  	 * for 1T we shift 12 bits more.  slb_finish_load_1T will do
>  	 * the necessary adjustment
>  	 */
> -	rldimi  r10,r9,(CONTEXT_BITS + USER_ESID_BITS),0
> +	rldimi  r10,r9,USER_ESID_BITS,0
>  BEGIN_FTR_SECTION
>  	b	slb_finish_load
>  END_MMU_FTR_SECTION_IFCLR(MMU_FTR_1T_SEGMENT)
>  	b	slb_finish_load_1T
>  
>  1:
> +	srdi	r10,r3,SID_SHIFT	/* get esid */
>  #ifdef CONFIG_SPARSEMEM_VMEMMAP
>  	/* Check virtual memmap region. To be patches at kernel boot */
>  	cmpldi	cr0,r9,0xf
> @@ -91,23 +106,26 @@ _GLOBAL(slb_miss_kernel_load_vmemmap)
>  	_GLOBAL(slb_miss_kernel_load_io)
>  	li	r11,0
>  6:
> -	li	r9,0x1
> +	/*
> +	 * context = (MAX_CONTEXT - 3) + ((ea >> 60) - 0xc)
> +	 */
> +	srdi	r9,r3,60
> +	subi	r9,r9,(0xc + 3 + 1)
> +	lis	r10,8
> +	add	r9,r9,r10
> +	srdi	r10,r3,SID_SHIFT

Same here.  Can you put the kernel context calculation into a common
path?  In fact, now that kernel vsids, like user vsids are made of a
context and vsid component, can you put the rldimi which combines them
into a common path for both kernel and user addresses?

>  	/*
>  	 * for 1T we shift 12 bits more.  slb_finish_load_1T will do
>  	 * the necessary adjustment
>  	 */
> -	rldimi  r10,r9,(CONTEXT_BITS + USER_ESID_BITS),0
> +	rldimi  r10,r9,USER_ESID_BITS,0
>  BEGIN_FTR_SECTION
>  	b	slb_finish_load
>  END_MMU_FTR_SECTION_IFCLR(MMU_FTR_1T_SEGMENT)
>  	b	slb_finish_load_1T
>  
> -0:	/* user address: proto-VSID = context << 15 | ESID. First check
> -	 * if the address is within the boundaries of the user region
> -	 */
> -	srdi.	r9,r10,USER_ESID_BITS
> -	bne-	8f			/* invalid ea bits set */
> -
> +0:
> +	srdi	r10,r3,SID_SHIFT	/* get esid */
>  
>  	/* when using slices, we extract the psize off the slice bitmaps
>  	 * and then we need to get the sllp encoding off the mmu_psize_defs
> diff --git a/arch/powerpc/mm/tlb_hash64.c b/arch/powerpc/mm/tlb_hash64.c
> index 0d82ef5..023ec8a 100644
> --- a/arch/powerpc/mm/tlb_hash64.c
> +++ b/arch/powerpc/mm/tlb_hash64.c
> @@ -82,11 +82,11 @@ void hpte_need_flush(struct mm_struct *mm, unsigned long addr,
>  	if (!is_kernel_addr(addr)) {
>  		ssize = user_segment_size(addr);
>  		vsid = get_vsid(mm->context.id, addr, ssize);
> -		WARN_ON(vsid == 0);
>  	} else {
>  		vsid = get_kernel_vsid(addr, mmu_kernel_ssize);
>  		ssize = mmu_kernel_ssize;
>  	}
> +	WARN_ON(vsid == 0);
>  	vpn = hpt_vpn(addr, vsid, ssize);
>  	rpte = __real_pte(__pte(pte), ptep);
>
diff mbox

Patch

diff --git a/arch/powerpc/include/asm/mmu-hash64.h b/arch/powerpc/include/asm/mmu-hash64.h
index 5f8c2bd..35bb51e 100644
--- a/arch/powerpc/include/asm/mmu-hash64.h
+++ b/arch/powerpc/include/asm/mmu-hash64.h
@@ -343,17 +343,16 @@  extern void slb_set_size(u16 size);
 /*
  * VSID allocation (256MB segment)
  *
- * We first generate a 38-bit "proto-VSID".  For kernel addresses this
- * is equal to the ESID | 1 << 37, for user addresses it is:
- *	(context << USER_ESID_BITS) | (esid & ((1U << USER_ESID_BITS) - 1)
+ * We first generate a 37-bit "proto-VSID". Proto-VSIDs are generated
+ * from mmu context id and effective segment id of the address.
  *
- * This splits the proto-VSID into the below range
- *  0 - (2^(CONTEXT_BITS + USER_ESID_BITS) - 1) : User proto-VSID range
- *  2^(CONTEXT_BITS + USER_ESID_BITS) - 2^(VSID_BITS) : Kernel proto-VSID range
- *
- * We also have CONTEXT_BITS + USER_ESID_BITS = VSID_BITS - 1
- * That is, we assign half of the space to user processes and half
- * to the kernel.
+ * For user processes max context id is limited to ((1ul << 19) - 6)
+ * for kernel space, we use the top 4 context ids to map address as below
+ * NOTE: each context only support 64TB now.
+ * 0x7fffc -  [ 0xc000000000000000 - 0xc0003fffffffffff ]
+ * 0x7fffd -  [ 0xd000000000000000 - 0xd0003fffffffffff ]
+ * 0x7fffe -  [ 0xe000000000000000 - 0xe0003fffffffffff ]
+ * 0x7ffff -  [ 0xf000000000000000 - 0xf0003fffffffffff ]
  *
  * The proto-VSIDs are then scrambled into real VSIDs with the
  * multiplicative hash:
@@ -363,22 +362,19 @@  extern void slb_set_size(u16 size);
  * VSID_MULTIPLIER is prime, so in particular it is
  * co-prime to VSID_MODULUS, making this a 1:1 scrambling function.
  * Because the modulus is 2^n-1 we can compute it efficiently without
- * a divide or extra multiply (see below).
- *
- * This scheme has several advantages over older methods:
+ * a divide or extra multiply (see below). The scramble function gives
+ * robust scattering in the hash * table (at least based on some initial
+ * results).
  *
- *	- We have VSIDs allocated for every kernel address
- * (i.e. everything above 0xC000000000000000), except the very top
- * segment, which simplifies several things.
+ * We also consider VSID 0 special. We use VSID 0 for slb entries mapping
+ * bad address. This enables us to consolidate bad address handling in
+ * hash_page.
  *
- *	- We allow for USER_ESID_BITS significant bits of ESID and
- * CONTEXT_BITS  bits of context for user addresses.
- *  i.e. 64T (46 bits) of address space for up to half a million contexts.
- *
- *	- The scramble function gives robust scattering in the hash
- * table (at least based on some initial results).  The previous
- * method was more susceptible to pathological cases giving excessive
- * hash collisions.
+ * We also need to avoid the last segment of the last context, because that
+ * would give a protovsid of 0x1fffffffff. That will result in a VSID 0
+ * because of the modulo operation in vsid scramble. But the vmemmap
+ * (which is what uses region 0xf) will never be close to 64TB in size
+ * (it's 56 bytes per page of system memory).
  */
 
 #define CONTEXT_BITS		19
@@ -386,15 +382,25 @@  extern void slb_set_size(u16 size);
 #define USER_ESID_BITS_1T	6
 
 /*
+ * 256MB segment
+ * The proto-VSID space has 2^(CONTEX_BITS + USER_ESID_BITS) - 1 segments
+ * available for user + kernel mapping. The top 4 contexts are used for
+ * kernel mapping. Each segment contains 2^28 bytes. Each
+ * context maps 2^46 bytes (64TB) so we can support 2^19-1 contexts
+ * (19 == 37 + 28 - 46).
+ */
+#define MAX_CONTEXT	((ASM_CONST(1) << CONTEXT_BITS) - 1)
+
+/*
  * This should be computed such that protovosid * vsid_mulitplier
  * doesn't overflow 64 bits. It should also be co-prime to vsid_modulus
  */
 #define VSID_MULTIPLIER_256M	ASM_CONST(12538073)	/* 24-bit prime */
-#define VSID_BITS_256M		(CONTEXT_BITS + USER_ESID_BITS + 1)
+#define VSID_BITS_256M		(CONTEXT_BITS + USER_ESID_BITS)
 #define VSID_MODULUS_256M	((1UL<<VSID_BITS_256M)-1)
 
 #define VSID_MULTIPLIER_1T	ASM_CONST(12538073)	/* 24-bit prime */
-#define VSID_BITS_1T		(CONTEXT_BITS + USER_ESID_BITS_1T + 1)
+#define VSID_BITS_1T		(CONTEXT_BITS + USER_ESID_BITS_1T)
 #define VSID_MODULUS_1T		((1UL<<VSID_BITS_1T)-1)
 
 
@@ -422,7 +428,8 @@  extern void slb_set_size(u16 size);
 	srdi	rx,rt,VSID_BITS_##size;					\
 	clrldi	rt,rt,(64-VSID_BITS_##size);				\
 	add	rt,rt,rx;		/* add high and low bits */	\
-	/* Now, r3 == VSID (mod 2^36-1), and lies between 0 and		\
+	/* NOTE: explanation based on VSID_BITS_##size = 36		\
+	 * Now, r3 == VSID (mod 2^36-1), and lies between 0 and		\
 	 * 2^36-1+2^28-1.  That in particular means that if r3 >=	\
 	 * 2^36-1, then r3+1 has the 2^36 bit set.  So, if r3+1 has	\
 	 * the bit clear, r3 already has the answer we want, if it	\
@@ -514,34 +521,6 @@  typedef struct {
 	})
 #endif /* 1 */
 
-/*
- * This is only valid for addresses >= PAGE_OFFSET
- * The proto-VSID space is divided into two class
- * User:   0 to 2^(CONTEXT_BITS + USER_ESID_BITS) -1
- * kernel: 2^(CONTEXT_BITS + USER_ESID_BITS) to 2^(VSID_BITS) - 1
- *
- * With KERNEL_START at 0xc000000000000000, the proto vsid for
- * the kernel ends up with 0xc00000000 (36 bits). With 64TB
- * support we need to have kernel proto-VSID in the
- * [2^37 to 2^38 - 1] range due to the increased USER_ESID_BITS.
- */
-static inline unsigned long get_kernel_vsid(unsigned long ea, int ssize)
-{
-	unsigned long proto_vsid;
-	/*
-	 * We need to make sure proto_vsid for the kernel is
-	 * >= 2^(CONTEXT_BITS + USER_ESID_BITS[_1T])
-	 */
-	if (ssize == MMU_SEGSIZE_256M) {
-		proto_vsid = ea >> SID_SHIFT;
-		proto_vsid |= (1UL << (CONTEXT_BITS + USER_ESID_BITS));
-		return vsid_scramble(proto_vsid, 256M);
-	}
-	proto_vsid = ea >> SID_SHIFT_1T;
-	proto_vsid |= (1UL << (CONTEXT_BITS + USER_ESID_BITS_1T));
-	return vsid_scramble(proto_vsid, 1T);
-}
-
 /* Returns the segment size indicator for a user address */
 static inline int user_segment_size(unsigned long addr)
 {
@@ -551,10 +530,15 @@  static inline int user_segment_size(unsigned long addr)
 	return MMU_SEGSIZE_256M;
 }
 
-/* This is only valid for user addresses (which are below 2^44) */
 static inline unsigned long get_vsid(unsigned long context, unsigned long ea,
 				     int ssize)
 {
+	/*
+	 * Bad address. We return VSID 0 for that
+	 */
+	if ((ea & ~REGION_MASK) >= PGTABLE_RANGE)
+		return 0;
+
 	if (ssize == MMU_SEGSIZE_256M)
 		return vsid_scramble((context << USER_ESID_BITS)
 				     | (ea >> SID_SHIFT), 256M);
@@ -562,6 +546,25 @@  static inline unsigned long get_vsid(unsigned long context, unsigned long ea,
 			     | (ea >> SID_SHIFT_1T), 1T);
 }
 
+/*
+ * This is only valid for addresses >= PAGE_OFFSET
+ *
+ * For kernel space, we use the top 4 context ids to map address as below
+ * 0x7fffc -  [ 0xc000000000000000 - 0xc0003fffffffffff ]
+ * 0x7fffd -  [ 0xd000000000000000 - 0xd0003fffffffffff ]
+ * 0x7fffe -  [ 0xe000000000000000 - 0xe0003fffffffffff ]
+ * 0x7ffff -  [ 0xf000000000000000 - 0xf0003fffffffffff ]
+ */
+static inline unsigned long get_kernel_vsid(unsigned long ea, int ssize)
+{
+	unsigned long context;
+
+	/*
+	 * kernel take the top 4 context from the available range
+	 */
+	context = (MAX_CONTEXT - 3) +  ((ea >> 60) - 0xc);
+	return get_vsid(context, ea, ssize);
+}
 #endif /* __ASSEMBLY__ */
 
 #endif /* _ASM_POWERPC_MMU_HASH64_H_ */
diff --git a/arch/powerpc/kernel/exceptions-64s.S b/arch/powerpc/kernel/exceptions-64s.S
index 4665e82..0e9c48c 100644
--- a/arch/powerpc/kernel/exceptions-64s.S
+++ b/arch/powerpc/kernel/exceptions-64s.S
@@ -1268,20 +1268,39 @@  do_ste_alloc:
 _GLOBAL(do_stab_bolted)
 	stw	r9,PACA_EXSLB+EX_CCR(r13)	/* save CR in exc. frame */
 	std	r11,PACA_EXSLB+EX_SRR0(r13)	/* save SRR0 in exc. frame */
+	mfspr	r11,SPRN_DAR			/* ea */
 
+	/*
+	 * check for bad kernel/user address
+	 * (ea & ~REGION_MASK) >= PGTABLE_RANGE
+	 */
+	clrldi  r9,r11,4
+	li	r10,-1
+	clrldi  r10,r10,(64 - 46)
+	cmpld	cr7,r9,r10
+	li	r9,0	/* VSID = 0 for bad address */
+	bgt	cr7,0f
+
+	/*
+	 * Calculate VSID:
+	 * This is the kernel vsid, we take the top for context from
+	 * the range. context = (MAX_CONTEXT - 3) + ((ea >> 60) - 0xc)
+	 * Here we know that (ea >> 60) == 0xc
+	 */
+	lis	r9,8
+	subi	r9,r9,(3 + 1)		/* context */
+
+	srdi	r10,r11,SID_SHIFT
+	rldimi  r10,r9,USER_ESID_BITS,0 /* proto vsid */
+	ASM_VSID_SCRAMBLE(r10, r9, 256M)
+	rldic	r9,r10,12,16	/* r9 = vsid << 12 */
+
+0:
 	/* Hash to the primary group */
 	ld	r10,PACASTABVIRT(r13)
-	mfspr	r11,SPRN_DAR
-	srdi	r11,r11,28
+	srdi	r11,r11,SID_SHIFT
 	rldimi	r10,r11,7,52	/* r10 = first ste of the group */
 
-	/* Calculate VSID */
-	/* This is a kernel address, so protovsid = ESID | 1 << 37 */
-	li	r9,0x1
-	rldimi  r11,r9,(CONTEXT_BITS + USER_ESID_BITS),0
-	ASM_VSID_SCRAMBLE(r11, r9, 256M)
-	rldic	r9,r11,12,16	/* r9 = vsid << 12 */
-
 	/* Search the primary group for a free entry */
 1:	ld	r11,0(r10)	/* Test valid bit of the current ste	*/
 	andi.	r11,r11,0x80
diff --git a/arch/powerpc/mm/hash_utils_64.c b/arch/powerpc/mm/hash_utils_64.c
index 3a292be..bfeab83 100644
--- a/arch/powerpc/mm/hash_utils_64.c
+++ b/arch/powerpc/mm/hash_utils_64.c
@@ -194,6 +194,11 @@  int htab_bolt_mapping(unsigned long vstart, unsigned long vend,
 		unsigned long vpn  = hpt_vpn(vaddr, vsid, ssize);
 		unsigned long tprot = prot;
 
+		/*
+		 * If we hit a bad address return error.
+		 */
+		if (!vsid)
+			return -1;
 		/* Make kernel text executable */
 		if (overlaps_kernel_text(vaddr, vaddr + step))
 			tprot &= ~HPTE_R_N;
@@ -921,11 +926,6 @@  int hash_page(unsigned long ea, unsigned long access, unsigned long trap)
 	DBG_LOW("hash_page(ea=%016lx, access=%lx, trap=%lx\n",
 		ea, access, trap);
 
-	if ((ea & ~REGION_MASK) >= PGTABLE_RANGE) {
-		DBG_LOW(" out of pgtable range !\n");
- 		return 1;
-	}
-
 	/* Get region & vsid */
  	switch (REGION_ID(ea)) {
 	case USER_REGION_ID:
@@ -956,6 +956,11 @@  int hash_page(unsigned long ea, unsigned long access, unsigned long trap)
 	}
 	DBG_LOW(" mm=%p, mm->pgdir=%p, vsid=%016lx\n", mm, mm->pgd, vsid);
 
+	/* Bad address. */
+	if (!vsid) {
+		DBG_LOW("Bad address!\n");
+		return 1;
+	}
 	/* Get pgdir */
 	pgdir = mm->pgd;
 	if (pgdir == NULL)
@@ -1125,6 +1130,8 @@  void hash_preload(struct mm_struct *mm, unsigned long ea,
 	/* Get VSID */
 	ssize = user_segment_size(ea);
 	vsid = get_vsid(mm->context.id, ea, ssize);
+	if (!vsid)
+		return;
 
 	/* Hash doesn't like irqs */
 	local_irq_save(flags);
@@ -1217,6 +1224,9 @@  static void kernel_map_linear_page(unsigned long vaddr, unsigned long lmi)
 	hash = hpt_hash(vpn, PAGE_SHIFT, mmu_kernel_ssize);
 	hpteg = ((hash & htab_hash_mask) * HPTES_PER_GROUP);
 
+	/* Don't create HPTE entries for bad address */
+	if (!vsid)
+		return;
 	ret = ppc_md.hpte_insert(hpteg, vpn, __pa(vaddr),
 				 mode, HPTE_V_BOLTED,
 				 mmu_linear_psize, mmu_kernel_ssize);
diff --git a/arch/powerpc/mm/mmu_context_hash64.c b/arch/powerpc/mm/mmu_context_hash64.c
index 40bc5b0..59cd773 100644
--- a/arch/powerpc/mm/mmu_context_hash64.c
+++ b/arch/powerpc/mm/mmu_context_hash64.c
@@ -29,15 +29,6 @@ 
 static DEFINE_SPINLOCK(mmu_context_lock);
 static DEFINE_IDA(mmu_context_ida);
 
-/*
- * 256MB segment
- * The proto-VSID space has 2^(CONTEX_BITS + USER_ESID_BITS) - 1 segments
- * available for user mappings. Each segment contains 2^28 bytes. Each
- * context maps 2^46 bytes (64TB) so we can support 2^19-1 contexts
- * (19 == 37 + 28 - 46).
- */
-#define MAX_CONTEXT	((1UL << CONTEXT_BITS) - 1)
-
 int __init_new_context(void)
 {
 	int index;
@@ -56,7 +47,8 @@  again:
 	else if (err)
 		return err;
 
-	if (index > MAX_CONTEXT) {
+	if (index > (MAX_CONTEXT - 4)) {
+		/* Top 4 context id values are used for kernel */
 		spin_lock(&mmu_context_lock);
 		ida_remove(&mmu_context_ida, index);
 		spin_unlock(&mmu_context_lock);
diff --git a/arch/powerpc/mm/slb_low.S b/arch/powerpc/mm/slb_low.S
index 1a16ca2..c066d00 100644
--- a/arch/powerpc/mm/slb_low.S
+++ b/arch/powerpc/mm/slb_low.S
@@ -31,13 +31,20 @@ 
  * No other registers are examined or changed.
  */
 _GLOBAL(slb_allocate_realmode)
-	/* r3 = faulting address */
+	/*
+	 * check for bad kernel/user address
+	 * (ea & ~REGION_MASK) >= PGTABLE_RANGE
+	 */
+	clrldi  r9,r3,4
+	li	r10,-1
+	clrldi  r10,r10,(64 - 46)
+	cmpld	cr7,r9,r10
+	bgt	cr7,8f
 
 	srdi	r9,r3,60		/* get region */
-	srdi	r10,r3,28		/* get esid */
 	cmpldi	cr7,r9,0xc		/* cmp PAGE_OFFSET for later use */
 
-	/* r3 = address, r10 = esid, cr7 = <> PAGE_OFFSET */
+	/* r3 = address, cr7 = <> PAGE_OFFSET */
 	blt	cr7,0f			/* user or kernel? */
 
 	/* kernel address: proto-VSID = ESID */
@@ -56,18 +63,26 @@  _GLOBAL(slb_allocate_realmode)
 	 */
 _GLOBAL(slb_miss_kernel_load_linear)
 	li	r11,0
-	li	r9,0x1
+	/*
+	 * context = (MAX_CONTEXT - 3) + ((ea >> 60) - 0xc)
+	 */
+	srdi	r9,r3,60
+	subi	r9,r9,(0xc + 3 + 1)
+	lis	r10, 8
+	add	r9,r9,r10
+	srdi	r10,r3,SID_SHIFT	/* get esid */
 	/*
 	 * for 1T we shift 12 bits more.  slb_finish_load_1T will do
 	 * the necessary adjustment
 	 */
-	rldimi  r10,r9,(CONTEXT_BITS + USER_ESID_BITS),0
+	rldimi  r10,r9,USER_ESID_BITS,0
 BEGIN_FTR_SECTION
 	b	slb_finish_load
 END_MMU_FTR_SECTION_IFCLR(MMU_FTR_1T_SEGMENT)
 	b	slb_finish_load_1T
 
 1:
+	srdi	r10,r3,SID_SHIFT	/* get esid */
 #ifdef CONFIG_SPARSEMEM_VMEMMAP
 	/* Check virtual memmap region. To be patches at kernel boot */
 	cmpldi	cr0,r9,0xf
@@ -91,23 +106,26 @@  _GLOBAL(slb_miss_kernel_load_vmemmap)
 	_GLOBAL(slb_miss_kernel_load_io)
 	li	r11,0
 6:
-	li	r9,0x1
+	/*
+	 * context = (MAX_CONTEXT - 3) + ((ea >> 60) - 0xc)
+	 */
+	srdi	r9,r3,60
+	subi	r9,r9,(0xc + 3 + 1)
+	lis	r10,8
+	add	r9,r9,r10
+	srdi	r10,r3,SID_SHIFT
 	/*
 	 * for 1T we shift 12 bits more.  slb_finish_load_1T will do
 	 * the necessary adjustment
 	 */
-	rldimi  r10,r9,(CONTEXT_BITS + USER_ESID_BITS),0
+	rldimi  r10,r9,USER_ESID_BITS,0
 BEGIN_FTR_SECTION
 	b	slb_finish_load
 END_MMU_FTR_SECTION_IFCLR(MMU_FTR_1T_SEGMENT)
 	b	slb_finish_load_1T
 
-0:	/* user address: proto-VSID = context << 15 | ESID. First check
-	 * if the address is within the boundaries of the user region
-	 */
-	srdi.	r9,r10,USER_ESID_BITS
-	bne-	8f			/* invalid ea bits set */
-
+0:
+	srdi	r10,r3,SID_SHIFT	/* get esid */
 
 	/* when using slices, we extract the psize off the slice bitmaps
 	 * and then we need to get the sllp encoding off the mmu_psize_defs
diff --git a/arch/powerpc/mm/tlb_hash64.c b/arch/powerpc/mm/tlb_hash64.c
index 0d82ef5..023ec8a 100644
--- a/arch/powerpc/mm/tlb_hash64.c
+++ b/arch/powerpc/mm/tlb_hash64.c
@@ -82,11 +82,11 @@  void hpte_need_flush(struct mm_struct *mm, unsigned long addr,
 	if (!is_kernel_addr(addr)) {
 		ssize = user_segment_size(addr);
 		vsid = get_vsid(mm->context.id, addr, ssize);
-		WARN_ON(vsid == 0);
 	} else {
 		vsid = get_kernel_vsid(addr, mmu_kernel_ssize);
 		ssize = mmu_kernel_ssize;
 	}
+	WARN_ON(vsid == 0);
 	vpn = hpt_vpn(addr, vsid, ssize);
 	rpte = __real_pte(__pte(pte), ptep);